123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627 |
- //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "TargetInfo.h"
- #include "ABIInfo.h"
- #include "CGBlocks.h"
- #include "CGCXXABI.h"
- #include "CGValue.h"
- #include "CodeGenFunction.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/Basic/CodeGenOptions.h"
- #include "clang/CodeGen/CGFunctionInfo.h"
- #include "clang/CodeGen/SwiftCallingConv.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/StringSwitch.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm> // std::sort
- using namespace clang;
- using namespace CodeGen;
- // Helper for coercing an aggregate argument or return value into an integer
- // array of the same size (including padding) and alignment. This alternate
- // coercion happens only for the RenderScript ABI and can be removed after
- // runtimes that rely on it are no longer supported.
- //
- // RenderScript assumes that the size of the argument / return value in the IR
- // is the same as the size of the corresponding qualified type. This helper
- // coerces the aggregate type into an array of the same size (including
- // padding). This coercion is used in lieu of expansion of struct members or
- // other canonical coercions that return a coerced-type of larger size.
- //
- // Ty - The argument / return value type
- // Context - The associated ASTContext
- // LLVMContext - The associated LLVMContext
- static ABIArgInfo coerceToIntArray(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &LLVMContext) {
- // Alignment and Size are measured in bits.
- const uint64_t Size = Context.getTypeSize(Ty);
- const uint64_t Alignment = Context.getTypeAlign(Ty);
- llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
- const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
- return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
- }
- static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
- llvm::Value *Array,
- llvm::Value *Value,
- unsigned FirstIndex,
- unsigned LastIndex) {
- // Alternatively, we could emit this as a loop in the source.
- for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
- llvm::Value *Cell =
- Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
- Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
- }
- }
- static bool isAggregateTypeForABI(QualType T) {
- return !CodeGenFunction::hasScalarEvaluationKind(T) ||
- T->isMemberFunctionPointerType();
- }
- ABIArgInfo
- ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
- llvm::Type *Padding) const {
- return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
- ByRef, Realign, Padding);
- }
- ABIArgInfo
- ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
- return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
- /*ByRef*/ false, Realign);
- }
- Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- return Address::invalid();
- }
- ABIInfo::~ABIInfo() {}
- /// Does the given lowering require more than the given number of
- /// registers when expanded?
- ///
- /// This is intended to be the basis of a reasonable basic implementation
- /// of should{Pass,Return}IndirectlyForSwift.
- ///
- /// For most targets, a limit of four total registers is reasonable; this
- /// limits the amount of code required in order to move around the value
- /// in case it wasn't produced immediately prior to the call by the caller
- /// (or wasn't produced in exactly the right registers) or isn't used
- /// immediately within the callee. But some targets may need to further
- /// limit the register count due to an inability to support that many
- /// return registers.
- static bool occupiesMoreThan(CodeGenTypes &cgt,
- ArrayRef<llvm::Type*> scalarTypes,
- unsigned maxAllRegisters) {
- unsigned intCount = 0, fpCount = 0;
- for (llvm::Type *type : scalarTypes) {
- if (type->isPointerTy()) {
- intCount++;
- } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
- auto ptrWidth = cgt.getTarget().getPointerWidth(0);
- intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
- } else {
- assert(type->isVectorTy() || type->isFloatingPointTy());
- fpCount++;
- }
- }
- return (intCount + fpCount > maxAllRegisters);
- }
- bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
- llvm::Type *eltTy,
- unsigned numElts) const {
- // The default implementation of this assumes that the target guarantees
- // 128-bit SIMD support but nothing more.
- return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
- }
- static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
- CGCXXABI &CXXABI) {
- const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
- if (!RD) {
- if (!RT->getDecl()->canPassInRegisters())
- return CGCXXABI::RAA_Indirect;
- return CGCXXABI::RAA_Default;
- }
- return CXXABI.getRecordArgABI(RD);
- }
- static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
- CGCXXABI &CXXABI) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return CGCXXABI::RAA_Default;
- return getRecordArgABI(RT, CXXABI);
- }
- static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
- const ABIInfo &Info) {
- QualType Ty = FI.getReturnType();
- if (const auto *RT = Ty->getAs<RecordType>())
- if (!isa<CXXRecordDecl>(RT->getDecl()) &&
- !RT->getDecl()->canPassInRegisters()) {
- FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
- return true;
- }
- return CXXABI.classifyReturnType(FI);
- }
- /// Pass transparent unions as if they were the type of the first element. Sema
- /// should ensure that all elements of the union have the same "machine type".
- static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
- if (const RecordType *UT = Ty->getAsUnionType()) {
- const RecordDecl *UD = UT->getDecl();
- if (UD->hasAttr<TransparentUnionAttr>()) {
- assert(!UD->field_empty() && "sema created an empty transparent union");
- return UD->field_begin()->getType();
- }
- }
- return Ty;
- }
- CGCXXABI &ABIInfo::getCXXABI() const {
- return CGT.getCXXABI();
- }
- ASTContext &ABIInfo::getContext() const {
- return CGT.getContext();
- }
- llvm::LLVMContext &ABIInfo::getVMContext() const {
- return CGT.getLLVMContext();
- }
- const llvm::DataLayout &ABIInfo::getDataLayout() const {
- return CGT.getDataLayout();
- }
- const TargetInfo &ABIInfo::getTarget() const {
- return CGT.getTarget();
- }
- const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
- return CGT.getCodeGenOpts();
- }
- bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
- bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- return false;
- }
- bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const {
- return false;
- }
- LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
- raw_ostream &OS = llvm::errs();
- OS << "(ABIArgInfo Kind=";
- switch (TheKind) {
- case Direct:
- OS << "Direct Type=";
- if (llvm::Type *Ty = getCoerceToType())
- Ty->print(OS);
- else
- OS << "null";
- break;
- case Extend:
- OS << "Extend";
- break;
- case Ignore:
- OS << "Ignore";
- break;
- case InAlloca:
- OS << "InAlloca Offset=" << getInAllocaFieldIndex();
- break;
- case Indirect:
- OS << "Indirect Align=" << getIndirectAlign().getQuantity()
- << " ByVal=" << getIndirectByVal()
- << " Realign=" << getIndirectRealign();
- break;
- case Expand:
- OS << "Expand";
- break;
- case CoerceAndExpand:
- OS << "CoerceAndExpand Type=";
- getCoerceAndExpandType()->print(OS);
- break;
- }
- OS << ")\n";
- }
- // Dynamically round a pointer up to a multiple of the given alignment.
- static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
- llvm::Value *Ptr,
- CharUnits Align) {
- llvm::Value *PtrAsInt = Ptr;
- // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
- PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
- PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
- llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
- PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
- llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
- PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
- Ptr->getType(),
- Ptr->getName() + ".aligned");
- return PtrAsInt;
- }
- /// Emit va_arg for a platform using the common void* representation,
- /// where arguments are simply emitted in an array of slots on the stack.
- ///
- /// This version implements the core direct-value passing rules.
- ///
- /// \param SlotSize - The size and alignment of a stack slot.
- /// Each argument will be allocated to a multiple of this number of
- /// slots, and all the slots will be aligned to this value.
- /// \param AllowHigherAlign - The slot alignment is not a cap;
- /// an argument type with an alignment greater than the slot size
- /// will be emitted on a higher-alignment address, potentially
- /// leaving one or more empty slots behind as padding. If this
- /// is false, the returned address might be less-aligned than
- /// DirectAlign.
- static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
- Address VAListAddr,
- llvm::Type *DirectTy,
- CharUnits DirectSize,
- CharUnits DirectAlign,
- CharUnits SlotSize,
- bool AllowHigherAlign) {
- // Cast the element type to i8* if necessary. Some platforms define
- // va_list as a struct containing an i8* instead of just an i8*.
- if (VAListAddr.getElementType() != CGF.Int8PtrTy)
- VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
- llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
- // If the CC aligns values higher than the slot size, do so if needed.
- Address Addr = Address::invalid();
- if (AllowHigherAlign && DirectAlign > SlotSize) {
- Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
- DirectAlign);
- } else {
- Addr = Address(Ptr, SlotSize);
- }
- // Advance the pointer past the argument, then store that back.
- CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
- Address NextPtr =
- CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
- CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
- // If the argument is smaller than a slot, and this is a big-endian
- // target, the argument will be right-adjusted in its slot.
- if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
- !DirectTy->isStructTy()) {
- Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
- }
- Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
- return Addr;
- }
- /// Emit va_arg for a platform using the common void* representation,
- /// where arguments are simply emitted in an array of slots on the stack.
- ///
- /// \param IsIndirect - Values of this type are passed indirectly.
- /// \param ValueInfo - The size and alignment of this type, generally
- /// computed with getContext().getTypeInfoInChars(ValueTy).
- /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
- /// Each argument will be allocated to a multiple of this number of
- /// slots, and all the slots will be aligned to this value.
- /// \param AllowHigherAlign - The slot alignment is not a cap;
- /// an argument type with an alignment greater than the slot size
- /// will be emitted on a higher-alignment address, potentially
- /// leaving one or more empty slots behind as padding.
- static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType ValueTy, bool IsIndirect,
- std::pair<CharUnits, CharUnits> ValueInfo,
- CharUnits SlotSizeAndAlign,
- bool AllowHigherAlign) {
- // The size and alignment of the value that was passed directly.
- CharUnits DirectSize, DirectAlign;
- if (IsIndirect) {
- DirectSize = CGF.getPointerSize();
- DirectAlign = CGF.getPointerAlign();
- } else {
- DirectSize = ValueInfo.first;
- DirectAlign = ValueInfo.second;
- }
- // Cast the address we've calculated to the right type.
- llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
- if (IsIndirect)
- DirectTy = DirectTy->getPointerTo(0);
- Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
- DirectSize, DirectAlign,
- SlotSizeAndAlign,
- AllowHigherAlign);
- if (IsIndirect) {
- Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
- }
- return Addr;
- }
- static Address emitMergePHI(CodeGenFunction &CGF,
- Address Addr1, llvm::BasicBlock *Block1,
- Address Addr2, llvm::BasicBlock *Block2,
- const llvm::Twine &Name = "") {
- assert(Addr1.getType() == Addr2.getType());
- llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
- PHI->addIncoming(Addr1.getPointer(), Block1);
- PHI->addIncoming(Addr2.getPointer(), Block2);
- CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
- return Address(PHI, Align);
- }
- TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
- // If someone can figure out a general rule for this, that would be great.
- // It's probably just doomed to be platform-dependent, though.
- unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
- // Verified for:
- // x86-64 FreeBSD, Linux, Darwin
- // x86-32 FreeBSD, Linux, Darwin
- // PowerPC Linux, Darwin
- // ARM Darwin (*not* EABI)
- // AArch64 Linux
- return 32;
- }
- bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
- const FunctionNoProtoType *fnType) const {
- // The following conventions are known to require this to be false:
- // x86_stdcall
- // MIPS
- // For everything else, we just prefer false unless we opt out.
- return false;
- }
- void
- TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const {
- // This assumes the user is passing a library name like "rt" instead of a
- // filename like "librt.a/so", and that they don't care whether it's static or
- // dynamic.
- Opt = "-l";
- Opt += Lib;
- }
- unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
- // OpenCL kernels are called via an explicit runtime API with arguments
- // set with clSetKernelArg(), not as normal sub-functions.
- // Return SPIR_KERNEL by default as the kernel calling convention to
- // ensure the fingerprint is fixed such way that each OpenCL argument
- // gets one matching argument in the produced kernel function argument
- // list to enable feasible implementation of clSetKernelArg() with
- // aggregates etc. In case we would use the default C calling conv here,
- // clSetKernelArg() might break depending on the target-specific
- // conventions; different targets might split structs passed as values
- // to multiple function arguments etc.
- return llvm::CallingConv::SPIR_KERNEL;
- }
- llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
- llvm::PointerType *T, QualType QT) const {
- return llvm::ConstantPointerNull::get(T);
- }
- LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
- const VarDecl *D) const {
- assert(!CGM.getLangOpts().OpenCL &&
- !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
- "Address space agnostic languages only");
- return D ? D->getType().getAddressSpace() : LangAS::Default;
- }
- llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
- CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
- LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
- // Since target may map different address spaces in AST to the same address
- // space, an address space conversion may end up as a bitcast.
- if (auto *C = dyn_cast<llvm::Constant>(Src))
- return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
- return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
- }
- llvm::Constant *
- TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
- LangAS SrcAddr, LangAS DestAddr,
- llvm::Type *DestTy) const {
- // Since target may map different address spaces in AST to the same address
- // space, an address space conversion may end up as a bitcast.
- return llvm::ConstantExpr::getPointerCast(Src, DestTy);
- }
- llvm::SyncScope::ID
- TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
- SyncScope Scope,
- llvm::AtomicOrdering Ordering,
- llvm::LLVMContext &Ctx) const {
- return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
- }
- static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
- /// isEmptyField - Return true iff a the field is "empty", that is it
- /// is an unnamed bit-field or an (array of) empty record(s).
- static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
- bool AllowArrays) {
- if (FD->isUnnamedBitfield())
- return true;
- QualType FT = FD->getType();
- // Constant arrays of empty records count as empty, strip them off.
- // Constant arrays of zero length always count as empty.
- if (AllowArrays)
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize() == 0)
- return true;
- FT = AT->getElementType();
- }
- const RecordType *RT = FT->getAs<RecordType>();
- if (!RT)
- return false;
- // C++ record fields are never empty, at least in the Itanium ABI.
- //
- // FIXME: We should use a predicate for whether this behavior is true in the
- // current ABI.
- if (isa<CXXRecordDecl>(RT->getDecl()))
- return false;
- return isEmptyRecord(Context, FT, AllowArrays);
- }
- /// isEmptyRecord - Return true iff a structure contains only empty
- /// fields. Note that a structure with a flexible array member is not
- /// considered empty.
- static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return false;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const auto &I : CXXRD->bases())
- if (!isEmptyRecord(Context, I.getType(), true))
- return false;
- for (const auto *I : RD->fields())
- if (!isEmptyField(Context, I, AllowArrays))
- return false;
- return true;
- }
- /// isSingleElementStruct - Determine if a structure is a "single
- /// element struct", i.e. it has exactly one non-empty field or
- /// exactly one field which is itself a single element
- /// struct. Structures with flexible array members are never
- /// considered single element structs.
- ///
- /// \return The field declaration for the single non-empty field, if
- /// it exists.
- static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return nullptr;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return nullptr;
- const Type *Found = nullptr;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- // Ignore empty records.
- if (isEmptyRecord(Context, I.getType(), true))
- continue;
- // If we already found an element then this isn't a single-element struct.
- if (Found)
- return nullptr;
- // If this is non-empty and not a single element struct, the composite
- // cannot be a single element struct.
- Found = isSingleElementStruct(I.getType(), Context);
- if (!Found)
- return nullptr;
- }
- }
- // Check for single element.
- for (const auto *FD : RD->fields()) {
- QualType FT = FD->getType();
- // Ignore empty fields.
- if (isEmptyField(Context, FD, true))
- continue;
- // If we already found an element then this isn't a single-element
- // struct.
- if (Found)
- return nullptr;
- // Treat single element arrays as the element.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() != 1)
- break;
- FT = AT->getElementType();
- }
- if (!isAggregateTypeForABI(FT)) {
- Found = FT.getTypePtr();
- } else {
- Found = isSingleElementStruct(FT, Context);
- if (!Found)
- return nullptr;
- }
- }
- // We don't consider a struct a single-element struct if it has
- // padding beyond the element type.
- if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
- return nullptr;
- return Found;
- }
- namespace {
- Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
- const ABIArgInfo &AI) {
- // This default implementation defers to the llvm backend's va_arg
- // instruction. It can handle only passing arguments directly
- // (typically only handled in the backend for primitive types), or
- // aggregates passed indirectly by pointer (NOTE: if the "byval"
- // flag has ABI impact in the callee, this implementation cannot
- // work.)
- // Only a few cases are covered here at the moment -- those needed
- // by the default abi.
- llvm::Value *Val;
- if (AI.isIndirect()) {
- assert(!AI.getPaddingType() &&
- "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
- assert(
- !AI.getIndirectRealign() &&
- "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
- auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
- CharUnits TyAlignForABI = TyInfo.second;
- llvm::Type *BaseTy =
- llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
- llvm::Value *Addr =
- CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
- return Address(Addr, TyAlignForABI);
- } else {
- assert((AI.isDirect() || AI.isExtend()) &&
- "Unexpected ArgInfo Kind in generic VAArg emitter!");
- assert(!AI.getInReg() &&
- "Unexpected InReg seen in arginfo in generic VAArg emitter!");
- assert(!AI.getPaddingType() &&
- "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
- assert(!AI.getDirectOffset() &&
- "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
- assert(!AI.getCoerceToType() &&
- "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
- Address Temp = CGF.CreateMemTemp(Ty, "varet");
- Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
- CGF.Builder.CreateStore(Val, Temp);
- return Temp;
- }
- }
- /// DefaultABIInfo - The default implementation for ABI specific
- /// details. This implementation provides information which results in
- /// self-consistent and sensible LLVM IR generation, but does not
- /// conform to any particular ABI.
- class DefaultABIInfo : public ABIInfo {
- public:
- DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override {
- return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
- }
- };
- class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- };
- ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- if (isAggregateTypeForABI(Ty)) {
- // Records with non-trivial destructors/copy-constructors should not be
- // passed by value.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- return getNaturalAlignIndirect(Ty);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy))
- return getNaturalAlignIndirect(RetTy);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- //===----------------------------------------------------------------------===//
- // WebAssembly ABI Implementation
- //
- // This is a very simple ABI that relies a lot on DefaultABIInfo.
- //===----------------------------------------------------------------------===//
- class WebAssemblyABIInfo final : public SwiftABIInfo {
- DefaultABIInfo defaultInfo;
- public:
- explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
- : SwiftABIInfo(CGT), defaultInfo(CGT) {}
- private:
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- // DefaultABIInfo's classifyReturnType and classifyArgumentType are
- // non-virtual, but computeInfo and EmitVAArg are virtual, so we
- // overload them.
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &Arg : FI.arguments())
- Arg.info = classifyArgumentType(Arg.type);
- }
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return false;
- }
- };
- class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
- public:
- explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
- if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- llvm::AttrBuilder B;
- B.addAttribute("wasm-import-module", Attr->getImportModule());
- Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
- }
- if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- llvm::AttrBuilder B;
- B.addAttribute("wasm-import-name", Attr->getImportName());
- Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
- }
- }
- if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
- Fn->addFnAttr("no-prototype");
- }
- }
- };
- /// Classify argument of given type \p Ty.
- ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- if (isAggregateTypeForABI(Ty)) {
- // Records with non-trivial destructors/copy-constructors should not be
- // passed by value.
- if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- // Lower single-element structs to just pass a regular value. TODO: We
- // could do reasonable-size multiple-element structs too, using getExpand(),
- // though watch out for things like bitfields.
- if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- }
- // Otherwise just do the default thing.
- return defaultInfo.classifyArgumentType(Ty);
- }
- ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
- if (isAggregateTypeForABI(RetTy)) {
- // Records with non-trivial destructors/copy-constructors should not be
- // returned by value.
- if (!getRecordArgABI(RetTy, getCXXABI())) {
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Lower single-element structs to just return a regular value. TODO: We
- // could do reasonable-size multiple-element structs too, using
- // ABIArgInfo::getDirect().
- if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- }
- }
- // Otherwise just do the default thing.
- return defaultInfo.classifyReturnType(RetTy);
- }
- Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
- getContext().getTypeInfoInChars(Ty),
- CharUnits::fromQuantity(4),
- /*AllowHigherAlign=*/ true);
- }
- //===----------------------------------------------------------------------===//
- // le32/PNaCl bitcode ABI Implementation
- //
- // This is a simplified version of the x86_32 ABI. Arguments and return values
- // are always passed on the stack.
- //===----------------------------------------------------------------------===//
- class PNaClABIInfo : public ABIInfo {
- public:
- PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF,
- Address VAListAddr, QualType Ty) const override;
- };
- class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
- };
- void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- // The PNaCL ABI is a bit odd, in that varargs don't use normal
- // function classification. Structs get passed directly for varargs
- // functions, through a rewriting transform in
- // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
- // this target to actually support a va_arg instructions with an
- // aggregate type, unlike other targets.
- return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
- }
- /// Classify argument of given type \p Ty.
- ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
- if (isAggregateTypeForABI(Ty)) {
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- return getNaturalAlignIndirect(Ty);
- } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
- // Treat an enum type as its underlying type.
- Ty = EnumTy->getDecl()->getIntegerType();
- } else if (Ty->isFloatingType()) {
- // Floating-point types don't go inreg.
- return ABIArgInfo::getDirect();
- }
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // In the PNaCl ABI we always return records/structures on the stack.
- if (isAggregateTypeForABI(RetTy))
- return getNaturalAlignIndirect(RetTy);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- /// IsX86_MMXType - Return true if this is an MMX type.
- bool IsX86_MMXType(llvm::Type *IRType) {
- // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
- return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
- cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
- IRType->getScalarSizeInBits() != 64;
- }
- static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) {
- bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
- .Cases("y", "&y", "^Ym", true)
- .Default(false);
- if (IsMMXCons && Ty->isVectorTy()) {
- if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
- // Invalid MMX constraint
- return nullptr;
- }
- return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
- }
- // No operation needed
- return Ty;
- }
- /// Returns true if this type can be passed in SSE registers with the
- /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
- static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
- if (BT->getKind() == BuiltinType::LongDouble) {
- if (&Context.getTargetInfo().getLongDoubleFormat() ==
- &llvm::APFloat::x87DoubleExtended())
- return false;
- }
- return true;
- }
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
- // registers specially.
- unsigned VecSize = Context.getTypeSize(VT);
- if (VecSize == 128 || VecSize == 256 || VecSize == 512)
- return true;
- }
- return false;
- }
- /// Returns true if this aggregate is small enough to be passed in SSE registers
- /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
- static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
- return NumMembers <= 4;
- }
- /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
- static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
- auto AI = ABIArgInfo::getDirect(T);
- AI.setInReg(true);
- AI.setCanBeFlattened(false);
- return AI;
- }
- //===----------------------------------------------------------------------===//
- // X86-32 ABI Implementation
- //===----------------------------------------------------------------------===//
- /// Similar to llvm::CCState, but for Clang.
- struct CCState {
- CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
- unsigned CC;
- unsigned FreeRegs;
- unsigned FreeSSERegs;
- };
- enum {
- // Vectorcall only allows the first 6 parameters to be passed in registers.
- VectorcallMaxParamNumAsReg = 6
- };
- /// X86_32ABIInfo - The X86-32 ABI information.
- class X86_32ABIInfo : public SwiftABIInfo {
- enum Class {
- Integer,
- Float
- };
- static const unsigned MinABIStackAlignInBytes = 4;
- bool IsDarwinVectorABI;
- bool IsRetSmallStructInRegABI;
- bool IsWin32StructABI;
- bool IsSoftFloatABI;
- bool IsMCUABI;
- unsigned DefaultNumRegisterParameters;
- static bool isRegisterSize(unsigned Size) {
- return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
- }
- bool isHomogeneousAggregateBaseType(QualType Ty) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorTypeForVectorCall(getContext(), Ty);
- }
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t NumMembers) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorCallAggregateSmallEnough(NumMembers);
- }
- bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
- ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
- /// Return the alignment to use for the given type on the stack.
- unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
- Class classify(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
- /// Updates the number of available free registers, returns
- /// true if any registers were allocated.
- bool updateFreeRegs(QualType Ty, CCState &State) const;
- bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
- bool &NeedsPadding) const;
- bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
- bool canExpandIndirectArgument(QualType Ty) const;
- /// Rewrite the function info so that all memory arguments use
- /// inalloca.
- void rewriteWithInAlloca(CGFunctionInfo &FI) const;
- void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
- CharUnits &StackOffset, ABIArgInfo &Info,
- QualType Type) const;
- void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
- bool &UsedInAlloca) const;
- public:
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
- bool RetSmallStructInRegABI, bool Win32StructABI,
- unsigned NumRegisterParameters, bool SoftFloatABI)
- : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
- IsRetSmallStructInRegABI(RetSmallStructInRegABI),
- IsWin32StructABI(Win32StructABI),
- IsSoftFloatABI(SoftFloatABI),
- IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
- DefaultNumRegisterParameters(NumRegisterParameters) {}
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- // LLVM's x86-32 lowering currently only assigns up to three
- // integer registers and three fp registers. Oddly, it'll use up to
- // four vector registers for vectors, but those can overlap with the
- // scalar registers.
- return occupiesMoreThan(CGT, scalars, /*total*/ 3);
- }
- bool isSwiftErrorInRegister() const override {
- // x86-32 lowering does not support passing swifterror in a register.
- return false;
- }
- };
- class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
- bool RetSmallStructInRegABI, bool Win32StructABI,
- unsigned NumRegisterParameters, bool SoftFloatABI)
- : TargetCodeGenInfo(new X86_32ABIInfo(
- CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
- NumRegisterParameters, SoftFloatABI)) {}
- static bool isStructReturnInRegABI(
- const llvm::Triple &Triple, const CodeGenOptions &Opts);
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- // Darwin uses different dwarf register numbers for EH.
- if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
- return 4;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) const override {
- return X86AdjustInlineAsmType(CGF, Constraint, Ty);
- }
- void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
- std::string &Constraints,
- std::vector<llvm::Type *> &ResultRegTypes,
- std::vector<llvm::Type *> &ResultTruncRegTypes,
- std::vector<LValue> &ResultRegDests,
- std::string &AsmString,
- unsigned NumOutputs) const override;
- llvm::Constant *
- getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
- unsigned Sig = (0xeb << 0) | // jmp rel8
- (0x06 << 8) | // .+0x08
- ('v' << 16) |
- ('2' << 24);
- return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
- }
- StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
- return "movl\t%ebp, %ebp"
- "\t\t// marker for objc_retainAutoreleaseReturnValue";
- }
- };
- }
- /// Rewrite input constraint references after adding some output constraints.
- /// In the case where there is one output and one input and we add one output,
- /// we need to replace all operand references greater than or equal to 1:
- /// mov $0, $1
- /// mov eax, $1
- /// The result will be:
- /// mov $0, $2
- /// mov eax, $2
- static void rewriteInputConstraintReferences(unsigned FirstIn,
- unsigned NumNewOuts,
- std::string &AsmString) {
- std::string Buf;
- llvm::raw_string_ostream OS(Buf);
- size_t Pos = 0;
- while (Pos < AsmString.size()) {
- size_t DollarStart = AsmString.find('$', Pos);
- if (DollarStart == std::string::npos)
- DollarStart = AsmString.size();
- size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
- if (DollarEnd == std::string::npos)
- DollarEnd = AsmString.size();
- OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
- Pos = DollarEnd;
- size_t NumDollars = DollarEnd - DollarStart;
- if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
- // We have an operand reference.
- size_t DigitStart = Pos;
- size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
- if (DigitEnd == std::string::npos)
- DigitEnd = AsmString.size();
- StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
- unsigned OperandIndex;
- if (!OperandStr.getAsInteger(10, OperandIndex)) {
- if (OperandIndex >= FirstIn)
- OperandIndex += NumNewOuts;
- OS << OperandIndex;
- } else {
- OS << OperandStr;
- }
- Pos = DigitEnd;
- }
- }
- AsmString = std::move(OS.str());
- }
- /// Add output constraints for EAX:EDX because they are return registers.
- void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
- CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
- std::vector<llvm::Type *> &ResultRegTypes,
- std::vector<llvm::Type *> &ResultTruncRegTypes,
- std::vector<LValue> &ResultRegDests, std::string &AsmString,
- unsigned NumOutputs) const {
- uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
- // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
- // larger.
- if (!Constraints.empty())
- Constraints += ',';
- if (RetWidth <= 32) {
- Constraints += "={eax}";
- ResultRegTypes.push_back(CGF.Int32Ty);
- } else {
- // Use the 'A' constraint for EAX:EDX.
- Constraints += "=A";
- ResultRegTypes.push_back(CGF.Int64Ty);
- }
- // Truncate EAX or EAX:EDX to an integer of the appropriate size.
- llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
- ResultTruncRegTypes.push_back(CoerceTy);
- // Coerce the integer by bitcasting the return slot pointer.
- ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
- CoerceTy->getPointerTo()));
- ResultRegDests.push_back(ReturnSlot);
- rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
- }
- /// shouldReturnTypeInRegister - Determine if the given type should be
- /// returned in a register (for the Darwin and MCU ABI).
- bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
- ASTContext &Context) const {
- uint64_t Size = Context.getTypeSize(Ty);
- // For i386, type must be register sized.
- // For the MCU ABI, it only needs to be <= 8-byte
- if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
- return false;
- if (Ty->isVectorType()) {
- // 64- and 128- bit vectors inside structures are not returned in
- // registers.
- if (Size == 64 || Size == 128)
- return false;
- return true;
- }
- // If this is a builtin, pointer, enum, complex type, member pointer, or
- // member function pointer it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
- Ty->isAnyComplexType() || Ty->isEnumeralType() ||
- Ty->isBlockPointerType() || Ty->isMemberPointerType())
- return true;
- // Arrays are treated like records.
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
- return shouldReturnTypeInRegister(AT->getElementType(), Context);
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
- // FIXME: Traverse bases here too.
- // Structure types are passed in register if all fields would be
- // passed in a register.
- for (const auto *FD : RT->getDecl()->fields()) {
- // Empty fields are ignored.
- if (isEmptyField(Context, FD, true))
- continue;
- // Check fields recursively.
- if (!shouldReturnTypeInRegister(FD->getType(), Context))
- return false;
- }
- return true;
- }
- static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
- // Treat complex types as the element type.
- if (const ComplexType *CTy = Ty->getAs<ComplexType>())
- Ty = CTy->getElementType();
- // Check for a type which we know has a simple scalar argument-passing
- // convention without any padding. (We're specifically looking for 32
- // and 64-bit integer and integer-equivalents, float, and double.)
- if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
- !Ty->isEnumeralType() && !Ty->isBlockPointerType())
- return false;
- uint64_t Size = Context.getTypeSize(Ty);
- return Size == 32 || Size == 64;
- }
- static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
- uint64_t &Size) {
- for (const auto *FD : RD->fields()) {
- // Scalar arguments on the stack get 4 byte alignment on x86. If the
- // argument is smaller than 32-bits, expanding the struct will create
- // alignment padding.
- if (!is32Or64BitBasicType(FD->getType(), Context))
- return false;
- // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
- // how to expand them yet, and the predicate for telling if a bitfield still
- // counts as "basic" is more complicated than what we were doing previously.
- if (FD->isBitField())
- return false;
- Size += Context.getTypeSize(FD->getType());
- }
- return true;
- }
- static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
- uint64_t &Size) {
- // Don't do this if there are any non-empty bases.
- for (const CXXBaseSpecifier &Base : RD->bases()) {
- if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
- Size))
- return false;
- }
- if (!addFieldSizes(Context, RD, Size))
- return false;
- return true;
- }
- /// Test whether an argument type which is to be passed indirectly (on the
- /// stack) would have the equivalent layout if it was expanded into separate
- /// arguments. If so, we prefer to do the latter to avoid inhibiting
- /// optimizations.
- bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
- // We can only expand structure types.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return false;
- const RecordDecl *RD = RT->getDecl();
- uint64_t Size = 0;
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- if (!IsWin32StructABI) {
- // On non-Windows, we have to conservatively match our old bitcode
- // prototypes in order to be ABI-compatible at the bitcode level.
- if (!CXXRD->isCLike())
- return false;
- } else {
- // Don't do this for dynamic classes.
- if (CXXRD->isDynamicClass())
- return false;
- }
- if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
- return false;
- } else {
- if (!addFieldSizes(getContext(), RD, Size))
- return false;
- }
- // We can do this if there was no alignment padding.
- return Size == getContext().getTypeSize(Ty);
- }
- ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (State.FreeRegs) {
- --State.FreeRegs;
- if (!IsMCUABI)
- return getNaturalAlignIndirectInReg(RetTy);
- }
- return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
- }
- ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
- CCState &State) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- if ((State.CC == llvm::CallingConv::X86_VectorCall ||
- State.CC == llvm::CallingConv::X86_RegCall) &&
- isHomogeneousAggregate(RetTy, Base, NumElts)) {
- // The LLVM struct type for such an aggregate should lower properly.
- return ABIArgInfo::getDirect();
- }
- if (const VectorType *VT = RetTy->getAs<VectorType>()) {
- // On Darwin, some vectors are returned in registers.
- if (IsDarwinVectorABI) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- // 128-bit vectors are a special case; they are returned in
- // registers and we need to make sure to pick a type the LLVM
- // backend will like.
- if (Size == 128)
- return ABIArgInfo::getDirect(llvm::VectorType::get(
- llvm::Type::getInt64Ty(getVMContext()), 2));
- // Always return in register if it fits in a general purpose
- // register, or if it is 64 bits and has a single element.
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- return getIndirectReturnResult(RetTy, State);
- }
- return ABIArgInfo::getDirect();
- }
- if (isAggregateTypeForABI(RetTy)) {
- if (const RecordType *RT = RetTy->getAs<RecordType>()) {
- // Structures with flexible arrays are always indirect.
- if (RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectReturnResult(RetTy, State);
- }
- // If specified, structs and unions are always indirect.
- if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
- return getIndirectReturnResult(RetTy, State);
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Small structures which are register sized are generally returned
- // in a register.
- if (shouldReturnTypeInRegister(RetTy, getContext())) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- // As a special-case, if the struct is a "single-element" struct, and
- // the field is of type "float" or "double", return it in a
- // floating-point register. (MSVC does not apply this special case.)
- // We apply a similar transformation for pointer types to improve the
- // quality of the generated IR.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
- if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
- || SeltTy->hasPointerRepresentation())
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- // FIXME: We should be able to narrow this integer in cases with dead
- // padding.
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
- }
- return getIndirectReturnResult(RetTy, State);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
- return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
- }
- static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const auto &I : CXXRD->bases())
- if (!isRecordWithSSEVectorType(Context, I.getType()))
- return false;
- for (const auto *i : RD->fields()) {
- QualType FT = i->getType();
- if (isSSEVectorType(Context, FT))
- return true;
- if (isRecordWithSSEVectorType(Context, FT))
- return true;
- }
- return false;
- }
- unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
- unsigned Align) const {
- // Otherwise, if the alignment is less than or equal to the minimum ABI
- // alignment, just use the default; the backend will handle this.
- if (Align <= MinABIStackAlignInBytes)
- return 0; // Use default alignment.
- // On non-Darwin, the stack type alignment is always 4.
- if (!IsDarwinVectorABI) {
- // Set explicit alignment, since we may need to realign the top.
- return MinABIStackAlignInBytes;
- }
- // Otherwise, if the type contains an SSE vector type, the alignment is 16.
- if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
- isRecordWithSSEVectorType(getContext(), Ty)))
- return 16;
- return MinABIStackAlignInBytes;
- }
- ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
- CCState &State) const {
- if (!ByVal) {
- if (State.FreeRegs) {
- --State.FreeRegs; // Non-byval indirects just use one pointer.
- if (!IsMCUABI)
- return getNaturalAlignIndirectInReg(Ty);
- }
- return getNaturalAlignIndirect(Ty, false);
- }
- // Compute the byval alignment.
- unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
- unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
- if (StackAlign == 0)
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
- // If the stack alignment is less than the type alignment, realign the
- // argument.
- bool Realign = TypeAlign > StackAlign;
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
- /*ByVal=*/true, Realign);
- }
- X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
- const Type *T = isSingleElementStruct(Ty, getContext());
- if (!T)
- T = Ty.getTypePtr();
- if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
- BuiltinType::Kind K = BT->getKind();
- if (K == BuiltinType::Float || K == BuiltinType::Double)
- return Float;
- }
- return Integer;
- }
- bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
- if (!IsSoftFloatABI) {
- Class C = classify(Ty);
- if (C == Float)
- return false;
- }
- unsigned Size = getContext().getTypeSize(Ty);
- unsigned SizeInRegs = (Size + 31) / 32;
- if (SizeInRegs == 0)
- return false;
- if (!IsMCUABI) {
- if (SizeInRegs > State.FreeRegs) {
- State.FreeRegs = 0;
- return false;
- }
- } else {
- // The MCU psABI allows passing parameters in-reg even if there are
- // earlier parameters that are passed on the stack. Also,
- // it does not allow passing >8-byte structs in-register,
- // even if there are 3 free registers available.
- if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
- return false;
- }
- State.FreeRegs -= SizeInRegs;
- return true;
- }
- bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
- bool &InReg,
- bool &NeedsPadding) const {
- // On Windows, aggregates other than HFAs are never passed in registers, and
- // they do not consume register slots. Homogenous floating-point aggregates
- // (HFAs) have already been dealt with at this point.
- if (IsWin32StructABI && isAggregateTypeForABI(Ty))
- return false;
- NeedsPadding = false;
- InReg = !IsMCUABI;
- if (!updateFreeRegs(Ty, State))
- return false;
- if (IsMCUABI)
- return true;
- if (State.CC == llvm::CallingConv::X86_FastCall ||
- State.CC == llvm::CallingConv::X86_VectorCall ||
- State.CC == llvm::CallingConv::X86_RegCall) {
- if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
- NeedsPadding = true;
- return false;
- }
- return true;
- }
- bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
- if (!updateFreeRegs(Ty, State))
- return false;
- if (IsMCUABI)
- return false;
- if (State.CC == llvm::CallingConv::X86_FastCall ||
- State.CC == llvm::CallingConv::X86_VectorCall ||
- State.CC == llvm::CallingConv::X86_RegCall) {
- if (getContext().getTypeSize(Ty) > 32)
- return false;
- return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
- Ty->isReferenceType());
- }
- return true;
- }
- ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
- CCState &State) const {
- // FIXME: Set alignment on indirect arguments.
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Check with the C++ ABI first.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (RT) {
- CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
- if (RAA == CGCXXABI::RAA_Indirect) {
- return getIndirectResult(Ty, false, State);
- } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
- // The field index doesn't matter, we'll fix it up later.
- return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
- }
- }
- // Regcall uses the concept of a homogenous vector aggregate, similar
- // to other targets.
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- if (State.CC == llvm::CallingConv::X86_RegCall &&
- isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (State.FreeSSERegs >= NumElts) {
- State.FreeSSERegs -= NumElts;
- if (Ty->isBuiltinType() || Ty->isVectorType())
- return ABIArgInfo::getDirect();
- return ABIArgInfo::getExpand();
- }
- return getIndirectResult(Ty, /*ByVal=*/false, State);
- }
- if (isAggregateTypeForABI(Ty)) {
- // Structures with flexible arrays are always indirect.
- // FIXME: This should not be byval!
- if (RT && RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectResult(Ty, true, State);
- // Ignore empty structs/unions on non-Windows.
- if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- llvm::LLVMContext &LLVMContext = getVMContext();
- llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
- bool NeedsPadding = false;
- bool InReg;
- if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
- unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
- SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
- llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
- if (InReg)
- return ABIArgInfo::getDirectInReg(Result);
- else
- return ABIArgInfo::getDirect(Result);
- }
- llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
- // Expand small (<= 128-bit) record types when we know that the stack layout
- // of those arguments will match the struct. This is important because the
- // LLVM backend isn't smart enough to remove byval, which inhibits many
- // optimizations.
- // Don't do this for the MCU if there are still free integer registers
- // (see X86_64 ABI for full explanation).
- if (getContext().getTypeSize(Ty) <= 4 * 32 &&
- (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
- return ABIArgInfo::getExpandWithPadding(
- State.CC == llvm::CallingConv::X86_FastCall ||
- State.CC == llvm::CallingConv::X86_VectorCall ||
- State.CC == llvm::CallingConv::X86_RegCall,
- PaddingType);
- return getIndirectResult(Ty, true, State);
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // On Darwin, some vectors are passed in memory, we handle this by passing
- // it as an i8/i16/i32/i64.
- if (IsDarwinVectorABI) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- }
- if (IsX86_MMXType(CGT.ConvertType(Ty)))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
- return ABIArgInfo::getDirect();
- }
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- bool InReg = shouldPrimitiveUseInReg(Ty, State);
- if (Ty->isPromotableIntegerType()) {
- if (InReg)
- return ABIArgInfo::getExtendInReg(Ty);
- return ABIArgInfo::getExtend(Ty);
- }
- if (InReg)
- return ABIArgInfo::getDirectInReg();
- return ABIArgInfo::getDirect();
- }
- void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
- bool &UsedInAlloca) const {
- // Vectorcall x86 works subtly different than in x64, so the format is
- // a bit different than the x64 version. First, all vector types (not HVAs)
- // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
- // This differs from the x64 implementation, where the first 6 by INDEX get
- // registers.
- // After that, integers AND HVAs are assigned Left to Right in the same pass.
- // Integers are passed as ECX/EDX if one is available (in order). HVAs will
- // first take up the remaining YMM/XMM registers. If insufficient registers
- // remain but an integer register (ECX/EDX) is available, it will be passed
- // in that, else, on the stack.
- for (auto &I : FI.arguments()) {
- // First pass do all the vector types.
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- const QualType& Ty = I.type;
- if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
- isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (State.FreeSSERegs >= NumElts) {
- State.FreeSSERegs -= NumElts;
- I.info = ABIArgInfo::getDirect();
- } else {
- I.info = classifyArgumentType(Ty, State);
- }
- UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
- }
- }
- for (auto &I : FI.arguments()) {
- // Second pass, do the rest!
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- const QualType& Ty = I.type;
- bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
- if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
- // Assign true HVAs (non vector/native FP types).
- if (State.FreeSSERegs >= NumElts) {
- State.FreeSSERegs -= NumElts;
- I.info = getDirectX86Hva();
- } else {
- I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
- }
- } else if (!IsHva) {
- // Assign all Non-HVAs, so this will exclude Vector/FP args.
- I.info = classifyArgumentType(Ty, State);
- UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
- }
- }
- }
- void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- CCState State(FI.getCallingConvention());
- if (IsMCUABI)
- State.FreeRegs = 3;
- else if (State.CC == llvm::CallingConv::X86_FastCall)
- State.FreeRegs = 2;
- else if (State.CC == llvm::CallingConv::X86_VectorCall) {
- State.FreeRegs = 2;
- State.FreeSSERegs = 6;
- } else if (FI.getHasRegParm())
- State.FreeRegs = FI.getRegParm();
- else if (State.CC == llvm::CallingConv::X86_RegCall) {
- State.FreeRegs = 5;
- State.FreeSSERegs = 8;
- } else
- State.FreeRegs = DefaultNumRegisterParameters;
- if (!::classifyReturnType(getCXXABI(), FI, *this)) {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
- } else if (FI.getReturnInfo().isIndirect()) {
- // The C++ ABI is not aware of register usage, so we have to check if the
- // return value was sret and put it in a register ourselves if appropriate.
- if (State.FreeRegs) {
- --State.FreeRegs; // The sret parameter consumes a register.
- if (!IsMCUABI)
- FI.getReturnInfo().setInReg(true);
- }
- }
- // The chain argument effectively gives us another free register.
- if (FI.isChainCall())
- ++State.FreeRegs;
- bool UsedInAlloca = false;
- if (State.CC == llvm::CallingConv::X86_VectorCall) {
- computeVectorCallArgs(FI, State, UsedInAlloca);
- } else {
- // If not vectorcall, revert to normal behavior.
- for (auto &I : FI.arguments()) {
- I.info = classifyArgumentType(I.type, State);
- UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
- }
- }
- // If we needed to use inalloca for any argument, do a second pass and rewrite
- // all the memory arguments to use inalloca.
- if (UsedInAlloca)
- rewriteWithInAlloca(FI);
- }
- void
- X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
- CharUnits &StackOffset, ABIArgInfo &Info,
- QualType Type) const {
- // Arguments are always 4-byte-aligned.
- CharUnits FieldAlign = CharUnits::fromQuantity(4);
- assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
- Info = ABIArgInfo::getInAlloca(FrameFields.size());
- FrameFields.push_back(CGT.ConvertTypeForMem(Type));
- StackOffset += getContext().getTypeSizeInChars(Type);
- // Insert padding bytes to respect alignment.
- CharUnits FieldEnd = StackOffset;
- StackOffset = FieldEnd.alignTo(FieldAlign);
- if (StackOffset != FieldEnd) {
- CharUnits NumBytes = StackOffset - FieldEnd;
- llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
- Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
- FrameFields.push_back(Ty);
- }
- }
- static bool isArgInAlloca(const ABIArgInfo &Info) {
- // Leave ignored and inreg arguments alone.
- switch (Info.getKind()) {
- case ABIArgInfo::InAlloca:
- return true;
- case ABIArgInfo::Indirect:
- assert(Info.getIndirectByVal());
- return true;
- case ABIArgInfo::Ignore:
- return false;
- case ABIArgInfo::Direct:
- case ABIArgInfo::Extend:
- if (Info.getInReg())
- return false;
- return true;
- case ABIArgInfo::Expand:
- case ABIArgInfo::CoerceAndExpand:
- // These are aggregate types which are never passed in registers when
- // inalloca is involved.
- return true;
- }
- llvm_unreachable("invalid enum");
- }
- void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
- assert(IsWin32StructABI && "inalloca only supported on win32");
- // Build a packed struct type for all of the arguments in memory.
- SmallVector<llvm::Type *, 6> FrameFields;
- // The stack alignment is always 4.
- CharUnits StackAlign = CharUnits::fromQuantity(4);
- CharUnits StackOffset;
- CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
- // Put 'this' into the struct before 'sret', if necessary.
- bool IsThisCall =
- FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
- ABIArgInfo &Ret = FI.getReturnInfo();
- if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
- isArgInAlloca(I->info)) {
- addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
- ++I;
- }
- // Put the sret parameter into the inalloca struct if it's in memory.
- if (Ret.isIndirect() && !Ret.getInReg()) {
- CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
- addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
- // On Windows, the hidden sret parameter is always returned in eax.
- Ret.setInAllocaSRet(IsWin32StructABI);
- }
- // Skip the 'this' parameter in ecx.
- if (IsThisCall)
- ++I;
- // Put arguments passed in memory into the struct.
- for (; I != E; ++I) {
- if (isArgInAlloca(I->info))
- addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
- }
- FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
- /*isPacked=*/true),
- StackAlign);
- }
- Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
- Address VAListAddr, QualType Ty) const {
- auto TypeInfo = getContext().getTypeInfoInChars(Ty);
- // x86-32 changes the alignment of certain arguments on the stack.
- //
- // Just messing with TypeInfo like this works because we never pass
- // anything indirectly.
- TypeInfo.second = CharUnits::fromQuantity(
- getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
- TypeInfo, CharUnits::fromQuantity(4),
- /*AllowHigherAlign*/ true);
- }
- bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
- const llvm::Triple &Triple, const CodeGenOptions &Opts) {
- assert(Triple.getArch() == llvm::Triple::x86);
- switch (Opts.getStructReturnConvention()) {
- case CodeGenOptions::SRCK_Default:
- break;
- case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
- return false;
- case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
- return true;
- }
- if (Triple.isOSDarwin() || Triple.isOSIAMCU())
- return true;
- switch (Triple.getOS()) {
- case llvm::Triple::DragonFly:
- case llvm::Triple::FreeBSD:
- case llvm::Triple::OpenBSD:
- case llvm::Triple::Win32:
- return true;
- default:
- return false;
- }
- }
- void X86_32TargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- if (GV->isDeclaration())
- return;
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
- if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("stackrealign");
- }
- if (FD->hasAttr<AnyX86InterruptAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->setCallingConv(llvm::CallingConv::X86_INTR);
- }
- }
- }
- bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
- CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-7 are the eight integer registers; the order is different
- // on Darwin (for EH), but the range is the same.
- // 8 is %eip.
- AssignToArrayRange(Builder, Address, Four8, 0, 8);
- if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
- // 12-16 are st(0..4). Not sure why we stop at 4.
- // These have size 16, which is sizeof(long double) on
- // platforms with 8-byte alignment for that type.
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
- AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
- } else {
- // 9 is %eflags, which doesn't get a size on Darwin for some
- // reason.
- Builder.CreateAlignedStore(
- Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
- CharUnits::One());
- // 11-16 are st(0..5). Not sure why we stop at 5.
- // These have size 12, which is sizeof(long double) on
- // platforms with 4-byte alignment for that type.
- llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
- AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // X86-64 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// The AVX ABI level for X86 targets.
- enum class X86AVXABILevel {
- None,
- AVX,
- AVX512
- };
- /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
- static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
- switch (AVXLevel) {
- case X86AVXABILevel::AVX512:
- return 512;
- case X86AVXABILevel::AVX:
- return 256;
- case X86AVXABILevel::None:
- return 128;
- }
- llvm_unreachable("Unknown AVXLevel");
- }
- /// X86_64ABIInfo - The X86_64 ABI information.
- class X86_64ABIInfo : public SwiftABIInfo {
- enum Class {
- Integer = 0,
- SSE,
- SSEUp,
- X87,
- X87Up,
- ComplexX87,
- NoClass,
- Memory
- };
- /// merge - Implement the X86_64 ABI merging algorithm.
- ///
- /// Merge an accumulating classification \arg Accum with a field
- /// classification \arg Field.
- ///
- /// \param Accum - The accumulating classification. This should
- /// always be either NoClass or the result of a previous merge
- /// call. In addition, this should never be Memory (the caller
- /// should just return Memory for the aggregate).
- static Class merge(Class Accum, Class Field);
- /// postMerge - Implement the X86_64 ABI post merging algorithm.
- ///
- /// Post merger cleanup, reduces a malformed Hi and Lo pair to
- /// final MEMORY or SSE classes when necessary.
- ///
- /// \param AggregateSize - The size of the current aggregate in
- /// the classification process.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the higher words of the containing object.
- ///
- void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
- /// classify - Determine the x86_64 register classes in which the
- /// given type T should be passed.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the high word of the containing object.
- ///
- /// \param OffsetBase - The bit offset of this type in the
- /// containing object. Some parameters are classified different
- /// depending on whether they straddle an eightbyte boundary.
- ///
- /// \param isNamedArg - Whether the argument in question is a "named"
- /// argument, as used in AMD64-ABI 3.5.7.
- ///
- /// If a word is unused its result will be NoClass; if a type should
- /// be passed in Memory then at least the classification of \arg Lo
- /// will be Memory.
- ///
- /// The \arg Lo class will be NoClass iff the argument is ignored.
- ///
- /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
- /// also be ComplexX87.
- void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
- bool isNamedArg) const;
- llvm::Type *GetByteVectorType(QualType Ty) const;
- llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
- unsigned IROffset, QualType SourceTy,
- unsigned SourceOffset) const;
- llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
- unsigned IROffset, QualType SourceTy,
- unsigned SourceOffset) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be returned in memory.
- ABIArgInfo getIndirectReturnResult(QualType Ty) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ///
- /// \param freeIntRegs - The number of free integer registers remaining
- /// available.
- ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
- unsigned &neededInt, unsigned &neededSSE,
- bool isNamedArg) const;
- ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
- unsigned &NeededSSE) const;
- ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
- unsigned &NeededSSE) const;
- bool IsIllegalVectorType(QualType Ty) const;
- /// The 0.98 ABI revision clarified a lot of ambiguities,
- /// unfortunately in ways that were not always consistent with
- /// certain previous compilers. In particular, platforms which
- /// required strict binary compatibility with older versions of GCC
- /// may need to exempt themselves.
- bool honorsRevision0_98() const {
- return !getTarget().getTriple().isOSDarwin();
- }
- /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
- /// classify it as INTEGER (for compatibility with older clang compilers).
- bool classifyIntegerMMXAsSSE() const {
- // Clang <= 3.8 did not do this.
- if (getContext().getLangOpts().getClangABICompat() <=
- LangOptions::ClangABI::Ver3_8)
- return false;
- const llvm::Triple &Triple = getTarget().getTriple();
- if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
- return false;
- if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
- return false;
- return true;
- }
- X86AVXABILevel AVXLevel;
- // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
- // 64-bit hardware.
- bool Has64BitPointers;
- public:
- X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
- SwiftABIInfo(CGT), AVXLevel(AVXLevel),
- Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
- }
- bool isPassedUsingAVXType(QualType type) const {
- unsigned neededInt, neededSSE;
- // The freeIntRegs argument doesn't matter here.
- ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
- /*isNamedArg*/true);
- if (info.isDirect()) {
- llvm::Type *ty = info.getCoerceToType();
- if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
- return (vectorTy->getBitWidth() > 128);
- }
- return false;
- }
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- bool has64BitPointers() const {
- return Has64BitPointers;
- }
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return true;
- }
- };
- /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
- class WinX86_64ABIInfo : public SwiftABIInfo {
- public:
- WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
- : SwiftABIInfo(CGT),
- IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorTypeForVectorCall(getContext(), Ty);
- }
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t NumMembers) const override {
- // FIXME: Assumes vectorcall is in use.
- return isX86VectorCallAggregateSmallEnough(NumMembers);
- }
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return true;
- }
- private:
- ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
- bool IsVectorCall, bool IsRegCall) const;
- ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
- const ABIArgInfo ¤t) const;
- void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
- bool IsVectorCall, bool IsRegCall) const;
- bool IsMingw64;
- };
- class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
- : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
- const X86_64ABIInfo &getABIInfo() const {
- return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
- }
- /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
- /// the autoreleaseRV/retainRV optimization.
- bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
- return true;
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- return 7;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override {
- llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
- // 0-15 are the 16 integer registers.
- // 16 is %rip.
- AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
- return false;
- }
- llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) const override {
- return X86AdjustInlineAsmType(CGF, Constraint, Ty);
- }
- bool isNoProtoCallVariadic(const CallArgList &args,
- const FunctionNoProtoType *fnType) const override {
- // The default CC on x86-64 sets %al to the number of SSA
- // registers used, and GCC sets this when calling an unprototyped
- // function, so we override the default behavior. However, don't do
- // that when AVX types are involved: the ABI explicitly states it is
- // undefined, and it doesn't work in practice because of how the ABI
- // defines varargs anyway.
- if (fnType->getCallConv() == CC_C) {
- bool HasAVXType = false;
- for (CallArgList::const_iterator
- it = args.begin(), ie = args.end(); it != ie; ++it) {
- if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
- HasAVXType = true;
- break;
- }
- }
- if (!HasAVXType)
- return true;
- }
- return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
- }
- llvm::Constant *
- getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
- unsigned Sig = (0xeb << 0) | // jmp rel8
- (0x06 << 8) | // .+0x08
- ('v' << 16) |
- ('2' << 24);
- return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
- }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- if (GV->isDeclaration())
- return;
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
- if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("stackrealign");
- }
- if (FD->hasAttr<AnyX86InterruptAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->setCallingConv(llvm::CallingConv::X86_INTR);
- }
- }
- }
- };
- class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
- public:
- PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
- : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "\01";
- // If the argument contains a space, enclose it in quotes.
- if (Lib.find(" ") != StringRef::npos)
- Opt += "\"" + Lib.str() + "\"";
- else
- Opt += Lib;
- }
- };
- static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
- // If the argument does not end in .lib, automatically add the suffix.
- // If the argument contains a space, enclose it in quotes.
- // This matches the behavior of MSVC.
- bool Quote = (Lib.find(" ") != StringRef::npos);
- std::string ArgStr = Quote ? "\"" : "";
- ArgStr += Lib;
- if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
- ArgStr += ".lib";
- ArgStr += Quote ? "\"" : "";
- return ArgStr;
- }
- class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
- public:
- WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
- bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
- unsigned NumRegisterParameters)
- : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
- Win32StructABI, NumRegisterParameters, false) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "/DEFAULTLIB:";
- Opt += qualifyWindowsLibrary(Lib);
- }
- void getDetectMismatchOption(llvm::StringRef Name,
- llvm::StringRef Value,
- llvm::SmallString<32> &Opt) const override {
- Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
- }
- };
- static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) {
- if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
- if (CGM.getCodeGenOpts().StackProbeSize != 4096)
- Fn->addFnAttr("stack-probe-size",
- llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
- if (CGM.getCodeGenOpts().NoStackArgProbe)
- Fn->addFnAttr("no-stack-arg-probe");
- }
- }
- void WinX86_32TargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- if (GV->isDeclaration())
- return;
- addStackProbeTargetAttributes(D, GV, CGM);
- }
- class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
- X86AVXABILevel AVXLevel)
- : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- return 7;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override {
- llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
- // 0-15 are the 16 integer registers.
- // 16 is %rip.
- AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
- return false;
- }
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "/DEFAULTLIB:";
- Opt += qualifyWindowsLibrary(Lib);
- }
- void getDetectMismatchOption(llvm::StringRef Name,
- llvm::StringRef Value,
- llvm::SmallString<32> &Opt) const override {
- Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
- }
- };
- void WinX86_64TargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- if (GV->isDeclaration())
- return;
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
- if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("stackrealign");
- }
- if (FD->hasAttr<AnyX86InterruptAttr>()) {
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->setCallingConv(llvm::CallingConv::X86_INTR);
- }
- }
- addStackProbeTargetAttributes(D, GV, CGM);
- }
- }
- void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
- Class &Hi) const {
- // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
- //
- // (a) If one of the classes is Memory, the whole argument is passed in
- // memory.
- //
- // (b) If X87UP is not preceded by X87, the whole argument is passed in
- // memory.
- //
- // (c) If the size of the aggregate exceeds two eightbytes and the first
- // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
- // argument is passed in memory. NOTE: This is necessary to keep the
- // ABI working for processors that don't support the __m256 type.
- //
- // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
- //
- // Some of these are enforced by the merging logic. Others can arise
- // only with unions; for example:
- // union { _Complex double; unsigned; }
- //
- // Note that clauses (b) and (c) were added in 0.98.
- //
- if (Hi == Memory)
- Lo = Memory;
- if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
- Lo = Memory;
- if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
- Lo = Memory;
- if (Hi == SSEUp && Lo != SSE)
- Hi = SSE;
- }
- X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
- // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
- // classified recursively so that always two fields are
- // considered. The resulting class is calculated according to
- // the classes of the fields in the eightbyte:
- //
- // (a) If both classes are equal, this is the resulting class.
- //
- // (b) If one of the classes is NO_CLASS, the resulting class is
- // the other class.
- //
- // (c) If one of the classes is MEMORY, the result is the MEMORY
- // class.
- //
- // (d) If one of the classes is INTEGER, the result is the
- // INTEGER.
- //
- // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
- // MEMORY is used as class.
- //
- // (f) Otherwise class SSE is used.
- // Accum should never be memory (we should have returned) or
- // ComplexX87 (because this cannot be passed in a structure).
- assert((Accum != Memory && Accum != ComplexX87) &&
- "Invalid accumulated classification during merge.");
- if (Accum == Field || Field == NoClass)
- return Accum;
- if (Field == Memory)
- return Memory;
- if (Accum == NoClass)
- return Field;
- if (Accum == Integer || Field == Integer)
- return Integer;
- if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
- Accum == X87 || Accum == X87Up)
- return Memory;
- return SSE;
- }
- void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
- Class &Lo, Class &Hi, bool isNamedArg) const {
- // FIXME: This code can be simplified by introducing a simple value class for
- // Class pairs with appropriate constructor methods for the various
- // situations.
- // FIXME: Some of the split computations are wrong; unaligned vectors
- // shouldn't be passed in registers for example, so there is no chance they
- // can straddle an eightbyte. Verify & simplify.
- Lo = Hi = NoClass;
- Class &Current = OffsetBase < 64 ? Lo : Hi;
- Current = Memory;
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- BuiltinType::Kind k = BT->getKind();
- if (k == BuiltinType::Void) {
- Current = NoClass;
- } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
- Lo = Integer;
- Hi = Integer;
- } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
- Current = Integer;
- } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
- Current = SSE;
- } else if (k == BuiltinType::LongDouble) {
- const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
- if (LDF == &llvm::APFloat::IEEEquad()) {
- Lo = SSE;
- Hi = SSEUp;
- } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
- Lo = X87;
- Hi = X87Up;
- } else if (LDF == &llvm::APFloat::IEEEdouble()) {
- Current = SSE;
- } else
- llvm_unreachable("unexpected long double representation!");
- }
- // FIXME: _Decimal32 and _Decimal64 are SSE.
- // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
- return;
- }
- if (const EnumType *ET = Ty->getAs<EnumType>()) {
- // Classify the underlying integer type.
- classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
- return;
- }
- if (Ty->hasPointerRepresentation()) {
- Current = Integer;
- return;
- }
- if (Ty->isMemberPointerType()) {
- if (Ty->isMemberFunctionPointerType()) {
- if (Has64BitPointers) {
- // If Has64BitPointers, this is an {i64, i64}, so classify both
- // Lo and Hi now.
- Lo = Hi = Integer;
- } else {
- // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
- // straddles an eightbyte boundary, Hi should be classified as well.
- uint64_t EB_FuncPtr = (OffsetBase) / 64;
- uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
- if (EB_FuncPtr != EB_ThisAdj) {
- Lo = Hi = Integer;
- } else {
- Current = Integer;
- }
- }
- } else {
- Current = Integer;
- }
- return;
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- uint64_t Size = getContext().getTypeSize(VT);
- if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
- // gcc passes the following as integer:
- // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
- // 2 bytes - <2 x char>, <1 x short>
- // 1 byte - <1 x char>
- Current = Integer;
- // If this type crosses an eightbyte boundary, it should be
- // split.
- uint64_t EB_Lo = (OffsetBase) / 64;
- uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
- if (EB_Lo != EB_Hi)
- Hi = Lo;
- } else if (Size == 64) {
- QualType ElementType = VT->getElementType();
- // gcc passes <1 x double> in memory. :(
- if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
- return;
- // gcc passes <1 x long long> as SSE but clang used to unconditionally
- // pass them as integer. For platforms where clang is the de facto
- // platform compiler, we must continue to use integer.
- if (!classifyIntegerMMXAsSSE() &&
- (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
- ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
- ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
- ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
- Current = Integer;
- else
- Current = SSE;
- // If this type crosses an eightbyte boundary, it should be
- // split.
- if (OffsetBase && OffsetBase != 64)
- Hi = Lo;
- } else if (Size == 128 ||
- (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
- // Arguments of 256-bits are split into four eightbyte chunks. The
- // least significant one belongs to class SSE and all the others to class
- // SSEUP. The original Lo and Hi design considers that types can't be
- // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
- // This design isn't correct for 256-bits, but since there're no cases
- // where the upper parts would need to be inspected, avoid adding
- // complexity and just consider Hi to match the 64-256 part.
- //
- // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
- // registers if they are "named", i.e. not part of the "..." of a
- // variadic function.
- //
- // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
- // split into eight eightbyte chunks, one SSE and seven SSEUP.
- Lo = SSE;
- Hi = SSEUp;
- }
- return;
- }
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType ET = getContext().getCanonicalType(CT->getElementType());
- uint64_t Size = getContext().getTypeSize(Ty);
- if (ET->isIntegralOrEnumerationType()) {
- if (Size <= 64)
- Current = Integer;
- else if (Size <= 128)
- Lo = Hi = Integer;
- } else if (ET == getContext().FloatTy) {
- Current = SSE;
- } else if (ET == getContext().DoubleTy) {
- Lo = Hi = SSE;
- } else if (ET == getContext().LongDoubleTy) {
- const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
- if (LDF == &llvm::APFloat::IEEEquad())
- Current = Memory;
- else if (LDF == &llvm::APFloat::x87DoubleExtended())
- Current = ComplexX87;
- else if (LDF == &llvm::APFloat::IEEEdouble())
- Lo = Hi = SSE;
- else
- llvm_unreachable("unexpected long double representation!");
- }
- // If this complex type crosses an eightbyte boundary then it
- // should be split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
- if (Hi == NoClass && EB_Real != EB_Imag)
- Hi = Lo;
- return;
- }
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- // Arrays are treated like structures.
- uint64_t Size = getContext().getTypeSize(Ty);
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than eight eightbytes, ..., it has class MEMORY.
- if (Size > 512)
- return;
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Only need to check alignment of array base.
- if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
- return;
- // Otherwise implement simplified merge. We could be smarter about
- // this, but it isn't worth it and would be harder to verify.
- Current = NoClass;
- uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
- uint64_t ArraySize = AT->getSize().getZExtValue();
- // The only case a 256-bit wide vector could be used is when the array
- // contains a single 256-bit element. Since Lo and Hi logic isn't extended
- // to work for sizes wider than 128, early check and fallback to memory.
- //
- if (Size > 128 &&
- (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
- return;
- for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
- Class FieldLo, FieldHi;
- classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- postMerge(Size, Lo, Hi);
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
- return;
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- uint64_t Size = getContext().getTypeSize(Ty);
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than eight eightbytes, ..., it has class MEMORY.
- if (Size > 512)
- return;
- // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
- // copy constructor or a non-trivial destructor, it is passed by invisible
- // reference.
- if (getRecordArgABI(RT, getCXXABI()))
- return;
- const RecordDecl *RD = RT->getDecl();
- // Assume variable sized types are passed in memory.
- if (RD->hasFlexibleArrayMember())
- return;
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- // Reset Lo class, this will be recomputed.
- Current = NoClass;
- // If this is a C++ record, classify the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- assert(!I.isVirtual() && !I.getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
- // single eightbyte, each is classified separately. Each eightbyte gets
- // initialized to class NO_CLASS.
- Class FieldLo, FieldHi;
- uint64_t Offset =
- OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
- classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory) {
- postMerge(Size, Lo, Hi);
- return;
- }
- }
- }
- // Classify the fields one at a time, merging the results.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- bool BitField = i->isBitField();
- // Ignore padding bit-fields.
- if (BitField && i->isUnnamedBitfield())
- continue;
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
- // four eightbytes, or it contains unaligned fields, it has class MEMORY.
- //
- // The only case a 256-bit wide vector could be used is when the struct
- // contains a single 256-bit element. Since Lo and Hi logic isn't extended
- // to work for sizes wider than 128, early check and fallback to memory.
- //
- if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
- Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
- Lo = Memory;
- postMerge(Size, Lo, Hi);
- return;
- }
- // Note, skip this test for bit-fields, see below.
- if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
- Lo = Memory;
- postMerge(Size, Lo, Hi);
- return;
- }
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
- // exceeds a single eightbyte, each is classified
- // separately. Each eightbyte gets initialized to class
- // NO_CLASS.
- Class FieldLo, FieldHi;
- // Bit-fields require special handling, they do not force the
- // structure to be passed in memory even if unaligned, and
- // therefore they can straddle an eightbyte.
- if (BitField) {
- assert(!i->isUnnamedBitfield());
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- uint64_t Size = i->getBitWidthValue(getContext());
- uint64_t EB_Lo = Offset / 64;
- uint64_t EB_Hi = (Offset + Size - 1) / 64;
- if (EB_Lo) {
- assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
- FieldLo = NoClass;
- FieldHi = Integer;
- } else {
- FieldLo = Integer;
- FieldHi = EB_Hi ? Integer : NoClass;
- }
- } else
- classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- postMerge(Size, Lo, Hi);
- }
- }
- ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- return getNaturalAlignIndirect(Ty);
- }
- bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
- if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
- uint64_t Size = getContext().getTypeSize(VecTy);
- unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
- if (Size <= 64 || Size > LargestVector)
- return true;
- }
- return false;
- }
- ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
- unsigned freeIntRegs) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- //
- // This assumption is optimistic, as there could be free registers available
- // when we need to pass this argument in memory, and LLVM could try to pass
- // the argument in the free register. This does not seem to happen currently,
- // but this code would be much safer if we could mark the argument with
- // 'onstack'. See PR12193.
- if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- // Compute the byval alignment. We specify the alignment of the byval in all
- // cases so that the mid-level optimizer knows the alignment of the byval.
- unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
- // Attempt to avoid passing indirect results using byval when possible. This
- // is important for good codegen.
- //
- // We do this by coercing the value into a scalar type which the backend can
- // handle naturally (i.e., without using byval).
- //
- // For simplicity, we currently only do this when we have exhausted all of the
- // free integer registers. Doing this when there are free integer registers
- // would require more care, as we would have to ensure that the coerced value
- // did not claim the unused register. That would require either reording the
- // arguments to the function (so that any subsequent inreg values came first),
- // or only doing this optimization when there were no following arguments that
- // might be inreg.
- //
- // We currently expect it to be rare (particularly in well written code) for
- // arguments to be passed on the stack when there are still free integer
- // registers available (this would typically imply large structs being passed
- // by value), so this seems like a fair tradeoff for now.
- //
- // We can revisit this if the backend grows support for 'onstack' parameter
- // attributes. See PR12193.
- if (freeIntRegs == 0) {
- uint64_t Size = getContext().getTypeSize(Ty);
- // If this type fits in an eightbyte, coerce it into the matching integral
- // type, which will end up on the stack (with alignment 8).
- if (Align == 8 && Size <= 64)
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- }
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
- }
- /// The ABI specifies that a value should be passed in a full vector XMM/YMM
- /// register. Pick an LLVM IR type that will be passed as a vector register.
- llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
- // Wrapper structs/arrays that only contain vectors are passed just like
- // vectors; strip them off if present.
- if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
- Ty = QualType(InnerTy, 0);
- llvm::Type *IRType = CGT.ConvertType(Ty);
- if (isa<llvm::VectorType>(IRType) ||
- IRType->getTypeID() == llvm::Type::FP128TyID)
- return IRType;
- // We couldn't find the preferred IR vector type for 'Ty'.
- uint64_t Size = getContext().getTypeSize(Ty);
- assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
- // Return a LLVM IR vector type based on the size of 'Ty'.
- return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
- Size / 64);
- }
- /// BitsContainNoUserData - Return true if the specified [start,end) bit range
- /// is known to either be off the end of the specified type or being in
- /// alignment padding. The user type specified is known to be at most 128 bits
- /// in size, and have passed through X86_64ABIInfo::classify with a successful
- /// classification that put one of the two halves in the INTEGER class.
- ///
- /// It is conservatively correct to return false.
- static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
- unsigned EndBit, ASTContext &Context) {
- // If the bytes being queried are off the end of the type, there is no user
- // data hiding here. This handles analysis of builtins, vectors and other
- // types that don't contain interesting padding.
- unsigned TySize = (unsigned)Context.getTypeSize(Ty);
- if (TySize <= StartBit)
- return true;
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
- unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
- // Check each element to see if the element overlaps with the queried range.
- for (unsigned i = 0; i != NumElts; ++i) {
- // If the element is after the span we care about, then we're done..
- unsigned EltOffset = i*EltSize;
- if (EltOffset >= EndBit) break;
- unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
- if (!BitsContainNoUserData(AT->getElementType(), EltStart,
- EndBit-EltOffset, Context))
- return false;
- }
- // If it overlaps no elements, then it is safe to process as padding.
- return true;
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- assert(!I.isVirtual() && !I.getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
- // If the base is after the span we care about, ignore it.
- unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
- if (BaseOffset >= EndBit) continue;
- unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
- if (!BitsContainNoUserData(I.getType(), BaseStart,
- EndBit-BaseOffset, Context))
- return false;
- }
- }
- // Verify that no field has data that overlaps the region of interest. Yes
- // this could be sped up a lot by being smarter about queried fields,
- // however we're only looking at structs up to 16 bytes, so we don't care
- // much.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
- // If we found a field after the region we care about, then we're done.
- if (FieldOffset >= EndBit) break;
- unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
- if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
- Context))
- return false;
- }
- // If nothing in this record overlapped the area of interest, then we're
- // clean.
- return true;
- }
- return false;
- }
- /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
- /// float member at the specified offset. For example, {int,{float}} has a
- /// float at offset 4. It is conservatively correct for this routine to return
- /// false.
- static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
- const llvm::DataLayout &TD) {
- // Base case if we find a float.
- if (IROffset == 0 && IRType->isFloatTy())
- return true;
- // If this is a struct, recurse into the field at the specified offset.
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
- const llvm::StructLayout *SL = TD.getStructLayout(STy);
- unsigned Elt = SL->getElementContainingOffset(IROffset);
- IROffset -= SL->getElementOffset(Elt);
- return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
- }
- // If this is an array, recurse into the field at the specified offset.
- if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
- llvm::Type *EltTy = ATy->getElementType();
- unsigned EltSize = TD.getTypeAllocSize(EltTy);
- IROffset -= IROffset/EltSize*EltSize;
- return ContainsFloatAtOffset(EltTy, IROffset, TD);
- }
- return false;
- }
- /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
- /// low 8 bytes of an XMM register, corresponding to the SSE class.
- llvm::Type *X86_64ABIInfo::
- GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
- QualType SourceTy, unsigned SourceOffset) const {
- // The only three choices we have are either double, <2 x float>, or float. We
- // pass as float if the last 4 bytes is just padding. This happens for
- // structs that contain 3 floats.
- if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
- SourceOffset*8+64, getContext()))
- return llvm::Type::getFloatTy(getVMContext());
- // We want to pass as <2 x float> if the LLVM IR type contains a float at
- // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
- // case.
- if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
- ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
- return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
- return llvm::Type::getDoubleTy(getVMContext());
- }
- /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
- /// an 8-byte GPR. This means that we either have a scalar or we are talking
- /// about the high or low part of an up-to-16-byte struct. This routine picks
- /// the best LLVM IR type to represent this, which may be i64 or may be anything
- /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
- /// etc).
- ///
- /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
- /// the source type. IROffset is an offset in bytes into the LLVM IR type that
- /// the 8-byte value references. PrefType may be null.
- ///
- /// SourceTy is the source-level type for the entire argument. SourceOffset is
- /// an offset into this that we're processing (which is always either 0 or 8).
- ///
- llvm::Type *X86_64ABIInfo::
- GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
- QualType SourceTy, unsigned SourceOffset) const {
- // If we're dealing with an un-offset LLVM IR type, then it means that we're
- // returning an 8-byte unit starting with it. See if we can safely use it.
- if (IROffset == 0) {
- // Pointers and int64's always fill the 8-byte unit.
- if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
- IRType->isIntegerTy(64))
- return IRType;
- // If we have a 1/2/4-byte integer, we can use it only if the rest of the
- // goodness in the source type is just tail padding. This is allowed to
- // kick in for struct {double,int} on the int, but not on
- // struct{double,int,int} because we wouldn't return the second int. We
- // have to do this analysis on the source type because we can't depend on
- // unions being lowered a specific way etc.
- if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
- IRType->isIntegerTy(32) ||
- (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
- unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
- cast<llvm::IntegerType>(IRType)->getBitWidth();
- if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
- SourceOffset*8+64, getContext()))
- return IRType;
- }
- }
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
- // If this is a struct, recurse into the field at the specified offset.
- const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
- if (IROffset < SL->getSizeInBytes()) {
- unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
- IROffset -= SL->getElementOffset(FieldIdx);
- return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
- SourceTy, SourceOffset);
- }
- }
- if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
- llvm::Type *EltTy = ATy->getElementType();
- unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
- unsigned EltOffset = IROffset/EltSize*EltSize;
- return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
- SourceOffset);
- }
- // Okay, we don't have any better idea of what to pass, so we pass this in an
- // integer register that isn't too big to fit the rest of the struct.
- unsigned TySizeInBytes =
- (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
- assert(TySizeInBytes != SourceOffset && "Empty field?");
- // It is always safe to classify this as an integer type up to i64 that
- // isn't larger than the structure.
- return llvm::IntegerType::get(getVMContext(),
- std::min(TySizeInBytes-SourceOffset, 8U)*8);
- }
- /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
- /// be used as elements of a two register pair to pass or return, return a
- /// first class aggregate to represent them. For example, if the low part of
- /// a by-value argument should be passed as i32* and the high part as float,
- /// return {i32*, float}.
- static llvm::Type *
- GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
- const llvm::DataLayout &TD) {
- // In order to correctly satisfy the ABI, we need to the high part to start
- // at offset 8. If the high and low parts we inferred are both 4-byte types
- // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
- // the second element at offset 8. Check for this:
- unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
- unsigned HiAlign = TD.getABITypeAlignment(Hi);
- unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
- assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
- // To handle this, we have to increase the size of the low part so that the
- // second element will start at an 8 byte offset. We can't increase the size
- // of the second element because it might make us access off the end of the
- // struct.
- if (HiStart != 8) {
- // There are usually two sorts of types the ABI generation code can produce
- // for the low part of a pair that aren't 8 bytes in size: float or
- // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
- // NaCl).
- // Promote these to a larger type.
- if (Lo->isFloatTy())
- Lo = llvm::Type::getDoubleTy(Lo->getContext());
- else {
- assert((Lo->isIntegerTy() || Lo->isPointerTy())
- && "Invalid/unknown lo type");
- Lo = llvm::Type::getInt64Ty(Lo->getContext());
- }
- }
- llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
- // Verify that the second element is at an 8-byte offset.
- assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
- "Invalid x86-64 argument pair!");
- return Result;
- }
- ABIArgInfo X86_64ABIInfo::
- classifyReturnType(QualType RetTy) const {
- // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
- // classification algorithm.
- X86_64ABIInfo::Class Lo, Hi;
- classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
- // Check some invariants.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
- llvm::Type *ResType = nullptr;
- switch (Lo) {
- case NoClass:
- if (Hi == NoClass)
- return ABIArgInfo::getIgnore();
- // If the low part is just padding, it takes no register, leave ResType
- // null.
- assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
- "Unknown missing lo part");
- break;
- case SSEUp:
- case X87Up:
- llvm_unreachable("Invalid classification for lo word.");
- // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
- // hidden argument.
- case Memory:
- return getIndirectReturnResult(RetTy);
- // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
- // available register of the sequence %rax, %rdx is used.
- case Integer:
- ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
- // If we have a sign or zero extended integer, make sure to return Extend
- // so that the parameter gets the right LLVM IR attributes.
- if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- if (RetTy->isIntegralOrEnumerationType() &&
- RetTy->isPromotableIntegerType())
- return ABIArgInfo::getExtend(RetTy);
- }
- break;
- // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
- // available SSE register of the sequence %xmm0, %xmm1 is used.
- case SSE:
- ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
- break;
- // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
- // returned on the X87 stack in %st0 as 80-bit x87 number.
- case X87:
- ResType = llvm::Type::getX86_FP80Ty(getVMContext());
- break;
- // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
- // part of the value is returned in %st0 and the imaginary part in
- // %st1.
- case ComplexX87:
- assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
- ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
- llvm::Type::getX86_FP80Ty(getVMContext()));
- break;
- }
- llvm::Type *HighPart = nullptr;
- switch (Hi) {
- // Memory was handled previously and X87 should
- // never occur as a hi class.
- case Memory:
- case X87:
- llvm_unreachable("Invalid classification for hi word.");
- case ComplexX87: // Previously handled.
- case NoClass:
- break;
- case Integer:
- HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- case SSE:
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
- // is passed in the next available eightbyte chunk if the last used
- // vector register.
- //
- // SSEUP should always be preceded by SSE, just widen.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = GetByteVectorType(RetTy);
- break;
- // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
- // returned together with the previous X87 value in %st0.
- case X87Up:
- // If X87Up is preceded by X87, we don't need to do
- // anything. However, in some cases with unions it may not be
- // preceded by X87. In such situations we follow gcc and pass the
- // extra bits in an SSE reg.
- if (Lo != X87) {
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- }
- break;
- }
- // If a high part was specified, merge it together with the low part. It is
- // known to pass in the high eightbyte of the result. We do this by forming a
- // first class struct aggregate with the high and low part: {low, high}
- if (HighPart)
- ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
- return ABIArgInfo::getDirect(ResType);
- }
- ABIArgInfo X86_64ABIInfo::classifyArgumentType(
- QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
- bool isNamedArg)
- const
- {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- X86_64ABIInfo::Class Lo, Hi;
- classify(Ty, 0, Lo, Hi, isNamedArg);
- // Check some invariants.
- // FIXME: Enforce these by construction.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
- neededInt = 0;
- neededSSE = 0;
- llvm::Type *ResType = nullptr;
- switch (Lo) {
- case NoClass:
- if (Hi == NoClass)
- return ABIArgInfo::getIgnore();
- // If the low part is just padding, it takes no register, leave ResType
- // null.
- assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
- "Unknown missing lo part");
- break;
- // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
- // on the stack.
- case Memory:
- // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
- // COMPLEX_X87, it is passed in memory.
- case X87:
- case ComplexX87:
- if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
- ++neededInt;
- return getIndirectResult(Ty, freeIntRegs);
- case SSEUp:
- case X87Up:
- llvm_unreachable("Invalid classification for lo word.");
- // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
- // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
- // and %r9 is used.
- case Integer:
- ++neededInt;
- // Pick an 8-byte type based on the preferred type.
- ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
- // If we have a sign or zero extended integer, make sure to return Extend
- // so that the parameter gets the right LLVM IR attributes.
- if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- if (Ty->isIntegralOrEnumerationType() &&
- Ty->isPromotableIntegerType())
- return ABIArgInfo::getExtend(Ty);
- }
- break;
- // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
- // available SSE register is used, the registers are taken in the
- // order from %xmm0 to %xmm7.
- case SSE: {
- llvm::Type *IRType = CGT.ConvertType(Ty);
- ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
- ++neededSSE;
- break;
- }
- }
- llvm::Type *HighPart = nullptr;
- switch (Hi) {
- // Memory was handled previously, ComplexX87 and X87 should
- // never occur as hi classes, and X87Up must be preceded by X87,
- // which is passed in memory.
- case Memory:
- case X87:
- case ComplexX87:
- llvm_unreachable("Invalid classification for hi word.");
- case NoClass: break;
- case Integer:
- ++neededInt;
- // Pick an 8-byte type based on the preferred type.
- HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
- if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- // X87Up generally doesn't occur here (long double is passed in
- // memory), except in situations involving unions.
- case X87Up:
- case SSE:
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
- if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- ++neededSSE;
- break;
- // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
- // eightbyte is passed in the upper half of the last used SSE
- // register. This only happens when 128-bit vectors are passed.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification");
- ResType = GetByteVectorType(Ty);
- break;
- }
- // If a high part was specified, merge it together with the low part. It is
- // known to pass in the high eightbyte of the result. We do this by forming a
- // first class struct aggregate with the high and low part: {low, high}
- if (HighPart)
- ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
- return ABIArgInfo::getDirect(ResType);
- }
- ABIArgInfo
- X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
- unsigned &NeededSSE) const {
- auto RT = Ty->getAs<RecordType>();
- assert(RT && "classifyRegCallStructType only valid with struct types");
- if (RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectReturnResult(Ty);
- // Sum up bases
- if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
- if (CXXRD->isDynamicClass()) {
- NeededInt = NeededSSE = 0;
- return getIndirectReturnResult(Ty);
- }
- for (const auto &I : CXXRD->bases())
- if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
- .isIndirect()) {
- NeededInt = NeededSSE = 0;
- return getIndirectReturnResult(Ty);
- }
- }
- // Sum up members
- for (const auto *FD : RT->getDecl()->fields()) {
- if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
- if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
- .isIndirect()) {
- NeededInt = NeededSSE = 0;
- return getIndirectReturnResult(Ty);
- }
- } else {
- unsigned LocalNeededInt, LocalNeededSSE;
- if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
- LocalNeededSSE, true)
- .isIndirect()) {
- NeededInt = NeededSSE = 0;
- return getIndirectReturnResult(Ty);
- }
- NeededInt += LocalNeededInt;
- NeededSSE += LocalNeededSSE;
- }
- }
- return ABIArgInfo::getDirect();
- }
- ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
- unsigned &NeededInt,
- unsigned &NeededSSE) const {
- NeededInt = 0;
- NeededSSE = 0;
- return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
- }
- void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- const unsigned CallingConv = FI.getCallingConvention();
- // It is possible to force Win64 calling convention on any x86_64 target by
- // using __attribute__((ms_abi)). In such case to correctly emit Win64
- // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
- if (CallingConv == llvm::CallingConv::Win64) {
- WinX86_64ABIInfo Win64ABIInfo(CGT);
- Win64ABIInfo.computeInfo(FI);
- return;
- }
- bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
- // Keep track of the number of assigned registers.
- unsigned FreeIntRegs = IsRegCall ? 11 : 6;
- unsigned FreeSSERegs = IsRegCall ? 16 : 8;
- unsigned NeededInt, NeededSSE;
- if (!::classifyReturnType(getCXXABI(), FI, *this)) {
- if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
- !FI.getReturnType()->getTypePtr()->isUnionType()) {
- FI.getReturnInfo() =
- classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
- if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
- FreeIntRegs -= NeededInt;
- FreeSSERegs -= NeededSSE;
- } else {
- FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
- }
- } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
- // Complex Long Double Type is passed in Memory when Regcall
- // calling convention is used.
- const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
- if (getContext().getCanonicalType(CT->getElementType()) ==
- getContext().LongDoubleTy)
- FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
- } else
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- }
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (FI.getReturnInfo().isIndirect())
- --FreeIntRegs;
- // The chain argument effectively gives us another free register.
- if (FI.isChainCall())
- ++FreeIntRegs;
- unsigned NumRequiredArgs = FI.getNumRequiredArgs();
- // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
- // get assigned (in left-to-right order) for passing as follows...
- unsigned ArgNo = 0;
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it, ++ArgNo) {
- bool IsNamedArg = ArgNo < NumRequiredArgs;
- if (IsRegCall && it->type->isStructureOrClassType())
- it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
- else
- it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
- NeededSSE, IsNamedArg);
- // AMD64-ABI 3.2.3p3: If there are no registers available for any
- // eightbyte of an argument, the whole argument is passed on the
- // stack. If registers have already been assigned for some
- // eightbytes of such an argument, the assignments get reverted.
- if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
- FreeIntRegs -= NeededInt;
- FreeSSERegs -= NeededSSE;
- } else {
- it->info = getIndirectResult(it->type, FreeIntRegs);
- }
- }
- }
- static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
- Address VAListAddr, QualType Ty) {
- Address overflow_arg_area_p =
- CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
- llvm::Value *overflow_arg_area =
- CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
- // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
- // byte boundary if alignment needed by type exceeds 8 byte boundary.
- // It isn't stated explicitly in the standard, but in practice we use
- // alignment greater than 16 where necessary.
- CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
- if (Align > CharUnits::fromQuantity(8)) {
- overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
- Align);
- }
- // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
- llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *Res =
- CGF.Builder.CreateBitCast(overflow_arg_area,
- llvm::PointerType::getUnqual(LTy));
- // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
- // l->overflow_arg_area + sizeof(type).
- // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
- // an 8 byte boundary.
- uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
- "overflow_arg_area.next");
- CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
- // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
- return Address(Res, Align);
- }
- Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i32 gp_offset;
- // i32 fp_offset;
- // i8* overflow_arg_area;
- // i8* reg_save_area;
- // };
- unsigned neededInt, neededSSE;
- Ty = getContext().getCanonicalType(Ty);
- ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
- /*isNamedArg*/false);
- // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
- // in the registers. If not go to step 7.
- if (!neededInt && !neededSSE)
- return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
- // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
- // general purpose registers needed to pass type and num_fp to hold
- // the number of floating point registers needed.
- // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
- // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
- // l->fp_offset > 304 - num_fp * 16 go to step 7.
- //
- // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
- // register save space).
- llvm::Value *InRegs = nullptr;
- Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
- llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
- if (neededInt) {
- gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
- gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
- InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
- InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
- }
- if (neededSSE) {
- fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
- fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
- llvm::Value *FitsInFP =
- llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
- FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
- InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
- }
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
- // Emit code to load the value if it was passed in registers.
- CGF.EmitBlock(InRegBlock);
- // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
- // an offset of l->gp_offset and/or l->fp_offset. This may require
- // copying to a temporary location in case the parameter is passed
- // in different register classes or requires an alignment greater
- // than 8 for general purpose registers and 16 for XMM registers.
- //
- // FIXME: This really results in shameful code when we end up needing to
- // collect arguments from different places; often what should result in a
- // simple assembling of a structure from scattered addresses has many more
- // loads than necessary. Can we clean this up?
- llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
- CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
- Address RegAddr = Address::invalid();
- if (neededInt && neededSSE) {
- // FIXME: Cleanup.
- assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
- llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
- Address Tmp = CGF.CreateMemTemp(Ty);
- Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
- assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
- llvm::Type *TyLo = ST->getElementType(0);
- llvm::Type *TyHi = ST->getElementType(1);
- assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
- "Unexpected ABI info for mixed regs");
- llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
- llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
- llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
- llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
- llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
- llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
- // Copy the first element.
- // FIXME: Our choice of alignment here and below is probably pessimistic.
- llvm::Value *V = CGF.Builder.CreateAlignedLoad(
- TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
- CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- // Copy the second element.
- V = CGF.Builder.CreateAlignedLoad(
- TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
- CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
- RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
- } else if (neededInt) {
- RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
- CharUnits::fromQuantity(8));
- RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
- // Copy to a temporary if necessary to ensure the appropriate alignment.
- std::pair<CharUnits, CharUnits> SizeAlign =
- getContext().getTypeInfoInChars(Ty);
- uint64_t TySize = SizeAlign.first.getQuantity();
- CharUnits TyAlign = SizeAlign.second;
- // Copy into a temporary if the type is more aligned than the
- // register save area.
- if (TyAlign.getQuantity() > 8) {
- Address Tmp = CGF.CreateMemTemp(Ty);
- CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
- RegAddr = Tmp;
- }
- } else if (neededSSE == 1) {
- RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
- CharUnits::fromQuantity(16));
- RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
- } else {
- assert(neededSSE == 2 && "Invalid number of needed registers!");
- // SSE registers are spaced 16 bytes apart in the register save
- // area, we need to collect the two eightbytes together.
- // The ABI isn't explicit about this, but it seems reasonable
- // to assume that the slots are 16-byte aligned, since the stack is
- // naturally 16-byte aligned and the prologue is expected to store
- // all the SSE registers to the RSA.
- Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
- CharUnits::fromQuantity(16));
- Address RegAddrHi =
- CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
- CharUnits::fromQuantity(16));
- llvm::Type *ST = AI.canHaveCoerceToType()
- ? AI.getCoerceToType()
- : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
- llvm::Value *V;
- Address Tmp = CGF.CreateMemTemp(Ty);
- Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
- RegAddrLo, ST->getStructElementType(0)));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
- RegAddrHi, ST->getStructElementType(1)));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
- RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
- }
- // AMD64-ABI 3.5.7p5: Step 5. Set:
- // l->gp_offset = l->gp_offset + num_gp * 8
- // l->fp_offset = l->fp_offset + num_fp * 16.
- if (neededInt) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
- gp_offset_p);
- }
- if (neededSSE) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
- fp_offset_p);
- }
- CGF.EmitBranch(ContBlock);
- // Emit code to load the value if it was passed in memory.
- CGF.EmitBlock(InMemBlock);
- Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
- // Return the appropriate result.
- CGF.EmitBlock(ContBlock);
- Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
- "vaarg.addr");
- return ResAddr;
- }
- Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
- CGF.getContext().getTypeInfoInChars(Ty),
- CharUnits::fromQuantity(8),
- /*allowHigherAlign*/ false);
- }
- ABIArgInfo
- WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
- const ABIArgInfo ¤t) const {
- // Assumes vectorCall calling convention.
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
- isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
- FreeSSERegs -= NumElts;
- return getDirectX86Hva();
- }
- return current;
- }
- ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
- bool IsReturnType, bool IsVectorCall,
- bool IsRegCall) const {
- if (Ty->isVoidType())
- return ABIArgInfo::getIgnore();
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- TypeInfo Info = getContext().getTypeInfo(Ty);
- uint64_t Width = Info.Width;
- CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
- const RecordType *RT = Ty->getAs<RecordType>();
- if (RT) {
- if (!IsReturnType) {
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- }
- if (RT->getDecl()->hasFlexibleArrayMember())
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- }
- const Type *Base = nullptr;
- uint64_t NumElts = 0;
- // vectorcall adds the concept of a homogenous vector aggregate, similar to
- // other targets.
- if ((IsVectorCall || IsRegCall) &&
- isHomogeneousAggregate(Ty, Base, NumElts)) {
- if (IsRegCall) {
- if (FreeSSERegs >= NumElts) {
- FreeSSERegs -= NumElts;
- if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
- return ABIArgInfo::getDirect();
- return ABIArgInfo::getExpand();
- }
- return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
- } else if (IsVectorCall) {
- if (FreeSSERegs >= NumElts &&
- (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
- FreeSSERegs -= NumElts;
- return ABIArgInfo::getDirect();
- } else if (IsReturnType) {
- return ABIArgInfo::getExpand();
- } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
- // HVAs are delayed and reclassified in the 2nd step.
- return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
- }
- }
- }
- if (Ty->isMemberPointerType()) {
- // If the member pointer is represented by an LLVM int or ptr, pass it
- // directly.
- llvm::Type *LLTy = CGT.ConvertType(Ty);
- if (LLTy->isPointerTy() || LLTy->isIntegerTy())
- return ABIArgInfo::getDirect();
- }
- if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
- // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
- // not 1, 2, 4, or 8 bytes, must be passed by reference."
- if (Width > 64 || !llvm::isPowerOf2_64(Width))
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- // Otherwise, coerce it to a small integer.
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
- }
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- switch (BT->getKind()) {
- case BuiltinType::Bool:
- // Bool type is always extended to the ABI, other builtin types are not
- // extended.
- return ABIArgInfo::getExtend(Ty);
- case BuiltinType::LongDouble:
- // Mingw64 GCC uses the old 80 bit extended precision floating point
- // unit. It passes them indirectly through memory.
- if (IsMingw64) {
- const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
- if (LDF == &llvm::APFloat::x87DoubleExtended())
- return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
- }
- break;
- case BuiltinType::Int128:
- case BuiltinType::UInt128:
- // If it's a parameter type, the normal ABI rule is that arguments larger
- // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
- // even though it isn't particularly efficient.
- if (!IsReturnType)
- return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
- // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
- // Clang matches them for compatibility.
- return ABIArgInfo::getDirect(
- llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
- default:
- break;
- }
- }
- return ABIArgInfo::getDirect();
- }
- void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
- unsigned FreeSSERegs,
- bool IsVectorCall,
- bool IsRegCall) const {
- unsigned Count = 0;
- for (auto &I : FI.arguments()) {
- // Vectorcall in x64 only permits the first 6 arguments to be passed
- // as XMM/YMM registers.
- if (Count < VectorcallMaxParamNumAsReg)
- I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
- else {
- // Since these cannot be passed in registers, pretend no registers
- // are left.
- unsigned ZeroSSERegsAvail = 0;
- I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
- IsVectorCall, IsRegCall);
- }
- ++Count;
- }
- for (auto &I : FI.arguments()) {
- I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
- }
- }
- void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- bool IsVectorCall =
- FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
- bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
- unsigned FreeSSERegs = 0;
- if (IsVectorCall) {
- // We can use up to 4 SSE return registers with vectorcall.
- FreeSSERegs = 4;
- } else if (IsRegCall) {
- // RegCall gives us 16 SSE registers.
- FreeSSERegs = 16;
- }
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
- IsVectorCall, IsRegCall);
- if (IsVectorCall) {
- // We can use up to 6 SSE register parameters with vectorcall.
- FreeSSERegs = 6;
- } else if (IsRegCall) {
- // RegCall gives us 16 SSE registers, we can reuse the return registers.
- FreeSSERegs = 16;
- }
- if (IsVectorCall) {
- computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
- } else {
- for (auto &I : FI.arguments())
- I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
- }
- }
- Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- bool IsIndirect = false;
- // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
- // not 1, 2, 4, or 8 bytes, must be passed by reference."
- if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
- uint64_t Width = getContext().getTypeSize(Ty);
- IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
- }
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
- CGF.getContext().getTypeInfoInChars(Ty),
- CharUnits::fromQuantity(8),
- /*allowHigherAlign*/ false);
- }
- // PowerPC-32
- namespace {
- /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
- class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
- bool IsSoftFloatABI;
- CharUnits getParamTypeAlignment(QualType Ty) const;
- public:
- PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
- : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- };
- class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
- : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- }
- CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
- // Complex types are passed just like their elements
- if (const ComplexType *CTy = Ty->getAs<ComplexType>())
- Ty = CTy->getElementType();
- if (Ty->isVectorType())
- return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
- : 4);
- // For single-element float/vector structs, we consider the whole type
- // to have the same alignment requirements as its single element.
- const Type *AlignTy = nullptr;
- if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
- const BuiltinType *BT = EltType->getAs<BuiltinType>();
- if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
- (BT && BT->isFloatingPoint()))
- AlignTy = EltType;
- }
- if (AlignTy)
- return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
- return CharUnits::fromQuantity(4);
- }
- // TODO: this implementation is now likely redundant with
- // DefaultABIInfo::EmitVAArg.
- Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
- QualType Ty) const {
- if (getTarget().getTriple().isOSDarwin()) {
- auto TI = getContext().getTypeInfoInChars(Ty);
- TI.second = getParamTypeAlignment(Ty);
- CharUnits SlotSize = CharUnits::fromQuantity(4);
- return emitVoidPtrVAArg(CGF, VAList, Ty,
- classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
- /*AllowHigherAlign=*/true);
- }
- const unsigned OverflowLimit = 8;
- if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
- // TODO: Implement this. For now ignore.
- (void)CTy;
- return Address::invalid(); // FIXME?
- }
- // struct __va_list_tag {
- // unsigned char gpr;
- // unsigned char fpr;
- // unsigned short reserved;
- // void *overflow_arg_area;
- // void *reg_save_area;
- // };
- bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
- bool isInt =
- Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
- bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
- // All aggregates are passed indirectly? That doesn't seem consistent
- // with the argument-lowering code.
- bool isIndirect = Ty->isAggregateType();
- CGBuilderTy &Builder = CGF.Builder;
- // The calling convention either uses 1-2 GPRs or 1 FPR.
- Address NumRegsAddr = Address::invalid();
- if (isInt || IsSoftFloatABI) {
- NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
- } else {
- NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
- }
- llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
- // "Align" the register count when TY is i64.
- if (isI64 || (isF64 && IsSoftFloatABI)) {
- NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
- NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
- }
- llvm::Value *CC =
- Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
- llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
- llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
- llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
- Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
- llvm::Type *DirectTy = CGF.ConvertType(Ty);
- if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
- // Case 1: consume registers.
- Address RegAddr = Address::invalid();
- {
- CGF.EmitBlock(UsingRegs);
- Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
- RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
- CharUnits::fromQuantity(8));
- assert(RegAddr.getElementType() == CGF.Int8Ty);
- // Floating-point registers start after the general-purpose registers.
- if (!(isInt || IsSoftFloatABI)) {
- RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
- CharUnits::fromQuantity(32));
- }
- // Get the address of the saved value by scaling the number of
- // registers we've used by the number of
- CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
- llvm::Value *RegOffset =
- Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
- RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
- RegAddr.getPointer(), RegOffset),
- RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
- RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
- // Increase the used-register count.
- NumRegs =
- Builder.CreateAdd(NumRegs,
- Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
- Builder.CreateStore(NumRegs, NumRegsAddr);
- CGF.EmitBranch(Cont);
- }
- // Case 2: consume space in the overflow area.
- Address MemAddr = Address::invalid();
- {
- CGF.EmitBlock(UsingOverflow);
- Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
- // Everything in the overflow area is rounded up to a size of at least 4.
- CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
- CharUnits Size;
- if (!isIndirect) {
- auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
- Size = TypeInfo.first.alignTo(OverflowAreaAlign);
- } else {
- Size = CGF.getPointerSize();
- }
- Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
- Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
- OverflowAreaAlign);
- // Round up address of argument to alignment
- CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
- if (Align > OverflowAreaAlign) {
- llvm::Value *Ptr = OverflowArea.getPointer();
- OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
- Align);
- }
- MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
- // Increase the overflow area.
- OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
- Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
- CGF.EmitBranch(Cont);
- }
- CGF.EmitBlock(Cont);
- // Merge the cases with a phi.
- Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
- "vaarg.addr");
- // Load the pointer if the argument was passed indirectly.
- if (isIndirect) {
- Result = Address(Builder.CreateLoad(Result, "aggr"),
- getContext().getTypeAlignInChars(Ty));
- }
- return Result;
- }
- bool
- PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
- // 0-31: r0-31, the 4-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Four8, 0, 31);
- // 32-63: fp0-31, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 32, 63);
- // 64-76 are various 4-byte special-purpose registers:
- // 64: mq
- // 65: lr
- // 66: ctr
- // 67: ap
- // 68-75 cr0-7
- // 76: xer
- AssignToArrayRange(Builder, Address, Four8, 64, 76);
- // 77-108: v0-31, the 16-byte vector registers
- AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
- // 109: vrsave
- // 110: vscr
- // 111: spe_acc
- // 112: spefscr
- // 113: sfp
- AssignToArrayRange(Builder, Address, Four8, 109, 113);
- return false;
- }
- // PowerPC-64
- namespace {
- /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
- class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
- public:
- enum ABIKind {
- ELFv1 = 0,
- ELFv2
- };
- private:
- static const unsigned GPRBits = 64;
- ABIKind Kind;
- bool HasQPX;
- bool IsSoftFloatABI;
- // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
- // will be passed in a QPX register.
- bool IsQPXVectorTy(const Type *Ty) const {
- if (!HasQPX)
- return false;
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned NumElements = VT->getNumElements();
- if (NumElements == 1)
- return false;
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
- if (getContext().getTypeSize(Ty) <= 256)
- return true;
- } else if (VT->getElementType()->
- isSpecificBuiltinType(BuiltinType::Float)) {
- if (getContext().getTypeSize(Ty) <= 128)
- return true;
- }
- }
- return false;
- }
- bool IsQPXVectorTy(QualType Ty) const {
- return IsQPXVectorTy(Ty.getTypePtr());
- }
- public:
- PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
- bool SoftFloatABI)
- : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
- IsSoftFloatABI(SoftFloatABI) {}
- bool isPromotableTypeForABI(QualType Ty) const;
- CharUnits getParamTypeAlignment(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t Members) const override;
- // TODO: We can add more logic to computeInfo to improve performance.
- // Example: For aggregate arguments that fit in a register, we could
- // use getDirectInReg (as is done below for structs containing a single
- // floating-point value) to avoid pushing them to memory on function
- // entry. This would require changing the logic in PPCISelLowering
- // when lowering the parameters in the caller and args in the callee.
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments()) {
- // We rely on the default argument classification for the most part.
- // One exception: An aggregate containing a single floating-point
- // or vector item must be passed in a register if one is available.
- const Type *T = isSingleElementStruct(I.type, getContext());
- if (T) {
- const BuiltinType *BT = T->getAs<BuiltinType>();
- if (IsQPXVectorTy(T) ||
- (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
- (BT && BT->isFloatingPoint())) {
- QualType QT(T, 0);
- I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
- continue;
- }
- }
- I.info = classifyArgumentType(I.type);
- }
- }
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return false;
- }
- };
- class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
- PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
- bool SoftFloatABI)
- : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
- SoftFloatABI)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
- public:
- PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- }
- // Return true if the ABI requires Ty to be passed sign- or zero-
- // extended to 64 bits.
- bool
- PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Promotable integer types are required to be promoted by the ABI.
- if (Ty->isPromotableIntegerType())
- return true;
- // In addition to the usual promotable integer types, we also need to
- // extend all 32-bit types, since the ABI requires promotion to 64 bits.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Int:
- case BuiltinType::UInt:
- return true;
- default:
- break;
- }
- return false;
- }
- /// isAlignedParamType - Determine whether a type requires 16-byte or
- /// higher alignment in the parameter area. Always returns at least 8.
- CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
- // Complex types are passed just like their elements.
- if (const ComplexType *CTy = Ty->getAs<ComplexType>())
- Ty = CTy->getElementType();
- // Only vector types of size 16 bytes need alignment (larger types are
- // passed via reference, smaller types are not aligned).
- if (IsQPXVectorTy(Ty)) {
- if (getContext().getTypeSize(Ty) > 128)
- return CharUnits::fromQuantity(32);
- return CharUnits::fromQuantity(16);
- } else if (Ty->isVectorType()) {
- return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
- }
- // For single-element float/vector structs, we consider the whole type
- // to have the same alignment requirements as its single element.
- const Type *AlignAsType = nullptr;
- const Type *EltType = isSingleElementStruct(Ty, getContext());
- if (EltType) {
- const BuiltinType *BT = EltType->getAs<BuiltinType>();
- if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
- getContext().getTypeSize(EltType) == 128) ||
- (BT && BT->isFloatingPoint()))
- AlignAsType = EltType;
- }
- // Likewise for ELFv2 homogeneous aggregates.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (!AlignAsType && Kind == ELFv2 &&
- isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
- AlignAsType = Base;
- // With special case aggregates, only vector base types need alignment.
- if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
- if (getContext().getTypeSize(AlignAsType) > 128)
- return CharUnits::fromQuantity(32);
- return CharUnits::fromQuantity(16);
- } else if (AlignAsType) {
- return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
- }
- // Otherwise, we only need alignment for any aggregate type that
- // has an alignment requirement of >= 16 bytes.
- if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
- if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
- return CharUnits::fromQuantity(32);
- return CharUnits::fromQuantity(16);
- }
- return CharUnits::fromQuantity(8);
- }
- /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
- /// aggregate. Base is set to the base element type, and Members is set
- /// to the number of base elements.
- bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
- uint64_t &Members) const {
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- uint64_t NElements = AT->getSize().getZExtValue();
- if (NElements == 0)
- return false;
- if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
- return false;
- Members *= NElements;
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- Members = 0;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (const auto &I : CXXRD->bases()) {
- // Ignore empty records.
- if (isEmptyRecord(getContext(), I.getType(), true))
- continue;
- uint64_t FldMembers;
- if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
- return false;
- Members += FldMembers;
- }
- }
- for (const auto *FD : RD->fields()) {
- // Ignore (non-zero arrays of) empty records.
- QualType FT = FD->getType();
- while (const ConstantArrayType *AT =
- getContext().getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() == 0)
- return false;
- FT = AT->getElementType();
- }
- if (isEmptyRecord(getContext(), FT, true))
- continue;
- // For compatibility with GCC, ignore empty bitfields in C++ mode.
- if (getContext().getLangOpts().CPlusPlus &&
- FD->isZeroLengthBitField(getContext()))
- continue;
- uint64_t FldMembers;
- if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
- return false;
- Members = (RD->isUnion() ?
- std::max(Members, FldMembers) : Members + FldMembers);
- }
- if (!Base)
- return false;
- // Ensure there is no padding.
- if (getContext().getTypeSize(Base) * Members !=
- getContext().getTypeSize(Ty))
- return false;
- } else {
- Members = 1;
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- Members = 2;
- Ty = CT->getElementType();
- }
- // Most ABIs only support float, double, and some vector type widths.
- if (!isHomogeneousAggregateBaseType(Ty))
- return false;
- // The base type must be the same for all members. Types that
- // agree in both total size and mode (float vs. vector) are
- // treated as being equivalent here.
- const Type *TyPtr = Ty.getTypePtr();
- if (!Base) {
- Base = TyPtr;
- // If it's a non-power-of-2 vector, its size is already a power-of-2,
- // so make sure to widen it explicitly.
- if (const VectorType *VT = Base->getAs<VectorType>()) {
- QualType EltTy = VT->getElementType();
- unsigned NumElements =
- getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
- Base = getContext()
- .getVectorType(EltTy, NumElements, VT->getVectorKind())
- .getTypePtr();
- }
- }
- if (Base->isVectorType() != TyPtr->isVectorType() ||
- getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
- return false;
- }
- return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
- }
- bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- // Homogeneous aggregates for ELFv2 must have base types of float,
- // double, long double, or 128-bit vectors.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::Float ||
- BT->getKind() == BuiltinType::Double ||
- BT->getKind() == BuiltinType::LongDouble ||
- (getContext().getTargetInfo().hasFloat128Type() &&
- (BT->getKind() == BuiltinType::Float128))) {
- if (IsSoftFloatABI)
- return false;
- return true;
- }
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
- return true;
- }
- return false;
- }
- bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
- const Type *Base, uint64_t Members) const {
- // Vector and fp128 types require one register, other floating point types
- // require one or two registers depending on their size.
- uint32_t NumRegs =
- ((getContext().getTargetInfo().hasFloat128Type() &&
- Base->isFloat128Type()) ||
- Base->isVectorType()) ? 1
- : (getContext().getTypeSize(Base) + 63) / 64;
- // Homogeneous Aggregates may occupy at most 8 registers.
- return Members * NumRegs <= 8;
- }
- ABIArgInfo
- PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- if (Ty->isAnyComplexType())
- return ABIArgInfo::getDirect();
- // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
- // or via reference (larger than 16 bytes).
- if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size > 128)
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- else if (Size < 128) {
- llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- }
- if (isAggregateTypeForABI(Ty)) {
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
- uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
- // ELFv2 homogeneous aggregates are passed as array types.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (Kind == ELFv2 &&
- isHomogeneousAggregate(Ty, Base, Members)) {
- llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
- llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // If an aggregate may end up fully in registers, we do not
- // use the ByVal method, but pass the aggregate as array.
- // This is usually beneficial since we avoid forcing the
- // back-end to store the argument to memory.
- uint64_t Bits = getContext().getTypeSize(Ty);
- if (Bits > 0 && Bits <= 8 * GPRBits) {
- llvm::Type *CoerceTy;
- // Types up to 8 bytes are passed as integer type (which will be
- // properly aligned in the argument save area doubleword).
- if (Bits <= GPRBits)
- CoerceTy =
- llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
- // Larger types are passed as arrays, with the base type selected
- // according to the required alignment in the save area.
- else {
- uint64_t RegBits = ABIAlign * 8;
- uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
- llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
- CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
- }
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // All other aggregates are passed ByVal.
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
- /*ByVal=*/true,
- /*Realign=*/TyAlign > ABIAlign);
- }
- return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- ABIArgInfo
- PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect();
- // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
- // or via reference (larger than 16 bytes).
- if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size > 128)
- return getNaturalAlignIndirect(RetTy);
- else if (Size < 128) {
- llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- }
- if (isAggregateTypeForABI(RetTy)) {
- // ELFv2 homogeneous aggregates are returned as array types.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (Kind == ELFv2 &&
- isHomogeneousAggregate(RetTy, Base, Members)) {
- llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
- llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // ELFv2 small aggregates are returned in up to two registers.
- uint64_t Bits = getContext().getTypeSize(RetTy);
- if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
- if (Bits == 0)
- return ABIArgInfo::getIgnore();
- llvm::Type *CoerceTy;
- if (Bits > GPRBits) {
- CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
- CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
- } else
- CoerceTy =
- llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
- return ABIArgInfo::getDirect(CoerceTy);
- }
- // All other aggregates are returned indirectly.
- return getNaturalAlignIndirect(RetTy);
- }
- return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
- Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- auto TypeInfo = getContext().getTypeInfoInChars(Ty);
- TypeInfo.second = getParamTypeAlignment(Ty);
- CharUnits SlotSize = CharUnits::fromQuantity(8);
- // If we have a complex type and the base type is smaller than 8 bytes,
- // the ABI calls for the real and imaginary parts to be right-adjusted
- // in separate doublewords. However, Clang expects us to produce a
- // pointer to a structure with the two parts packed tightly. So generate
- // loads of the real and imaginary parts relative to the va_list pointer,
- // and store them to a temporary structure.
- if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
- CharUnits EltSize = TypeInfo.first / 2;
- if (EltSize < SlotSize) {
- Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
- SlotSize * 2, SlotSize,
- SlotSize, /*AllowHigher*/ true);
- Address RealAddr = Addr;
- Address ImagAddr = RealAddr;
- if (CGF.CGM.getDataLayout().isBigEndian()) {
- RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
- SlotSize - EltSize);
- ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
- 2 * SlotSize - EltSize);
- } else {
- ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
- }
- llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
- RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
- ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
- llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
- llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
- Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
- CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
- /*init*/ true);
- return Temp;
- }
- }
- // Otherwise, just use the general rule.
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
- TypeInfo, SlotSize, /*AllowHigher*/ true);
- }
- static bool
- PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
- // 0-31: r0-31, the 8-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Eight8, 0, 31);
- // 32-63: fp0-31, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 32, 63);
- // 64-67 are various 8-byte special-purpose registers:
- // 64: mq
- // 65: lr
- // 66: ctr
- // 67: ap
- AssignToArrayRange(Builder, Address, Eight8, 64, 67);
- // 68-76 are various 4-byte special-purpose registers:
- // 68-75 cr0-7
- // 76: xer
- AssignToArrayRange(Builder, Address, Four8, 68, 76);
- // 77-108: v0-31, the 16-byte vector registers
- AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
- // 109: vrsave
- // 110: vscr
- // 111: spe_acc
- // 112: spefscr
- // 113: sfp
- // 114: tfhar
- // 115: tfiar
- // 116: texasr
- AssignToArrayRange(Builder, Address, Eight8, 109, 116);
- return false;
- }
- bool
- PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
- CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- return PPC64_initDwarfEHRegSizeTable(CGF, Address);
- }
- bool
- PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- return PPC64_initDwarfEHRegSizeTable(CGF, Address);
- }
- //===----------------------------------------------------------------------===//
- // AArch64 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class AArch64ABIInfo : public SwiftABIInfo {
- public:
- enum ABIKind {
- AAPCS = 0,
- DarwinPCS,
- Win64
- };
- private:
- ABIKind Kind;
- public:
- AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
- : SwiftABIInfo(CGT), Kind(Kind) {}
- private:
- ABIKind getABIKind() const { return Kind; }
- bool isDarwinPCS() const { return Kind == DarwinPCS; }
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t Members) const override;
- bool isIllegalVectorType(QualType Ty) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!::classifyReturnType(getCXXABI(), FI, *this))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &it : FI.arguments())
- it.info = classifyArgumentType(it.type);
- }
- Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override {
- return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
- : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
- : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
- }
- Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return true;
- }
- bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
- unsigned elts) const override;
- };
- class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
- : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
- StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
- return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 31;
- }
- bool doesReturnSlotInterfereWithArgs() const override { return false; }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD)
- return;
- llvm::Function *Fn = cast<llvm::Function>(GV);
- auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
- if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
- Fn->addFnAttr("sign-return-address",
- Kind == CodeGenOptions::SignReturnAddressScope::All
- ? "all"
- : "non-leaf");
- auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
- Fn->addFnAttr("sign-return-address-key",
- Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
- ? "a_key"
- : "b_key");
- }
- if (CGM.getCodeGenOpts().BranchTargetEnforcement)
- Fn->addFnAttr("branch-target-enforcement");
- }
- };
- class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
- public:
- WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
- : AArch64TargetCodeGenInfo(CGT, K) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
- }
- void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
- llvm::SmallString<32> &Opt) const override {
- Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
- }
- };
- void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- if (GV->isDeclaration())
- return;
- addStackProbeTargetAttributes(D, GV, CGM);
- }
- }
- ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Handle illegal vector types here.
- if (isIllegalVectorType(Ty)) {
- uint64_t Size = getContext().getTypeSize(Ty);
- // Android promotes <2 x i8> to i16, not i32
- if (isAndroid() && (Size <= 16)) {
- llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size <= 32) {
- llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 64) {
- llvm::Type *ResType =
- llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 128) {
- llvm::Type *ResType =
- llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
- return ABIArgInfo::getDirect(ResType);
- }
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- }
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() && isDarwinPCS()
- ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
- CGCXXABI::RAA_DirectInMemory);
- }
- // Empty records are always ignored on Darwin, but actually passed in C++ mode
- // elsewhere for GNU compatibility.
- uint64_t Size = getContext().getTypeSize(Ty);
- bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
- if (IsEmpty || Size == 0) {
- if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
- return ABIArgInfo::getIgnore();
- // GNU C mode. The only argument that gets ignored is an empty one with size
- // 0.
- if (IsEmpty && Size == 0)
- return ABIArgInfo::getIgnore();
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- }
- // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(Ty, Base, Members)) {
- return ABIArgInfo::getDirect(
- llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
- }
- // Aggregates <= 16 bytes are passed directly in registers or on the stack.
- if (Size <= 128) {
- // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
- // same size and alignment.
- if (getTarget().isRenderScriptTarget()) {
- return coerceToIntArray(Ty, getContext(), getVMContext());
- }
- unsigned Alignment;
- if (Kind == AArch64ABIInfo::AAPCS) {
- Alignment = getContext().getTypeUnadjustedAlign(Ty);
- Alignment = Alignment < 128 ? 64 : 128;
- } else {
- Alignment = getContext().getTypeAlign(Ty);
- }
- Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
- // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
- // For aggregates with 16-byte alignment, we use i128.
- if (Alignment < 128 && Size == 128) {
- llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
- return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
- }
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
- }
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- }
- ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
- return getNaturalAlignIndirect(RetTy);
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() && isDarwinPCS()
- ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
- return ABIArgInfo::getIgnore();
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(RetTy, Base, Members))
- // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
- return ABIArgInfo::getDirect();
- // Aggregates <= 16 bytes are returned directly in registers or on the stack.
- if (Size <= 128) {
- // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
- // same size and alignment.
- if (getTarget().isRenderScriptTarget()) {
- return coerceToIntArray(RetTy, getContext(), getVMContext());
- }
- unsigned Alignment = getContext().getTypeAlign(RetTy);
- Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
- // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
- // For aggregates with 16-byte alignment, we use i128.
- if (Alignment < 128 && Size == 128) {
- llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
- return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
- }
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
- }
- return getNaturalAlignIndirect(RetTy);
- }
- /// isIllegalVectorType - check whether the vector type is legal for AArch64.
- bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // Check whether VT is legal.
- unsigned NumElements = VT->getNumElements();
- uint64_t Size = getContext().getTypeSize(VT);
- // NumElements should be power of 2.
- if (!llvm::isPowerOf2_32(NumElements))
- return true;
- return Size != 64 && (Size != 128 || NumElements == 1);
- }
- return false;
- }
- bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
- llvm::Type *eltTy,
- unsigned elts) const {
- if (!llvm::isPowerOf2_32(elts))
- return false;
- if (totalSize.getQuantity() != 8 &&
- (totalSize.getQuantity() != 16 || elts == 1))
- return false;
- return true;
- }
- bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- // Homogeneous aggregates for AAPCS64 must have base types of a floating
- // point type or a short-vector type. This is the same as the 32-bit ABI,
- // but with the difference that any floating-point type is allowed,
- // including __fp16.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->isFloatingPoint())
- return true;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned VecSize = getContext().getTypeSize(VT);
- if (VecSize == 64 || VecSize == 128)
- return true;
- }
- return false;
- }
- bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const {
- return Members <= 4;
- }
- Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) const {
- ABIArgInfo AI = classifyArgumentType(Ty);
- bool IsIndirect = AI.isIndirect();
- llvm::Type *BaseTy = CGF.ConvertType(Ty);
- if (IsIndirect)
- BaseTy = llvm::PointerType::getUnqual(BaseTy);
- else if (AI.getCoerceToType())
- BaseTy = AI.getCoerceToType();
- unsigned NumRegs = 1;
- if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
- BaseTy = ArrTy->getElementType();
- NumRegs = ArrTy->getNumElements();
- }
- bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
- // The AArch64 va_list type and handling is specified in the Procedure Call
- // Standard, section B.4:
- //
- // struct {
- // void *__stack;
- // void *__gr_top;
- // void *__vr_top;
- // int __gr_offs;
- // int __vr_offs;
- // };
- llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- auto TyInfo = getContext().getTypeInfoInChars(Ty);
- CharUnits TyAlign = TyInfo.second;
- Address reg_offs_p = Address::invalid();
- llvm::Value *reg_offs = nullptr;
- int reg_top_index;
- int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
- if (!IsFPR) {
- // 3 is the field number of __gr_offs
- reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
- reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
- reg_top_index = 1; // field number for __gr_top
- RegSize = llvm::alignTo(RegSize, 8);
- } else {
- // 4 is the field number of __vr_offs.
- reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
- reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
- reg_top_index = 2; // field number for __vr_top
- RegSize = 16 * NumRegs;
- }
- //=======================================
- // Find out where argument was passed
- //=======================================
- // If reg_offs >= 0 we're already using the stack for this type of
- // argument. We don't want to keep updating reg_offs (in case it overflows,
- // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
- // whatever they get).
- llvm::Value *UsingStack = nullptr;
- UsingStack = CGF.Builder.CreateICmpSGE(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
- CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
- // Otherwise, at least some kind of argument could go in these registers, the
- // question is whether this particular type is too big.
- CGF.EmitBlock(MaybeRegBlock);
- // Integer arguments may need to correct register alignment (for example a
- // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
- // align __gr_offs to calculate the potential address.
- if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
- int Align = TyAlign.getQuantity();
- reg_offs = CGF.Builder.CreateAdd(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
- "align_regoffs");
- reg_offs = CGF.Builder.CreateAnd(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
- "aligned_regoffs");
- }
- // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
- // The fact that this is done unconditionally reflects the fact that
- // allocating an argument to the stack also uses up all the remaining
- // registers of the appropriate kind.
- llvm::Value *NewOffset = nullptr;
- NewOffset = CGF.Builder.CreateAdd(
- reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
- CGF.Builder.CreateStore(NewOffset, reg_offs_p);
- // Now we're in a position to decide whether this argument really was in
- // registers or not.
- llvm::Value *InRegs = nullptr;
- InRegs = CGF.Builder.CreateICmpSLE(
- NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
- //=======================================
- // Argument was in registers
- //=======================================
- // Now we emit the code for if the argument was originally passed in
- // registers. First start the appropriate block:
- CGF.EmitBlock(InRegBlock);
- llvm::Value *reg_top = nullptr;
- Address reg_top_p =
- CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
- reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
- Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
- CharUnits::fromQuantity(IsFPR ? 16 : 8));
- Address RegAddr = Address::invalid();
- llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
- if (IsIndirect) {
- // If it's been passed indirectly (actually a struct), whatever we find from
- // stored registers or on the stack will actually be a struct **.
- MemTy = llvm::PointerType::getUnqual(MemTy);
- }
- const Type *Base = nullptr;
- uint64_t NumMembers = 0;
- bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
- if (IsHFA && NumMembers > 1) {
- // Homogeneous aggregates passed in registers will have their elements split
- // and stored 16-bytes apart regardless of size (they're notionally in qN,
- // qN+1, ...). We reload and store into a temporary local variable
- // contiguously.
- assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
- auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
- llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
- llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
- Address Tmp = CGF.CreateTempAlloca(HFATy,
- std::max(TyAlign, BaseTyInfo.second));
- // On big-endian platforms, the value will be right-aligned in its slot.
- int Offset = 0;
- if (CGF.CGM.getDataLayout().isBigEndian() &&
- BaseTyInfo.first.getQuantity() < 16)
- Offset = 16 - BaseTyInfo.first.getQuantity();
- for (unsigned i = 0; i < NumMembers; ++i) {
- CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
- Address LoadAddr =
- CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
- LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
- Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
- llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
- CGF.Builder.CreateStore(Elem, StoreAddr);
- }
- RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
- } else {
- // Otherwise the object is contiguous in memory.
- // It might be right-aligned in its slot.
- CharUnits SlotSize = BaseAddr.getAlignment();
- if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
- (IsHFA || !isAggregateTypeForABI(Ty)) &&
- TyInfo.first < SlotSize) {
- CharUnits Offset = SlotSize - TyInfo.first;
- BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
- }
- RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
- }
- CGF.EmitBranch(ContBlock);
- //=======================================
- // Argument was on the stack
- //=======================================
- CGF.EmitBlock(OnStackBlock);
- Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
- llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
- // Again, stack arguments may need realignment. In this case both integer and
- // floating-point ones might be affected.
- if (!IsIndirect && TyAlign.getQuantity() > 8) {
- int Align = TyAlign.getQuantity();
- OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
- OnStackPtr = CGF.Builder.CreateAdd(
- OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
- "align_stack");
- OnStackPtr = CGF.Builder.CreateAnd(
- OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
- "align_stack");
- OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
- }
- Address OnStackAddr(OnStackPtr,
- std::max(CharUnits::fromQuantity(8), TyAlign));
- // All stack slots are multiples of 8 bytes.
- CharUnits StackSlotSize = CharUnits::fromQuantity(8);
- CharUnits StackSize;
- if (IsIndirect)
- StackSize = StackSlotSize;
- else
- StackSize = TyInfo.first.alignTo(StackSlotSize);
- llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
- llvm::Value *NewStack =
- CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
- // Write the new value of __stack for the next call to va_arg
- CGF.Builder.CreateStore(NewStack, stack_p);
- if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
- TyInfo.first < StackSlotSize) {
- CharUnits Offset = StackSlotSize - TyInfo.first;
- OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
- }
- OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
- CGF.EmitBranch(ContBlock);
- //=======================================
- // Tidy up
- //=======================================
- CGF.EmitBlock(ContBlock);
- Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
- OnStackAddr, OnStackBlock, "vaargs.addr");
- if (IsIndirect)
- return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
- TyInfo.second);
- return ResAddr;
- }
- Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // The backend's lowering doesn't support va_arg for aggregates or
- // illegal vector types. Lower VAArg here for these cases and use
- // the LLVM va_arg instruction for everything else.
- if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
- return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
- CharUnits SlotSize = CharUnits::fromQuantity(8);
- // Empty records are ignored for parameter passing purposes.
- if (isEmptyRecord(getContext(), Ty, true)) {
- Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
- Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
- return Addr;
- }
- // The size of the actual thing passed, which might end up just
- // being a pointer for indirect types.
- auto TyInfo = getContext().getTypeInfoInChars(Ty);
- // Arguments bigger than 16 bytes which aren't homogeneous
- // aggregates should be passed indirectly.
- bool IsIndirect = false;
- if (TyInfo.first.getQuantity() > 16) {
- const Type *Base = nullptr;
- uint64_t Members = 0;
- IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
- }
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
- TyInfo, SlotSize, /*AllowHigherAlign*/ true);
- }
- Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
- CGF.getContext().getTypeInfoInChars(Ty),
- CharUnits::fromQuantity(8),
- /*allowHigherAlign*/ false);
- }
- //===----------------------------------------------------------------------===//
- // ARM ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class ARMABIInfo : public SwiftABIInfo {
- public:
- enum ABIKind {
- APCS = 0,
- AAPCS = 1,
- AAPCS_VFP = 2,
- AAPCS16_VFP = 3,
- };
- private:
- ABIKind Kind;
- public:
- ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
- : SwiftABIInfo(CGT), Kind(_Kind) {
- setCCs();
- }
- bool isEABI() const {
- switch (getTarget().getTriple().getEnvironment()) {
- case llvm::Triple::Android:
- case llvm::Triple::EABI:
- case llvm::Triple::EABIHF:
- case llvm::Triple::GNUEABI:
- case llvm::Triple::GNUEABIHF:
- case llvm::Triple::MuslEABI:
- case llvm::Triple::MuslEABIHF:
- return true;
- default:
- return false;
- }
- }
- bool isEABIHF() const {
- switch (getTarget().getTriple().getEnvironment()) {
- case llvm::Triple::EABIHF:
- case llvm::Triple::GNUEABIHF:
- case llvm::Triple::MuslEABIHF:
- return true;
- default:
- return false;
- }
- }
- ABIKind getABIKind() const { return Kind; }
- private:
- ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
- unsigned functionCallConv) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
- unsigned functionCallConv) const;
- ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
- uint64_t Members) const;
- ABIArgInfo coerceIllegalVector(QualType Ty) const;
- bool isIllegalVectorType(QualType Ty) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Ty,
- uint64_t Members) const override;
- bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- llvm::CallingConv::ID getLLVMDefaultCC() const;
- llvm::CallingConv::ID getABIDefaultCC() const;
- void setCCs();
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return true;
- }
- bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
- unsigned elts) const override;
- };
- class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
- :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
- const ARMABIInfo &getABIInfo() const {
- return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 13;
- }
- StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
- return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override {
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-15 are the 16 integer registers.
- AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
- return false;
- }
- unsigned getSizeOfUnwindException() const override {
- if (getABIInfo().isEABI()) return 88;
- return TargetCodeGenInfo::getSizeOfUnwindException();
- }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- if (GV->isDeclaration())
- return;
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD)
- return;
- const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
- if (!Attr)
- return;
- const char *Kind;
- switch (Attr->getInterrupt()) {
- case ARMInterruptAttr::Generic: Kind = ""; break;
- case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
- case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
- case ARMInterruptAttr::SWI: Kind = "SWI"; break;
- case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
- case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
- }
- llvm::Function *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("interrupt", Kind);
- ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
- if (ABI == ARMABIInfo::APCS)
- return;
- // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
- // however this is not necessarily true on taking any interrupt. Instruct
- // the backend to perform a realignment as part of the function prologue.
- llvm::AttrBuilder B;
- B.addStackAlignmentAttr(8);
- Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
- }
- };
- class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
- public:
- WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
- : ARMTargetCodeGenInfo(CGT, K) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override;
- void getDependentLibraryOption(llvm::StringRef Lib,
- llvm::SmallString<24> &Opt) const override {
- Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
- }
- void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
- llvm::SmallString<32> &Opt) const override {
- Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
- }
- };
- void WindowsARMTargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
- ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
- if (GV->isDeclaration())
- return;
- addStackProbeTargetAttributes(D, GV, CGM);
- }
- }
- void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!::classifyReturnType(getCXXABI(), FI, *this))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
- FI.getCallingConvention());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type, FI.isVariadic(),
- FI.getCallingConvention());
- // Always honor user-specified calling convention.
- if (FI.getCallingConvention() != llvm::CallingConv::C)
- return;
- llvm::CallingConv::ID cc = getRuntimeCC();
- if (cc != llvm::CallingConv::C)
- FI.setEffectiveCallingConvention(cc);
- }
- /// Return the default calling convention that LLVM will use.
- llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
- // The default calling convention that LLVM will infer.
- if (isEABIHF() || getTarget().getTriple().isWatchABI())
- return llvm::CallingConv::ARM_AAPCS_VFP;
- else if (isEABI())
- return llvm::CallingConv::ARM_AAPCS;
- else
- return llvm::CallingConv::ARM_APCS;
- }
- /// Return the calling convention that our ABI would like us to use
- /// as the C calling convention.
- llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
- switch (getABIKind()) {
- case APCS: return llvm::CallingConv::ARM_APCS;
- case AAPCS: return llvm::CallingConv::ARM_AAPCS;
- case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- }
- llvm_unreachable("bad ABI kind");
- }
- void ARMABIInfo::setCCs() {
- assert(getRuntimeCC() == llvm::CallingConv::C);
- // Don't muddy up the IR with a ton of explicit annotations if
- // they'd just match what LLVM will infer from the triple.
- llvm::CallingConv::ID abiCC = getABIDefaultCC();
- if (abiCC != getLLVMDefaultCC())
- RuntimeCC = abiCC;
- }
- ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size <= 32) {
- llvm::Type *ResType =
- llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (Size == 64 || Size == 128) {
- llvm::Type *ResType = llvm::VectorType::get(
- llvm::Type::getInt32Ty(getVMContext()), Size / 32);
- return ABIArgInfo::getDirect(ResType);
- }
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- }
- ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
- const Type *Base,
- uint64_t Members) const {
- assert(Base && "Base class should be set for homogeneous aggregate");
- // Base can be a floating-point or a vector.
- if (const VectorType *VT = Base->getAs<VectorType>()) {
- // FP16 vectors should be converted to integer vectors
- if (!getTarget().hasLegalHalfType() &&
- (VT->getElementType()->isFloat16Type() ||
- VT->getElementType()->isHalfType())) {
- uint64_t Size = getContext().getTypeSize(VT);
- llvm::Type *NewVecTy = llvm::VectorType::get(
- llvm::Type::getInt32Ty(getVMContext()), Size / 32);
- llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
- return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
- }
- }
- return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
- }
- ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
- unsigned functionCallConv) const {
- // 6.1.2.1 The following argument types are VFP CPRCs:
- // A single-precision floating-point type (including promoted
- // half-precision types); A double-precision floating-point type;
- // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
- // with a Base Type of a single- or double-precision floating-point type,
- // 64-bit containerized vectors or 128-bit containerized vectors with one
- // to four Elements.
- // Variadic functions should always marshal to the base standard.
- bool IsAAPCS_VFP =
- !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Handle illegal vector types here.
- if (isIllegalVectorType(Ty))
- return coerceIllegalVector(Ty);
- // _Float16 and __fp16 get passed as if it were an int or float, but with
- // the top 16 bits unspecified. This is not done for OpenCL as it handles the
- // half type natively, and does not need to interwork with AAPCS code.
- if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
- !getContext().getLangOpts().NativeHalfArgsAndReturns) {
- llvm::Type *ResType = IsAAPCS_VFP ?
- llvm::Type::getFloatTy(getVMContext()) :
- llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
- Ty = EnumTy->getDecl()->getIntegerType();
- }
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- }
- // Ignore empty records.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- if (IsAAPCS_VFP) {
- // Homogeneous Aggregates need to be expanded when we can fit the aggregate
- // into VFP registers.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(Ty, Base, Members))
- return classifyHomogeneousAggregate(Ty, Base, Members);
- } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
- // WatchOS does have homogeneous aggregates. Note that we intentionally use
- // this convention even for a variadic function: the backend will use GPRs
- // if needed.
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(Ty, Base, Members)) {
- assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
- llvm::Type *Ty =
- llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
- return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
- }
- }
- if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
- getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
- // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
- // bigger than 128-bits, they get placed in space allocated by the caller,
- // and a pointer is passed.
- return ABIArgInfo::getIndirect(
- CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
- }
- // Support byval for ARM.
- // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
- // most 8-byte. We realign the indirect argument if type alignment is bigger
- // than ABI alignment.
- uint64_t ABIAlign = 4;
- uint64_t TyAlign;
- if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
- getABIKind() == ARMABIInfo::AAPCS) {
- TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
- ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
- } else {
- TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
- }
- if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
- assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
- /*ByVal=*/true,
- /*Realign=*/TyAlign > ABIAlign);
- }
- // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
- // same size and alignment.
- if (getTarget().isRenderScriptTarget()) {
- return coerceToIntArray(Ty, getContext(), getVMContext());
- }
- // Otherwise, pass by coercing to a structure of the appropriate size.
- llvm::Type* ElemTy;
- unsigned SizeRegs;
- // FIXME: Try to match the types of the arguments more accurately where
- // we can.
- if (TyAlign <= 4) {
- ElemTy = llvm::Type::getInt32Ty(getVMContext());
- SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
- } else {
- ElemTy = llvm::Type::getInt64Ty(getVMContext());
- SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
- }
- return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
- }
- static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
- llvm::LLVMContext &VMContext) {
- // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
- // is called integer-like if its size is less than or equal to one word, and
- // the offset of each of its addressable sub-fields is zero.
- uint64_t Size = Context.getTypeSize(Ty);
- // Check that the type fits in a word.
- if (Size > 32)
- return false;
- // FIXME: Handle vector types!
- if (Ty->isVectorType())
- return false;
- // Float types are never treated as "integer like".
- if (Ty->isRealFloatingType())
- return false;
- // If this is a builtin or pointer type then it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
- return true;
- // Small complex integer types are "integer like".
- if (const ComplexType *CT = Ty->getAs<ComplexType>())
- return isIntegerLikeType(CT->getElementType(), Context, VMContext);
- // Single element and zero sized arrays should be allowed, by the definition
- // above, but they are not.
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
- // Ignore records with flexible arrays.
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- // Check that all sub-fields are at offset 0, and are themselves "integer
- // like".
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
- bool HadField = false;
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const FieldDecl *FD = *i;
- // Bit-fields are not addressable, we only need to verify they are "integer
- // like". We still have to disallow a subsequent non-bitfield, for example:
- // struct { int : 0; int x }
- // is non-integer like according to gcc.
- if (FD->isBitField()) {
- if (!RD->isUnion())
- HadField = true;
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
- continue;
- }
- // Check if this field is at offset 0.
- if (Layout.getFieldOffset(idx) != 0)
- return false;
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
- // Only allow at most one field in a structure. This doesn't match the
- // wording above, but follows gcc in situations with a field following an
- // empty structure.
- if (!RD->isUnion()) {
- if (HadField)
- return false;
- HadField = true;
- }
- }
- return true;
- }
- ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
- unsigned functionCallConv) const {
- // Variadic functions should always marshal to the base standard.
- bool IsAAPCS_VFP =
- !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (const VectorType *VT = RetTy->getAs<VectorType>()) {
- // Large vector types should be returned via memory.
- if (getContext().getTypeSize(RetTy) > 128)
- return getNaturalAlignIndirect(RetTy);
- // FP16 vectors should be converted to integer vectors
- if (!getTarget().hasLegalHalfType() &&
- (VT->getElementType()->isFloat16Type() ||
- VT->getElementType()->isHalfType()))
- return coerceIllegalVector(RetTy);
- }
- // _Float16 and __fp16 get returned as if it were an int or float, but with
- // the top 16 bits unspecified. This is not done for OpenCL as it handles the
- // half type natively, and does not need to interwork with AAPCS code.
- if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
- !getContext().getLangOpts().NativeHalfArgsAndReturns) {
- llvm::Type *ResType = IsAAPCS_VFP ?
- llvm::Type::getFloatTy(getVMContext()) :
- llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(ResType);
- }
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect();
- }
- // Are we following APCS?
- if (getABIKind() == APCS) {
- if (isEmptyRecord(getContext(), RetTy, false))
- return ABIArgInfo::getIgnore();
- // Complex types are all returned as packed integers.
- //
- // FIXME: Consider using 2 x vector types if the back end handles them
- // correctly.
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect(llvm::IntegerType::get(
- getVMContext(), getContext().getTypeSize(RetTy)));
- // Integer like structures are returned in r0.
- if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
- // Return in the smallest viable integer type.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- }
- // Otherwise return in memory.
- return getNaturalAlignIndirect(RetTy);
- }
- // Otherwise this is an AAPCS variant.
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Check for homogeneous aggregates with AAPCS-VFP.
- if (IsAAPCS_VFP) {
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (isHomogeneousAggregate(RetTy, Base, Members))
- return classifyHomogeneousAggregate(RetTy, Base, Members);
- }
- // Aggregates <= 4 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 32) {
- // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
- // same size and alignment.
- if (getTarget().isRenderScriptTarget()) {
- return coerceToIntArray(RetTy, getContext(), getVMContext());
- }
- if (getDataLayout().isBigEndian())
- // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
- llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
- llvm::Type *CoerceTy =
- llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
- return ABIArgInfo::getDirect(CoerceTy);
- }
- return getNaturalAlignIndirect(RetTy);
- }
- /// isIllegalVector - check whether Ty is an illegal vector type.
- bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
- if (const VectorType *VT = Ty->getAs<VectorType> ()) {
- // On targets that don't support FP16, FP16 is expanded into float, and we
- // don't want the ABI to depend on whether or not FP16 is supported in
- // hardware. Thus return false to coerce FP16 vectors into integer vectors.
- if (!getTarget().hasLegalHalfType() &&
- (VT->getElementType()->isFloat16Type() ||
- VT->getElementType()->isHalfType()))
- return true;
- if (isAndroid()) {
- // Android shipped using Clang 3.1, which supported a slightly different
- // vector ABI. The primary differences were that 3-element vector types
- // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
- // accepts that legacy behavior for Android only.
- // Check whether VT is legal.
- unsigned NumElements = VT->getNumElements();
- // NumElements should be power of 2 or equal to 3.
- if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
- return true;
- } else {
- // Check whether VT is legal.
- unsigned NumElements = VT->getNumElements();
- uint64_t Size = getContext().getTypeSize(VT);
- // NumElements should be power of 2.
- if (!llvm::isPowerOf2_32(NumElements))
- return true;
- // Size should be greater than 32 bits.
- return Size <= 32;
- }
- }
- return false;
- }
- bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
- llvm::Type *eltTy,
- unsigned numElts) const {
- if (!llvm::isPowerOf2_32(numElts))
- return false;
- unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
- if (size > 64)
- return false;
- if (vectorSize.getQuantity() != 8 &&
- (vectorSize.getQuantity() != 16 || numElts == 1))
- return false;
- return true;
- }
- bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- // Homogeneous aggregates for AAPCS-VFP must have base types of float,
- // double, or 64-bit or 128-bit vectors.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::Float ||
- BT->getKind() == BuiltinType::Double ||
- BT->getKind() == BuiltinType::LongDouble)
- return true;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned VecSize = getContext().getTypeSize(VT);
- if (VecSize == 64 || VecSize == 128)
- return true;
- }
- return false;
- }
- bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const {
- return Members <= 4;
- }
- bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
- bool acceptHalf) const {
- // Give precedence to user-specified calling conventions.
- if (callConvention != llvm::CallingConv::C)
- return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
- else
- return (getABIKind() == AAPCS_VFP) ||
- (acceptHalf && (getABIKind() == AAPCS16_VFP));
- }
- Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- CharUnits SlotSize = CharUnits::fromQuantity(4);
- // Empty records are ignored for parameter passing purposes.
- if (isEmptyRecord(getContext(), Ty, true)) {
- Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
- Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
- return Addr;
- }
- auto TyInfo = getContext().getTypeInfoInChars(Ty);
- CharUnits TyAlignForABI = TyInfo.second;
- // Use indirect if size of the illegal vector is bigger than 16 bytes.
- bool IsIndirect = false;
- const Type *Base = nullptr;
- uint64_t Members = 0;
- if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
- IsIndirect = true;
- // ARMv7k passes structs bigger than 16 bytes indirectly, in space
- // allocated by the caller.
- } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
- getABIKind() == ARMABIInfo::AAPCS16_VFP &&
- !isHomogeneousAggregate(Ty, Base, Members)) {
- IsIndirect = true;
- // Otherwise, bound the type's ABI alignment.
- // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
- // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
- // Our callers should be prepared to handle an under-aligned address.
- } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
- getABIKind() == ARMABIInfo::AAPCS) {
- TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
- TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
- } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
- // ARMv7k allows type alignment up to 16 bytes.
- TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
- TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
- } else {
- TyAlignForABI = CharUnits::fromQuantity(4);
- }
- TyInfo.second = TyAlignForABI;
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
- SlotSize, /*AllowHigherAlign*/ true);
- }
- //===----------------------------------------------------------------------===//
- // NVPTX ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class NVPTXABIInfo : public ABIInfo {
- public:
- NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- };
- class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- bool shouldEmitStaticExternCAliases() const override;
- private:
- // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
- // resulting MDNode to the nvvm.annotations MDNode.
- static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
- };
- /// Checks if the type is unsupported directly by the current target.
- static bool isUnsupportedType(ASTContext &Context, QualType T) {
- if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
- return true;
- if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type())
- return true;
- if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
- Context.getTypeSize(T) > 64)
- return true;
- if (const auto *AT = T->getAsArrayTypeUnsafe())
- return isUnsupportedType(Context, AT->getElementType());
- const auto *RT = T->getAs<RecordType>();
- if (!RT)
- return false;
- const RecordDecl *RD = RT->getDecl();
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const CXXBaseSpecifier &I : CXXRD->bases())
- if (isUnsupportedType(Context, I.getType()))
- return true;
- for (const FieldDecl *I : RD->fields())
- if (isUnsupportedType(Context, I->getType()))
- return true;
- return false;
- }
- /// Coerce the given type into an array with maximum allowed size of elements.
- static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
- llvm::LLVMContext &LLVMContext,
- unsigned MaxSize) {
- // Alignment and Size are measured in bits.
- const uint64_t Size = Context.getTypeSize(Ty);
- const uint64_t Alignment = Context.getTypeAlign(Ty);
- const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
- llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
- const uint64_t NumElements = (Size + Div - 1) / Div;
- return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
- }
- ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (getContext().getLangOpts().OpenMP &&
- getContext().getLangOpts().OpenMPIsDevice &&
- isUnsupportedType(getContext(), RetTy))
- return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
- // note: this is different from default ABI
- if (!RetTy->isScalarType())
- return ABIArgInfo::getDirect();
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Return aggregates type as indirect by value
- if (isAggregateTypeForABI(Ty))
- return getNaturalAlignIndirect(Ty, /* byval */ true);
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- // Always honor user-specified calling convention.
- if (FI.getCallingConvention() != llvm::CallingConv::C)
- return;
- FI.setEffectiveCallingConvention(getRuntimeCC());
- }
- Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- llvm_unreachable("NVPTX does not support varargs");
- }
- void NVPTXTargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
- if (GV->isDeclaration())
- return;
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *F = cast<llvm::Function>(GV);
- // Perform special handling in OpenCL mode
- if (M.getLangOpts().OpenCL) {
- // Use OpenCL function attributes to check for kernel functions
- // By default, all functions are device functions
- if (FD->hasAttr<OpenCLKernelAttr>()) {
- // OpenCL __kernel functions get kernel metadata
- // Create !{<func-ref>, metadata !"kernel", i32 1} node
- addNVVMMetadata(F, "kernel", 1);
- // And kernel functions are not subject to inlining
- F->addFnAttr(llvm::Attribute::NoInline);
- }
- }
- // Perform special handling in CUDA mode.
- if (M.getLangOpts().CUDA) {
- // CUDA __global__ functions get a kernel metadata entry. Since
- // __global__ functions cannot be called from the device, we do not
- // need to set the noinline attribute.
- if (FD->hasAttr<CUDAGlobalAttr>()) {
- // Create !{<func-ref>, metadata !"kernel", i32 1} node
- addNVVMMetadata(F, "kernel", 1);
- }
- if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
- // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
- llvm::APSInt MaxThreads(32);
- MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
- if (MaxThreads > 0)
- addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
- // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
- // not specified in __launch_bounds__ or if the user specified a 0 value,
- // we don't have to add a PTX directive.
- if (Attr->getMinBlocks()) {
- llvm::APSInt MinBlocks(32);
- MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
- if (MinBlocks > 0)
- // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
- addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
- }
- }
- }
- }
- void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
- int Operand) {
- llvm::Module *M = F->getParent();
- llvm::LLVMContext &Ctx = M->getContext();
- // Get "nvvm.annotations" metadata node
- llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
- llvm::Metadata *MDVals[] = {
- llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
- llvm::ConstantAsMetadata::get(
- llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
- // Append metadata to nvvm.annotations
- MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
- }
- bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
- return false;
- }
- }
- //===----------------------------------------------------------------------===//
- // SystemZ ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class SystemZABIInfo : public SwiftABIInfo {
- bool HasVector;
- public:
- SystemZABIInfo(CodeGenTypes &CGT, bool HV)
- : SwiftABIInfo(CGT), HasVector(HV) {}
- bool isPromotableIntegerType(QualType Ty) const;
- bool isCompoundType(QualType Ty) const;
- bool isVectorArgumentType(QualType Ty) const;
- bool isFPArgumentType(QualType Ty) const;
- QualType GetSingleElementType(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType ArgTy) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
- bool asReturnValue) const override {
- return occupiesMoreThan(CGT, scalars, /*total*/ 4);
- }
- bool isSwiftErrorInRegister() const override {
- return false;
- }
- };
- class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
- : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
- };
- }
- bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Promotable integer types are required to be promoted by the ABI.
- if (Ty->isPromotableIntegerType())
- return true;
- // 32-bit values must also be promoted.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Int:
- case BuiltinType::UInt:
- return true;
- default:
- return false;
- }
- return false;
- }
- bool SystemZABIInfo::isCompoundType(QualType Ty) const {
- return (Ty->isAnyComplexType() ||
- Ty->isVectorType() ||
- isAggregateTypeForABI(Ty));
- }
- bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
- return (HasVector &&
- Ty->isVectorType() &&
- getContext().getTypeSize(Ty) <= 128);
- }
- bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Float:
- case BuiltinType::Double:
- return true;
- default:
- return false;
- }
- return false;
- }
- QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
- if (const RecordType *RT = Ty->getAsStructureType()) {
- const RecordDecl *RD = RT->getDecl();
- QualType Found;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (const auto &I : CXXRD->bases()) {
- QualType Base = I.getType();
- // Empty bases don't affect things either way.
- if (isEmptyRecord(getContext(), Base, true))
- continue;
- if (!Found.isNull())
- return Ty;
- Found = GetSingleElementType(Base);
- }
- // Check the fields.
- for (const auto *FD : RD->fields()) {
- // For compatibility with GCC, ignore empty bitfields in C++ mode.
- // Unlike isSingleElementStruct(), empty structure and array fields
- // do count. So do anonymous bitfields that aren't zero-sized.
- if (getContext().getLangOpts().CPlusPlus &&
- FD->isZeroLengthBitField(getContext()))
- continue;
- // Unlike isSingleElementStruct(), arrays do not count.
- // Nested structures still do though.
- if (!Found.isNull())
- return Ty;
- Found = GetSingleElementType(FD->getType());
- }
- // Unlike isSingleElementStruct(), trailing padding is allowed.
- // An 8-byte aligned struct s { float f; } is passed as a double.
- if (!Found.isNull())
- return Found;
- }
- return Ty;
- }
- Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i64 __gpr;
- // i64 __fpr;
- // i8 *__overflow_arg_area;
- // i8 *__reg_save_area;
- // };
- // Every non-vector argument occupies 8 bytes and is passed by preference
- // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
- // always passed on the stack.
- Ty = getContext().getCanonicalType(Ty);
- auto TyInfo = getContext().getTypeInfoInChars(Ty);
- llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
- llvm::Type *DirectTy = ArgTy;
- ABIArgInfo AI = classifyArgumentType(Ty);
- bool IsIndirect = AI.isIndirect();
- bool InFPRs = false;
- bool IsVector = false;
- CharUnits UnpaddedSize;
- CharUnits DirectAlign;
- if (IsIndirect) {
- DirectTy = llvm::PointerType::getUnqual(DirectTy);
- UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
- } else {
- if (AI.getCoerceToType())
- ArgTy = AI.getCoerceToType();
- InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
- IsVector = ArgTy->isVectorTy();
- UnpaddedSize = TyInfo.first;
- DirectAlign = TyInfo.second;
- }
- CharUnits PaddedSize = CharUnits::fromQuantity(8);
- if (IsVector && UnpaddedSize > PaddedSize)
- PaddedSize = CharUnits::fromQuantity(16);
- assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
- CharUnits Padding = (PaddedSize - UnpaddedSize);
- llvm::Type *IndexTy = CGF.Int64Ty;
- llvm::Value *PaddedSizeV =
- llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
- if (IsVector) {
- // Work out the address of a vector argument on the stack.
- // Vector arguments are always passed in the high bits of a
- // single (8 byte) or double (16 byte) stack slot.
- Address OverflowArgAreaPtr =
- CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
- Address OverflowArgArea =
- Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
- TyInfo.second);
- Address MemAddr =
- CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
- // Update overflow_arg_area_ptr pointer
- llvm::Value *NewOverflowArgArea =
- CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
- "overflow_arg_area");
- CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
- return MemAddr;
- }
- assert(PaddedSize.getQuantity() == 8);
- unsigned MaxRegs, RegCountField, RegSaveIndex;
- CharUnits RegPadding;
- if (InFPRs) {
- MaxRegs = 4; // Maximum of 4 FPR arguments
- RegCountField = 1; // __fpr
- RegSaveIndex = 16; // save offset for f0
- RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
- } else {
- MaxRegs = 5; // Maximum of 5 GPR arguments
- RegCountField = 0; // __gpr
- RegSaveIndex = 2; // save offset for r2
- RegPadding = Padding; // values are passed in the low bits of a GPR
- }
- Address RegCountPtr =
- CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
- llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
- llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
- llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
- "fits_in_regs");
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
- // Emit code to load the value if it was passed in registers.
- CGF.EmitBlock(InRegBlock);
- // Work out the address of an argument register.
- llvm::Value *ScaledRegCount =
- CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
- llvm::Value *RegBase =
- llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
- + RegPadding.getQuantity());
- llvm::Value *RegOffset =
- CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
- Address RegSaveAreaPtr =
- CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
- llvm::Value *RegSaveArea =
- CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
- Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
- "raw_reg_addr"),
- PaddedSize);
- Address RegAddr =
- CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
- // Update the register count
- llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
- llvm::Value *NewRegCount =
- CGF.Builder.CreateAdd(RegCount, One, "reg_count");
- CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
- CGF.EmitBranch(ContBlock);
- // Emit code to load the value if it was passed in memory.
- CGF.EmitBlock(InMemBlock);
- // Work out the address of a stack argument.
- Address OverflowArgAreaPtr =
- CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
- Address OverflowArgArea =
- Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
- PaddedSize);
- Address RawMemAddr =
- CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
- Address MemAddr =
- CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
- // Update overflow_arg_area_ptr pointer
- llvm::Value *NewOverflowArgArea =
- CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
- "overflow_arg_area");
- CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
- CGF.EmitBranch(ContBlock);
- // Return the appropriate result.
- CGF.EmitBlock(ContBlock);
- Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
- MemAddr, InMemBlock, "va_arg.addr");
- if (IsIndirect)
- ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
- TyInfo.second);
- return ResAddr;
- }
- ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isVectorArgumentType(RetTy))
- return ABIArgInfo::getDirect();
- if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
- return getNaturalAlignIndirect(RetTy);
- return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
- // Handle the generic C++ ABI.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- // Integers and enums are extended to full register width.
- if (isPromotableIntegerType(Ty))
- return ABIArgInfo::getExtend(Ty);
- // Handle vector types and vector-like structure types. Note that
- // as opposed to float-like structure types, we do not allow any
- // padding for vector-like structures, so verify the sizes match.
- uint64_t Size = getContext().getTypeSize(Ty);
- QualType SingleElementTy = GetSingleElementType(Ty);
- if (isVectorArgumentType(SingleElementTy) &&
- getContext().getTypeSize(SingleElementTy) == Size)
- return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
- // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
- if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- // Handle small structures.
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- // Structures with flexible arrays have variable length, so really
- // fail the size test above.
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- // The structure is passed as an unextended integer, a float, or a double.
- llvm::Type *PassTy;
- if (isFPArgumentType(SingleElementTy)) {
- assert(Size == 32 || Size == 64);
- if (Size == 32)
- PassTy = llvm::Type::getFloatTy(getVMContext());
- else
- PassTy = llvm::Type::getDoubleTy(getVMContext());
- } else
- PassTy = llvm::IntegerType::get(getVMContext(), Size);
- return ABIArgInfo::getDirect(PassTy);
- }
- // Non-structure compounds are passed indirectly.
- if (isCompoundType(Ty))
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- return ABIArgInfo::getDirect(nullptr);
- }
- //===----------------------------------------------------------------------===//
- // MSP430 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- }
- void MSP430TargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
- if (GV->isDeclaration())
- return;
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
- const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
- if (!InterruptAttr)
- return;
- // Handle 'interrupt' attribute:
- llvm::Function *F = cast<llvm::Function>(GV);
- // Step 1: Set ISR calling convention.
- F->setCallingConv(llvm::CallingConv::MSP430_INTR);
- // Step 2: Add attributes goodness.
- F->addFnAttr(llvm::Attribute::NoInline);
- F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
- }
- }
- //===----------------------------------------------------------------------===//
- // MIPS ABI Implementation. This works for both little-endian and
- // big-endian variants.
- //===----------------------------------------------------------------------===//
- namespace {
- class MipsABIInfo : public ABIInfo {
- bool IsO32;
- unsigned MinABIStackAlignInBytes, StackAlignInBytes;
- void CoerceToIntArgs(uint64_t TySize,
- SmallVectorImpl<llvm::Type *> &ArgList) const;
- llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
- llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
- llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
- public:
- MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
- ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
- StackAlignInBytes(IsO32 ? 8 : 16) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- ABIArgInfo extendType(QualType Ty) const;
- };
- class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
- unsigned SizeOfUnwindException;
- public:
- MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
- : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
- SizeOfUnwindException(IsO32 ? 24 : 32) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
- return 29;
- }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *Fn = cast<llvm::Function>(GV);
- if (FD->hasAttr<MipsLongCallAttr>())
- Fn->addFnAttr("long-call");
- else if (FD->hasAttr<MipsShortCallAttr>())
- Fn->addFnAttr("short-call");
- // Other attributes do not have a meaning for declarations.
- if (GV->isDeclaration())
- return;
- if (FD->hasAttr<Mips16Attr>()) {
- Fn->addFnAttr("mips16");
- }
- else if (FD->hasAttr<NoMips16Attr>()) {
- Fn->addFnAttr("nomips16");
- }
- if (FD->hasAttr<MicroMipsAttr>())
- Fn->addFnAttr("micromips");
- else if (FD->hasAttr<NoMicroMipsAttr>())
- Fn->addFnAttr("nomicromips");
- const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
- if (!Attr)
- return;
- const char *Kind;
- switch (Attr->getInterrupt()) {
- case MipsInterruptAttr::eic: Kind = "eic"; break;
- case MipsInterruptAttr::sw0: Kind = "sw0"; break;
- case MipsInterruptAttr::sw1: Kind = "sw1"; break;
- case MipsInterruptAttr::hw0: Kind = "hw0"; break;
- case MipsInterruptAttr::hw1: Kind = "hw1"; break;
- case MipsInterruptAttr::hw2: Kind = "hw2"; break;
- case MipsInterruptAttr::hw3: Kind = "hw3"; break;
- case MipsInterruptAttr::hw4: Kind = "hw4"; break;
- case MipsInterruptAttr::hw5: Kind = "hw5"; break;
- }
- Fn->addFnAttr("interrupt", Kind);
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- unsigned getSizeOfUnwindException() const override {
- return SizeOfUnwindException;
- }
- };
- }
- void MipsABIInfo::CoerceToIntArgs(
- uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
- llvm::IntegerType *IntTy =
- llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
- // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
- for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
- ArgList.push_back(IntTy);
- // If necessary, add one more integer type to ArgList.
- unsigned R = TySize % (MinABIStackAlignInBytes * 8);
- if (R)
- ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
- }
- // In N32/64, an aligned double precision floating point field is passed in
- // a register.
- llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
- SmallVector<llvm::Type*, 8> ArgList, IntArgList;
- if (IsO32) {
- CoerceToIntArgs(TySize, ArgList);
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- if (Ty->isComplexType())
- return CGT.ConvertType(Ty);
- const RecordType *RT = Ty->getAs<RecordType>();
- // Unions/vectors are passed in integer registers.
- if (!RT || !RT->isStructureOrClassType()) {
- CoerceToIntArgs(TySize, ArgList);
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
- uint64_t LastOffset = 0;
- unsigned idx = 0;
- llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
- // Iterate over fields in the struct/class and check if there are any aligned
- // double fields.
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const QualType Ty = i->getType();
- const BuiltinType *BT = Ty->getAs<BuiltinType>();
- if (!BT || BT->getKind() != BuiltinType::Double)
- continue;
- uint64_t Offset = Layout.getFieldOffset(idx);
- if (Offset % 64) // Ignore doubles that are not aligned.
- continue;
- // Add ((Offset - LastOffset) / 64) args of type i64.
- for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
- ArgList.push_back(I64);
- // Add double type.
- ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
- LastOffset = Offset + 64;
- }
- CoerceToIntArgs(TySize - LastOffset, IntArgList);
- ArgList.append(IntArgList.begin(), IntArgList.end());
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
- uint64_t Offset) const {
- if (OrigOffset + MinABIStackAlignInBytes > Offset)
- return nullptr;
- return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
- }
- ABIArgInfo
- MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- uint64_t OrigOffset = Offset;
- uint64_t TySize = getContext().getTypeSize(Ty);
- uint64_t Align = getContext().getTypeAlign(Ty) / 8;
- Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
- (uint64_t)StackAlignInBytes);
- unsigned CurrOffset = llvm::alignTo(Offset, Align);
- Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
- if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
- // Ignore empty aggregates.
- if (TySize == 0)
- return ABIArgInfo::getIgnore();
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- Offset = OrigOffset + MinABIStackAlignInBytes;
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- }
- // If we have reached here, aggregates are passed directly by coercing to
- // another structure type. Padding is inserted if the offset of the
- // aggregate is unaligned.
- ABIArgInfo ArgInfo =
- ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
- getPaddingType(OrigOffset, CurrOffset));
- ArgInfo.setInReg(true);
- return ArgInfo;
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // All integral types are promoted to the GPR width.
- if (Ty->isIntegralOrEnumerationType())
- return extendType(Ty);
- return ABIArgInfo::getDirect(
- nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
- }
- llvm::Type*
- MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
- const RecordType *RT = RetTy->getAs<RecordType>();
- SmallVector<llvm::Type*, 8> RTList;
- if (RT && RT->isStructureOrClassType()) {
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- unsigned FieldCnt = Layout.getFieldCount();
- // N32/64 returns struct/classes in floating point registers if the
- // following conditions are met:
- // 1. The size of the struct/class is no larger than 128-bit.
- // 2. The struct/class has one or two fields all of which are floating
- // point types.
- // 3. The offset of the first field is zero (this follows what gcc does).
- //
- // Any other composite results are returned in integer registers.
- //
- if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
- RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
- for (; b != e; ++b) {
- const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
- if (!BT || !BT->isFloatingPoint())
- break;
- RTList.push_back(CGT.ConvertType(b->getType()));
- }
- if (b == e)
- return llvm::StructType::get(getVMContext(), RTList,
- RD->hasAttr<PackedAttr>());
- RTList.clear();
- }
- }
- CoerceToIntArgs(Size, RTList);
- return llvm::StructType::get(getVMContext(), RTList);
- }
- ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // O32 doesn't treat zero-sized structs differently from other structs.
- // However, N32/N64 ignores zero sized return values.
- if (!IsO32 && Size == 0)
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
- if (Size <= 128) {
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect();
- // O32 returns integer vectors in registers and N32/N64 returns all small
- // aggregates in registers.
- if (!IsO32 ||
- (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
- ABIArgInfo ArgInfo =
- ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
- ArgInfo.setInReg(true);
- return ArgInfo;
- }
- }
- return getNaturalAlignIndirect(RetTy);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- if (RetTy->isPromotableIntegerType())
- return ABIArgInfo::getExtend(RetTy);
- if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
- RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
- return ABIArgInfo::getSignExtend(RetTy);
- return ABIArgInfo::getDirect();
- }
- void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
- ABIArgInfo &RetInfo = FI.getReturnInfo();
- if (!getCXXABI().classifyReturnType(FI))
- RetInfo = classifyReturnType(FI.getReturnType());
- // Check if a pointer to an aggregate is passed as a hidden argument.
- uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type, Offset);
- }
- Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType OrigTy) const {
- QualType Ty = OrigTy;
- // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
- // Pointers are also promoted in the same way but this only matters for N32.
- unsigned SlotSizeInBits = IsO32 ? 32 : 64;
- unsigned PtrWidth = getTarget().getPointerWidth(0);
- bool DidPromote = false;
- if ((Ty->isIntegerType() &&
- getContext().getIntWidth(Ty) < SlotSizeInBits) ||
- (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
- DidPromote = true;
- Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
- Ty->isSignedIntegerType());
- }
- auto TyInfo = getContext().getTypeInfoInChars(Ty);
- // The alignment of things in the argument area is never larger than
- // StackAlignInBytes.
- TyInfo.second =
- std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
- // MinABIStackAlignInBytes is the size of argument slots on the stack.
- CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
- Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
- TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
- // If there was a promotion, "unpromote" into a temporary.
- // TODO: can we just use a pointer into a subset of the original slot?
- if (DidPromote) {
- Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
- llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
- // Truncate down to the right width.
- llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
- : CGF.IntPtrTy);
- llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
- if (OrigTy->isPointerType())
- V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
- CGF.Builder.CreateStore(V, Temp);
- Addr = Temp;
- }
- return Addr;
- }
- ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
- int TySize = getContext().getTypeSize(Ty);
- // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
- if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
- return ABIArgInfo::getSignExtend(Ty);
- return ABIArgInfo::getExtend(Ty);
- }
- bool
- MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This information comes from gcc's implementation, which seems to
- // as canonical as it gets.
- // Everything on MIPS is 4 bytes. Double-precision FP registers
- // are aliased to pairs of single-precision FP registers.
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-31 are the general purpose registers, $0 - $31.
- // 32-63 are the floating-point registers, $f0 - $f31.
- // 64 and 65 are the multiply/divide registers, $hi and $lo.
- // 66 is the (notional, I think) register for signal-handler return.
- AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
- // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
- // They are one bit wide and ignored here.
- // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
- // (coprocessor 1 is the FP unit)
- // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
- // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
- // 176-181 are the DSP accumulator registers.
- AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
- return false;
- }
- //===----------------------------------------------------------------------===//
- // AVR ABI Implementation.
- //===----------------------------------------------------------------------===//
- namespace {
- class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- AVRTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- if (GV->isDeclaration())
- return;
- const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD) return;
- auto *Fn = cast<llvm::Function>(GV);
- if (FD->getAttr<AVRInterruptAttr>())
- Fn->addFnAttr("interrupt");
- if (FD->getAttr<AVRSignalAttr>())
- Fn->addFnAttr("signal");
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
- // Currently subclassed only to implement custom OpenCL C function attribute
- // handling.
- //===----------------------------------------------------------------------===//
- namespace {
- class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
- public:
- TCETargetCodeGenInfo(CodeGenTypes &CGT)
- : DefaultTargetCodeGenInfo(CGT) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- void TCETargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
- if (GV->isDeclaration())
- return;
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *F = cast<llvm::Function>(GV);
- if (M.getLangOpts().OpenCL) {
- if (FD->hasAttr<OpenCLKernelAttr>()) {
- // OpenCL C Kernel functions are not subject to inlining
- F->addFnAttr(llvm::Attribute::NoInline);
- const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
- if (Attr) {
- // Convert the reqd_work_group_size() attributes to metadata.
- llvm::LLVMContext &Context = F->getContext();
- llvm::NamedMDNode *OpenCLMetadata =
- M.getModule().getOrInsertNamedMetadata(
- "opencl.kernel_wg_size_info");
- SmallVector<llvm::Metadata *, 5> Operands;
- Operands.push_back(llvm::ConstantAsMetadata::get(F));
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
- M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
- M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
- M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
- // Add a boolean constant operand for "required" (true) or "hint"
- // (false) for implementing the work_group_size_hint attr later.
- // Currently always true as the hint is not yet implemented.
- Operands.push_back(
- llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
- OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
- }
- }
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Hexagon ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class HexagonABIInfo : public ABIInfo {
- public:
- HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- private:
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- };
- class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
- :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 29;
- }
- };
- }
- void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type);
- }
- ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
- : ABIArgInfo::getDirect());
- }
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- // Ignore empty records.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size > 64)
- return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
- // Pass in the smallest viable integer type.
- else if (Size > 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
- else if (Size > 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- else if (Size > 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- else
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- }
- ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
- return getNaturalAlignIndirect(RetTy);
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
- : ABIArgInfo::getDirect());
- }
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Aggregates <= 8 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 64) {
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- if (Size <= 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
- }
- return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
- }
- Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- // FIXME: Someone needs to audit that this handle alignment correctly.
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
- getContext().getTypeInfoInChars(Ty),
- CharUnits::fromQuantity(4),
- /*AllowHigherAlign*/ true);
- }
- //===----------------------------------------------------------------------===//
- // Lanai ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class LanaiABIInfo : public DefaultABIInfo {
- public:
- LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
- bool shouldUseInReg(QualType Ty, CCState &State) const;
- void computeInfo(CGFunctionInfo &FI) const override {
- CCState State(FI.getCallingConvention());
- // Lanai uses 4 registers to pass arguments unless the function has the
- // regparm attribute set.
- if (FI.getHasRegParm()) {
- State.FreeRegs = FI.getRegParm();
- } else {
- State.FreeRegs = 4;
- }
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &I : FI.arguments())
- I.info = classifyArgumentType(I.type, State);
- }
- ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
- };
- } // end anonymous namespace
- bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
- unsigned Size = getContext().getTypeSize(Ty);
- unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
- if (SizeInRegs == 0)
- return false;
- if (SizeInRegs > State.FreeRegs) {
- State.FreeRegs = 0;
- return false;
- }
- State.FreeRegs -= SizeInRegs;
- return true;
- }
- ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
- CCState &State) const {
- if (!ByVal) {
- if (State.FreeRegs) {
- --State.FreeRegs; // Non-byval indirects just use one pointer.
- return getNaturalAlignIndirectInReg(Ty);
- }
- return getNaturalAlignIndirect(Ty, false);
- }
- // Compute the byval alignment.
- const unsigned MinABIStackAlignInBytes = 4;
- unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
- /*Realign=*/TypeAlign >
- MinABIStackAlignInBytes);
- }
- ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
- CCState &State) const {
- // Check with the C++ ABI first.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (RT) {
- CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
- if (RAA == CGCXXABI::RAA_Indirect) {
- return getIndirectResult(Ty, /*ByVal=*/false, State);
- } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
- return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
- }
- }
- if (isAggregateTypeForABI(Ty)) {
- // Structures with flexible arrays are always indirect.
- if (RT && RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectResult(Ty, /*ByVal=*/true, State);
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- llvm::LLVMContext &LLVMContext = getVMContext();
- unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
- if (SizeInRegs <= State.FreeRegs) {
- llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
- SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
- llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
- State.FreeRegs -= SizeInRegs;
- return ABIArgInfo::getDirectInReg(Result);
- } else {
- State.FreeRegs = 0;
- }
- return getIndirectResult(Ty, true, State);
- }
- // Treat an enum type as its underlying type.
- if (const auto *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- bool InReg = shouldUseInReg(Ty, State);
- if (Ty->isPromotableIntegerType()) {
- if (InReg)
- return ABIArgInfo::getDirectInReg();
- return ABIArgInfo::getExtend(Ty);
- }
- if (InReg)
- return ABIArgInfo::getDirectInReg();
- return ABIArgInfo::getDirect();
- }
- namespace {
- class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
- };
- }
- //===----------------------------------------------------------------------===//
- // AMDGPU ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class AMDGPUABIInfo final : public DefaultABIInfo {
- private:
- static const unsigned MaxNumRegsForArgsRet = 16;
- unsigned numRegsForType(QualType Ty) const;
- bool isHomogeneousAggregateBaseType(QualType Ty) const override;
- bool isHomogeneousAggregateSmallEnough(const Type *Base,
- uint64_t Members) const override;
- public:
- explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
- DefaultABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
- ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- };
- bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
- return true;
- }
- bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
- const Type *Base, uint64_t Members) const {
- uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
- // Homogeneous Aggregates may occupy at most 16 registers.
- return Members * NumRegs <= MaxNumRegsForArgsRet;
- }
- /// Estimate number of registers the type will use when passed in registers.
- unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
- unsigned NumRegs = 0;
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // Compute from the number of elements. The reported size is based on the
- // in-memory size, which includes the padding 4th element for 3-vectors.
- QualType EltTy = VT->getElementType();
- unsigned EltSize = getContext().getTypeSize(EltTy);
- // 16-bit element vectors should be passed as packed.
- if (EltSize == 16)
- return (VT->getNumElements() + 1) / 2;
- unsigned EltNumRegs = (EltSize + 31) / 32;
- return EltNumRegs * VT->getNumElements();
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- assert(!RD->hasFlexibleArrayMember());
- for (const FieldDecl *Field : RD->fields()) {
- QualType FieldTy = Field->getType();
- NumRegs += numRegsForType(FieldTy);
- }
- return NumRegs;
- }
- return (getContext().getTypeSize(Ty) + 31) / 32;
- }
- void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
- llvm::CallingConv::ID CC = FI.getCallingConvention();
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- unsigned NumRegsLeft = MaxNumRegsForArgsRet;
- for (auto &Arg : FI.arguments()) {
- if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
- Arg.info = classifyKernelArgumentType(Arg.type);
- } else {
- Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
- }
- }
- }
- ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
- if (isAggregateTypeForABI(RetTy)) {
- // Records with non-trivial destructors/copy-constructors should not be
- // returned by value.
- if (!getRecordArgABI(RetTy, getCXXABI())) {
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Lower single-element structs to just return a regular value.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- if (const RecordType *RT = RetTy->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return DefaultABIInfo::classifyReturnType(RetTy);
- }
- // Pack aggregates <= 4 bytes into single VGPR or pair.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- if (Size <= 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- if (Size <= 64) {
- llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
- }
- if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
- return ABIArgInfo::getDirect();
- }
- }
- // Otherwise just do the default thing.
- return DefaultABIInfo::classifyReturnType(RetTy);
- }
- /// For kernels all parameters are really passed in a special buffer. It doesn't
- /// make sense to pass anything byval, so everything must be direct.
- ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // TODO: Can we omit empty structs?
- // Coerce single element structs to its element.
- if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- // If we set CanBeFlattened to true, CodeGen will expand the struct to its
- // individual elements, which confuses the Clover OpenCL backend; therefore we
- // have to set it to false here. Other args of getDirect() are just defaults.
- return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
- }
- ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
- unsigned &NumRegsLeft) const {
- assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
- Ty = useFirstFieldIfTransparentUnion(Ty);
- if (isAggregateTypeForABI(Ty)) {
- // Records with non-trivial destructors/copy-constructors should not be
- // passed by value.
- if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- // Lower single-element structs to just pass a regular value. TODO: We
- // could do reasonable-size multiple-element structs too, using getExpand(),
- // though watch out for things like bitfields.
- if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return DefaultABIInfo::classifyArgumentType(Ty);
- }
- // Pack aggregates <= 8 bytes into single VGPR or pair.
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size <= 64) {
- unsigned NumRegs = (Size + 31) / 32;
- NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- if (Size <= 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- // XXX: Should this be i64 instead, and should the limit increase?
- llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
- return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
- }
- if (NumRegsLeft > 0) {
- unsigned NumRegs = numRegsForType(Ty);
- if (NumRegsLeft >= NumRegs) {
- NumRegsLeft -= NumRegs;
- return ABIArgInfo::getDirect();
- }
- }
- }
- // Otherwise just do the default thing.
- ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
- if (!ArgInfo.isIndirect()) {
- unsigned NumRegs = numRegsForType(Ty);
- NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
- }
- return ArgInfo;
- }
- class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- unsigned getOpenCLKernelCallingConv() const override;
- llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
- llvm::PointerType *T, QualType QT) const override;
- LangAS getASTAllocaAddressSpace() const override {
- return getLangASFromTargetAS(
- getABIInfo().getDataLayout().getAllocaAddrSpace());
- }
- LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
- const VarDecl *D) const override;
- llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
- SyncScope Scope,
- llvm::AtomicOrdering Ordering,
- llvm::LLVMContext &Ctx) const override;
- llvm::Function *
- createEnqueuedBlockKernel(CodeGenFunction &CGF,
- llvm::Function *BlockInvokeFunc,
- llvm::Value *BlockLiteral) const override;
- bool shouldEmitStaticExternCAliases() const override;
- void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
- };
- }
- static bool requiresAMDGPUProtectedVisibility(const Decl *D,
- llvm::GlobalValue *GV) {
- if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
- return false;
- return D->hasAttr<OpenCLKernelAttr>() ||
- (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
- (isa<VarDecl>(D) &&
- (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()));
- }
- void AMDGPUTargetCodeGenInfo::setTargetAttributes(
- const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
- if (requiresAMDGPUProtectedVisibility(D, GV)) {
- GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
- GV->setDSOLocal(true);
- }
- if (GV->isDeclaration())
- return;
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD)
- return;
- llvm::Function *F = cast<llvm::Function>(GV);
- const auto *ReqdWGS = M.getLangOpts().OpenCL ?
- FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
- if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
- (M.getTriple().getOS() == llvm::Triple::AMDHSA))
- F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
- const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
- if (ReqdWGS || FlatWGS) {
- unsigned Min = 0;
- unsigned Max = 0;
- if (FlatWGS) {
- Min = FlatWGS->getMin()
- ->EvaluateKnownConstInt(M.getContext())
- .getExtValue();
- Max = FlatWGS->getMax()
- ->EvaluateKnownConstInt(M.getContext())
- .getExtValue();
- }
- if (ReqdWGS && Min == 0 && Max == 0)
- Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
- if (Min != 0) {
- assert(Min <= Max && "Min must be less than or equal Max");
- std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
- F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
- } else
- assert(Max == 0 && "Max must be zero");
- }
- if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
- unsigned Min =
- Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
- unsigned Max = Attr->getMax() ? Attr->getMax()
- ->EvaluateKnownConstInt(M.getContext())
- .getExtValue()
- : 0;
- if (Min != 0) {
- assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
- std::string AttrVal = llvm::utostr(Min);
- if (Max != 0)
- AttrVal = AttrVal + "," + llvm::utostr(Max);
- F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
- } else
- assert(Max == 0 && "Max must be zero");
- }
- if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
- unsigned NumSGPR = Attr->getNumSGPR();
- if (NumSGPR != 0)
- F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
- }
- if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
- uint32_t NumVGPR = Attr->getNumVGPR();
- if (NumVGPR != 0)
- F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
- }
- }
- unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
- return llvm::CallingConv::AMDGPU_KERNEL;
- }
- // Currently LLVM assumes null pointers always have value 0,
- // which results in incorrectly transformed IR. Therefore, instead of
- // emitting null pointers in private and local address spaces, a null
- // pointer in generic address space is emitted which is casted to a
- // pointer in local or private address space.
- llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
- const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
- QualType QT) const {
- if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
- return llvm::ConstantPointerNull::get(PT);
- auto &Ctx = CGM.getContext();
- auto NPT = llvm::PointerType::get(PT->getElementType(),
- Ctx.getTargetAddressSpace(LangAS::opencl_generic));
- return llvm::ConstantExpr::getAddrSpaceCast(
- llvm::ConstantPointerNull::get(NPT), PT);
- }
- LangAS
- AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
- const VarDecl *D) const {
- assert(!CGM.getLangOpts().OpenCL &&
- !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
- "Address space agnostic languages only");
- LangAS DefaultGlobalAS = getLangASFromTargetAS(
- CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
- if (!D)
- return DefaultGlobalAS;
- LangAS AddrSpace = D->getType().getAddressSpace();
- assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
- if (AddrSpace != LangAS::Default)
- return AddrSpace;
- if (CGM.isTypeConstant(D->getType(), false)) {
- if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
- return ConstAS.getValue();
- }
- return DefaultGlobalAS;
- }
- llvm::SyncScope::ID
- AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
- SyncScope Scope,
- llvm::AtomicOrdering Ordering,
- llvm::LLVMContext &Ctx) const {
- std::string Name;
- switch (Scope) {
- case SyncScope::OpenCLWorkGroup:
- Name = "workgroup";
- break;
- case SyncScope::OpenCLDevice:
- Name = "agent";
- break;
- case SyncScope::OpenCLAllSVMDevices:
- Name = "";
- break;
- case SyncScope::OpenCLSubGroup:
- Name = "wavefront";
- }
- if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
- if (!Name.empty())
- Name = Twine(Twine(Name) + Twine("-")).str();
- Name = Twine(Twine(Name) + Twine("one-as")).str();
- }
- return Ctx.getOrInsertSyncScopeID(Name);
- }
- bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
- return false;
- }
- void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
- const FunctionType *&FT) const {
- FT = getABIInfo().getContext().adjustFunctionType(
- FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
- }
- //===----------------------------------------------------------------------===//
- // SPARC v8 ABI Implementation.
- // Based on the SPARC Compliance Definition version 2.4.1.
- //
- // Ensures that complex values are passed in registers.
- //
- namespace {
- class SparcV8ABIInfo : public DefaultABIInfo {
- public:
- SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
- private:
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- };
- } // end anonymous namespace
- ABIArgInfo
- SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
- if (Ty->isAnyComplexType()) {
- return ABIArgInfo::getDirect();
- }
- else {
- return DefaultABIInfo::classifyReturnType(Ty);
- }
- }
- void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (auto &Arg : FI.arguments())
- Arg.info = classifyArgumentType(Arg.type);
- }
- namespace {
- class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // SPARC v9 ABI Implementation.
- // Based on the SPARC Compliance Definition version 2.4.1.
- //
- // Function arguments a mapped to a nominal "parameter array" and promoted to
- // registers depending on their type. Each argument occupies 8 or 16 bytes in
- // the array, structs larger than 16 bytes are passed indirectly.
- //
- // One case requires special care:
- //
- // struct mixed {
- // int i;
- // float f;
- // };
- //
- // When a struct mixed is passed by value, it only occupies 8 bytes in the
- // parameter array, but the int is passed in an integer register, and the float
- // is passed in a floating point register. This is represented as two arguments
- // with the LLVM IR inreg attribute:
- //
- // declare void f(i32 inreg %i, float inreg %f)
- //
- // The code generator will only allocate 4 bytes from the parameter array for
- // the inreg arguments. All other arguments are allocated a multiple of 8
- // bytes.
- //
- namespace {
- class SparcV9ABIInfo : public ABIInfo {
- public:
- SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- private:
- ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
- void computeInfo(CGFunctionInfo &FI) const override;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- // Coercion type builder for structs passed in registers. The coercion type
- // serves two purposes:
- //
- // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
- // in registers.
- // 2. Expose aligned floating point elements as first-level elements, so the
- // code generator knows to pass them in floating point registers.
- //
- // We also compute the InReg flag which indicates that the struct contains
- // aligned 32-bit floats.
- //
- struct CoerceBuilder {
- llvm::LLVMContext &Context;
- const llvm::DataLayout &DL;
- SmallVector<llvm::Type*, 8> Elems;
- uint64_t Size;
- bool InReg;
- CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
- : Context(c), DL(dl), Size(0), InReg(false) {}
- // Pad Elems with integers until Size is ToSize.
- void pad(uint64_t ToSize) {
- assert(ToSize >= Size && "Cannot remove elements");
- if (ToSize == Size)
- return;
- // Finish the current 64-bit word.
- uint64_t Aligned = llvm::alignTo(Size, 64);
- if (Aligned > Size && Aligned <= ToSize) {
- Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
- Size = Aligned;
- }
- // Add whole 64-bit words.
- while (Size + 64 <= ToSize) {
- Elems.push_back(llvm::Type::getInt64Ty(Context));
- Size += 64;
- }
- // Final in-word padding.
- if (Size < ToSize) {
- Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
- Size = ToSize;
- }
- }
- // Add a floating point element at Offset.
- void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
- // Unaligned floats are treated as integers.
- if (Offset % Bits)
- return;
- // The InReg flag is only required if there are any floats < 64 bits.
- if (Bits < 64)
- InReg = true;
- pad(Offset);
- Elems.push_back(Ty);
- Size = Offset + Bits;
- }
- // Add a struct type to the coercion type, starting at Offset (in bits).
- void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
- const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
- for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
- llvm::Type *ElemTy = StrTy->getElementType(i);
- uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
- switch (ElemTy->getTypeID()) {
- case llvm::Type::StructTyID:
- addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
- break;
- case llvm::Type::FloatTyID:
- addFloat(ElemOffset, ElemTy, 32);
- break;
- case llvm::Type::DoubleTyID:
- addFloat(ElemOffset, ElemTy, 64);
- break;
- case llvm::Type::FP128TyID:
- addFloat(ElemOffset, ElemTy, 128);
- break;
- case llvm::Type::PointerTyID:
- if (ElemOffset % 64 == 0) {
- pad(ElemOffset);
- Elems.push_back(ElemTy);
- Size += 64;
- }
- break;
- default:
- break;
- }
- }
- }
- // Check if Ty is a usable substitute for the coercion type.
- bool isUsableType(llvm::StructType *Ty) const {
- return llvm::makeArrayRef(Elems) == Ty->elements();
- }
- // Get the coercion type as a literal struct type.
- llvm::Type *getType() const {
- if (Elems.size() == 1)
- return Elems.front();
- else
- return llvm::StructType::get(Context, Elems);
- }
- };
- };
- } // end anonymous namespace
- ABIArgInfo
- SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
- if (Ty->isVoidType())
- return ABIArgInfo::getIgnore();
- uint64_t Size = getContext().getTypeSize(Ty);
- // Anything too big to fit in registers is passed with an explicit indirect
- // pointer / sret pointer.
- if (Size > SizeLimit)
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // Integer types smaller than a register are extended.
- if (Size < 64 && Ty->isIntegerType())
- return ABIArgInfo::getExtend(Ty);
- // Other non-aggregates go in registers.
- if (!isAggregateTypeForABI(Ty))
- return ABIArgInfo::getDirect();
- // If a C++ object has either a non-trivial copy constructor or a non-trivial
- // destructor, it is passed with an explicit indirect pointer / sret pointer.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
- return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
- // This is a small aggregate type that should be passed in registers.
- // Build a coercion type from the LLVM struct type.
- llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
- if (!StrTy)
- return ABIArgInfo::getDirect();
- CoerceBuilder CB(getVMContext(), getDataLayout());
- CB.addStruct(0, StrTy);
- CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
- // Try to use the original type for coercion.
- llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
- if (CB.InReg)
- return ABIArgInfo::getDirectInReg(CoerceTy);
- else
- return ABIArgInfo::getDirect(CoerceTy);
- }
- Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- ABIArgInfo AI = classifyType(Ty, 16 * 8);
- llvm::Type *ArgTy = CGT.ConvertType(Ty);
- if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
- AI.setCoerceToType(ArgTy);
- CharUnits SlotSize = CharUnits::fromQuantity(8);
- CGBuilderTy &Builder = CGF.Builder;
- Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
- llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
- auto TypeInfo = getContext().getTypeInfoInChars(Ty);
- Address ArgAddr = Address::invalid();
- CharUnits Stride;
- switch (AI.getKind()) {
- case ABIArgInfo::Expand:
- case ABIArgInfo::CoerceAndExpand:
- case ABIArgInfo::InAlloca:
- llvm_unreachable("Unsupported ABI kind for va_arg");
- case ABIArgInfo::Extend: {
- Stride = SlotSize;
- CharUnits Offset = SlotSize - TypeInfo.first;
- ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
- break;
- }
- case ABIArgInfo::Direct: {
- auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
- Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
- ArgAddr = Addr;
- break;
- }
- case ABIArgInfo::Indirect:
- Stride = SlotSize;
- ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
- ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
- TypeInfo.second);
- break;
- case ABIArgInfo::Ignore:
- return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
- }
- // Update VAList.
- Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
- Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
- return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
- }
- void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
- for (auto &I : FI.arguments())
- I.info = classifyType(I.type, 16 * 8);
- }
- namespace {
- class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
- return 14;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const override;
- };
- } // end anonymous namespace
- bool
- SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- // 0-31: the 8-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Eight8, 0, 31);
- // 32-63: f0-31, the 4-byte floating-point registers
- AssignToArrayRange(Builder, Address, Four8, 32, 63);
- // Y = 64
- // PSR = 65
- // WIM = 66
- // TBR = 67
- // PC = 68
- // NPC = 69
- // FSR = 70
- // CSR = 71
- AssignToArrayRange(Builder, Address, Eight8, 64, 71);
- // 72-87: d0-15, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 72, 87);
- return false;
- }
- // ARC ABI implementation.
- namespace {
- class ARCABIInfo : public DefaultABIInfo {
- public:
- using DefaultABIInfo::DefaultABIInfo;
- private:
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
- if (!State.FreeRegs)
- return;
- if (Info.isIndirect() && Info.getInReg())
- State.FreeRegs--;
- else if (Info.isDirect() && Info.getInReg()) {
- unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
- if (sz < State.FreeRegs)
- State.FreeRegs -= sz;
- else
- State.FreeRegs = 0;
- }
- }
- void computeInfo(CGFunctionInfo &FI) const override {
- CCState State(FI.getCallingConvention());
- // ARC uses 8 registers to pass arguments.
- State.FreeRegs = 8;
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- updateState(FI.getReturnInfo(), FI.getReturnType(), State);
- for (auto &I : FI.arguments()) {
- I.info = classifyArgumentType(I.type, State.FreeRegs);
- updateState(I.info, I.type, State);
- }
- }
- ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
- ABIArgInfo getIndirectByValue(QualType Ty) const;
- ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- };
- class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- ARCTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
- };
- ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
- return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
- getNaturalAlignIndirect(Ty, false);
- }
- ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
- // Compute the byval alignment.
- const unsigned MinABIStackAlignInBytes = 4;
- unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
- return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
- TypeAlign > MinABIStackAlignInBytes);
- }
- Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
- getContext().getTypeInfoInChars(Ty),
- CharUnits::fromQuantity(4), true);
- }
- ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
- uint8_t FreeRegs) const {
- // Handle the generic C++ ABI.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (RT) {
- CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
- if (RAA == CGCXXABI::RAA_Indirect)
- return getIndirectByRef(Ty, FreeRegs > 0);
- if (RAA == CGCXXABI::RAA_DirectInMemory)
- return getIndirectByValue(Ty);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
- if (isAggregateTypeForABI(Ty)) {
- // Structures with flexible arrays are always indirect.
- if (RT && RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectByValue(Ty);
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- llvm::LLVMContext &LLVMContext = getVMContext();
- llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
- SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
- llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
- return FreeRegs >= SizeInRegs ?
- ABIArgInfo::getDirectInReg(Result) :
- ABIArgInfo::getDirect(Result, 0, nullptr, false);
- }
- return Ty->isPromotableIntegerType() ?
- (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
- ABIArgInfo::getExtend(Ty)) :
- (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
- ABIArgInfo::getDirect());
- }
- ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirectInReg();
- // Arguments of size > 4 registers are indirect.
- auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
- if (RetSize > 4)
- return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
- return DefaultABIInfo::classifyReturnType(RetTy);
- }
- } // End anonymous namespace.
- //===----------------------------------------------------------------------===//
- // XCore ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// A SmallStringEnc instance is used to build up the TypeString by passing
- /// it by reference between functions that append to it.
- typedef llvm::SmallString<128> SmallStringEnc;
- /// TypeStringCache caches the meta encodings of Types.
- ///
- /// The reason for caching TypeStrings is two fold:
- /// 1. To cache a type's encoding for later uses;
- /// 2. As a means to break recursive member type inclusion.
- ///
- /// A cache Entry can have a Status of:
- /// NonRecursive: The type encoding is not recursive;
- /// Recursive: The type encoding is recursive;
- /// Incomplete: An incomplete TypeString;
- /// IncompleteUsed: An incomplete TypeString that has been used in a
- /// Recursive type encoding.
- ///
- /// A NonRecursive entry will have all of its sub-members expanded as fully
- /// as possible. Whilst it may contain types which are recursive, the type
- /// itself is not recursive and thus its encoding may be safely used whenever
- /// the type is encountered.
- ///
- /// A Recursive entry will have all of its sub-members expanded as fully as
- /// possible. The type itself is recursive and it may contain other types which
- /// are recursive. The Recursive encoding must not be used during the expansion
- /// of a recursive type's recursive branch. For simplicity the code uses
- /// IncompleteCount to reject all usage of Recursive encodings for member types.
- ///
- /// An Incomplete entry is always a RecordType and only encodes its
- /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
- /// are placed into the cache during type expansion as a means to identify and
- /// handle recursive inclusion of types as sub-members. If there is recursion
- /// the entry becomes IncompleteUsed.
- ///
- /// During the expansion of a RecordType's members:
- ///
- /// If the cache contains a NonRecursive encoding for the member type, the
- /// cached encoding is used;
- ///
- /// If the cache contains a Recursive encoding for the member type, the
- /// cached encoding is 'Swapped' out, as it may be incorrect, and...
- ///
- /// If the member is a RecordType, an Incomplete encoding is placed into the
- /// cache to break potential recursive inclusion of itself as a sub-member;
- ///
- /// Once a member RecordType has been expanded, its temporary incomplete
- /// entry is removed from the cache. If a Recursive encoding was swapped out
- /// it is swapped back in;
- ///
- /// If an incomplete entry is used to expand a sub-member, the incomplete
- /// entry is marked as IncompleteUsed. The cache keeps count of how many
- /// IncompleteUsed entries it currently contains in IncompleteUsedCount;
- ///
- /// If a member's encoding is found to be a NonRecursive or Recursive viz:
- /// IncompleteUsedCount==0, the member's encoding is added to the cache.
- /// Else the member is part of a recursive type and thus the recursion has
- /// been exited too soon for the encoding to be correct for the member.
- ///
- class TypeStringCache {
- enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
- struct Entry {
- std::string Str; // The encoded TypeString for the type.
- enum Status State; // Information about the encoding in 'Str'.
- std::string Swapped; // A temporary place holder for a Recursive encoding
- // during the expansion of RecordType's members.
- };
- std::map<const IdentifierInfo *, struct Entry> Map;
- unsigned IncompleteCount; // Number of Incomplete entries in the Map.
- unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
- public:
- TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
- void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
- bool removeIncomplete(const IdentifierInfo *ID);
- void addIfComplete(const IdentifierInfo *ID, StringRef Str,
- bool IsRecursive);
- StringRef lookupStr(const IdentifierInfo *ID);
- };
- /// TypeString encodings for enum & union fields must be order.
- /// FieldEncoding is a helper for this ordering process.
- class FieldEncoding {
- bool HasName;
- std::string Enc;
- public:
- FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
- StringRef str() { return Enc; }
- bool operator<(const FieldEncoding &rhs) const {
- if (HasName != rhs.HasName) return HasName;
- return Enc < rhs.Enc;
- }
- };
- class XCoreABIInfo : public DefaultABIInfo {
- public:
- XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- };
- class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
- mutable TypeStringCache TSC;
- public:
- XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
- :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
- void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const override;
- };
- } // End anonymous namespace.
- // TODO: this implementation is likely now redundant with the default
- // EmitVAArg.
- Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- CGBuilderTy &Builder = CGF.Builder;
- // Get the VAList.
- CharUnits SlotSize = CharUnits::fromQuantity(4);
- Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
- // Handle the argument.
- ABIArgInfo AI = classifyArgumentType(Ty);
- CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
- llvm::Type *ArgTy = CGT.ConvertType(Ty);
- if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
- AI.setCoerceToType(ArgTy);
- llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
- Address Val = Address::invalid();
- CharUnits ArgSize = CharUnits::Zero();
- switch (AI.getKind()) {
- case ABIArgInfo::Expand:
- case ABIArgInfo::CoerceAndExpand:
- case ABIArgInfo::InAlloca:
- llvm_unreachable("Unsupported ABI kind for va_arg");
- case ABIArgInfo::Ignore:
- Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
- ArgSize = CharUnits::Zero();
- break;
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- Val = Builder.CreateBitCast(AP, ArgPtrTy);
- ArgSize = CharUnits::fromQuantity(
- getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
- ArgSize = ArgSize.alignTo(SlotSize);
- break;
- case ABIArgInfo::Indirect:
- Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
- Val = Address(Builder.CreateLoad(Val), TypeAlign);
- ArgSize = SlotSize;
- break;
- }
- // Increment the VAList.
- if (!ArgSize.isZero()) {
- Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
- Builder.CreateStore(APN.getPointer(), VAListAddr);
- }
- return Val;
- }
- /// During the expansion of a RecordType, an incomplete TypeString is placed
- /// into the cache as a means to identify and break recursion.
- /// If there is a Recursive encoding in the cache, it is swapped out and will
- /// be reinserted by removeIncomplete().
- /// All other types of encoding should have been used rather than arriving here.
- void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
- std::string StubEnc) {
- if (!ID)
- return;
- Entry &E = Map[ID];
- assert( (E.Str.empty() || E.State == Recursive) &&
- "Incorrectly use of addIncomplete");
- assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
- E.Swapped.swap(E.Str); // swap out the Recursive
- E.Str.swap(StubEnc);
- E.State = Incomplete;
- ++IncompleteCount;
- }
- /// Once the RecordType has been expanded, the temporary incomplete TypeString
- /// must be removed from the cache.
- /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
- /// Returns true if the RecordType was defined recursively.
- bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
- if (!ID)
- return false;
- auto I = Map.find(ID);
- assert(I != Map.end() && "Entry not present");
- Entry &E = I->second;
- assert( (E.State == Incomplete ||
- E.State == IncompleteUsed) &&
- "Entry must be an incomplete type");
- bool IsRecursive = false;
- if (E.State == IncompleteUsed) {
- // We made use of our Incomplete encoding, thus we are recursive.
- IsRecursive = true;
- --IncompleteUsedCount;
- }
- if (E.Swapped.empty())
- Map.erase(I);
- else {
- // Swap the Recursive back.
- E.Swapped.swap(E.Str);
- E.Swapped.clear();
- E.State = Recursive;
- }
- --IncompleteCount;
- return IsRecursive;
- }
- /// Add the encoded TypeString to the cache only if it is NonRecursive or
- /// Recursive (viz: all sub-members were expanded as fully as possible).
- void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
- bool IsRecursive) {
- if (!ID || IncompleteUsedCount)
- return; // No key or it is is an incomplete sub-type so don't add.
- Entry &E = Map[ID];
- if (IsRecursive && !E.Str.empty()) {
- assert(E.State==Recursive && E.Str.size() == Str.size() &&
- "This is not the same Recursive entry");
- // The parent container was not recursive after all, so we could have used
- // this Recursive sub-member entry after all, but we assumed the worse when
- // we started viz: IncompleteCount!=0.
- return;
- }
- assert(E.Str.empty() && "Entry already present");
- E.Str = Str.str();
- E.State = IsRecursive? Recursive : NonRecursive;
- }
- /// Return a cached TypeString encoding for the ID. If there isn't one, or we
- /// are recursively expanding a type (IncompleteCount != 0) and the cached
- /// encoding is Recursive, return an empty StringRef.
- StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
- if (!ID)
- return StringRef(); // We have no key.
- auto I = Map.find(ID);
- if (I == Map.end())
- return StringRef(); // We have no encoding.
- Entry &E = I->second;
- if (E.State == Recursive && IncompleteCount)
- return StringRef(); // We don't use Recursive encodings for member types.
- if (E.State == Incomplete) {
- // The incomplete type is being used to break out of recursion.
- E.State = IncompleteUsed;
- ++IncompleteUsedCount;
- }
- return E.Str;
- }
- /// The XCore ABI includes a type information section that communicates symbol
- /// type information to the linker. The linker uses this information to verify
- /// safety/correctness of things such as array bound and pointers et al.
- /// The ABI only requires C (and XC) language modules to emit TypeStrings.
- /// This type information (TypeString) is emitted into meta data for all global
- /// symbols: definitions, declarations, functions & variables.
- ///
- /// The TypeString carries type, qualifier, name, size & value details.
- /// Please see 'Tools Development Guide' section 2.16.2 for format details:
- /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
- /// The output is tested by test/CodeGen/xcore-stringtype.c.
- ///
- static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
- CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
- /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
- void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const {
- SmallStringEnc Enc;
- if (getTypeString(Enc, D, CGM, TSC)) {
- llvm::LLVMContext &Ctx = CGM.getModule().getContext();
- llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
- llvm::MDString::get(Ctx, Enc.str())};
- llvm::NamedMDNode *MD =
- CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
- MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
- }
- }
- //===----------------------------------------------------------------------===//
- // SPIR ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- unsigned getOpenCLKernelCallingConv() const override;
- };
- } // End anonymous namespace.
- namespace clang {
- namespace CodeGen {
- void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
- DefaultABIInfo SPIRABI(CGM.getTypes());
- SPIRABI.computeInfo(FI);
- }
- }
- }
- unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
- return llvm::CallingConv::SPIR_KERNEL;
- }
- static bool appendType(SmallStringEnc &Enc, QualType QType,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC);
- /// Helper function for appendRecordType().
- /// Builds a SmallVector containing the encoded field types in declaration
- /// order.
- static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
- const RecordDecl *RD,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- for (const auto *Field : RD->fields()) {
- SmallStringEnc Enc;
- Enc += "m(";
- Enc += Field->getName();
- Enc += "){";
- if (Field->isBitField()) {
- Enc += "b(";
- llvm::raw_svector_ostream OS(Enc);
- OS << Field->getBitWidthValue(CGM.getContext());
- Enc += ':';
- }
- if (!appendType(Enc, Field->getType(), CGM, TSC))
- return false;
- if (Field->isBitField())
- Enc += ')';
- Enc += '}';
- FE.emplace_back(!Field->getName().empty(), Enc);
- }
- return true;
- }
- /// Appends structure and union types to Enc and adds encoding to cache.
- /// Recursively calls appendType (via extractFieldType) for each field.
- /// Union types have their fields ordered according to the ABI.
- static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC, const IdentifierInfo *ID) {
- // Append the cached TypeString if we have one.
- StringRef TypeString = TSC.lookupStr(ID);
- if (!TypeString.empty()) {
- Enc += TypeString;
- return true;
- }
- // Start to emit an incomplete TypeString.
- size_t Start = Enc.size();
- Enc += (RT->isUnionType()? 'u' : 's');
- Enc += '(';
- if (ID)
- Enc += ID->getName();
- Enc += "){";
- // We collect all encoded fields and order as necessary.
- bool IsRecursive = false;
- const RecordDecl *RD = RT->getDecl()->getDefinition();
- if (RD && !RD->field_empty()) {
- // An incomplete TypeString stub is placed in the cache for this RecordType
- // so that recursive calls to this RecordType will use it whilst building a
- // complete TypeString for this RecordType.
- SmallVector<FieldEncoding, 16> FE;
- std::string StubEnc(Enc.substr(Start).str());
- StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
- TSC.addIncomplete(ID, std::move(StubEnc));
- if (!extractFieldType(FE, RD, CGM, TSC)) {
- (void) TSC.removeIncomplete(ID);
- return false;
- }
- IsRecursive = TSC.removeIncomplete(ID);
- // The ABI requires unions to be sorted but not structures.
- // See FieldEncoding::operator< for sort algorithm.
- if (RT->isUnionType())
- llvm::sort(FE);
- // We can now complete the TypeString.
- unsigned E = FE.size();
- for (unsigned I = 0; I != E; ++I) {
- if (I)
- Enc += ',';
- Enc += FE[I].str();
- }
- }
- Enc += '}';
- TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
- return true;
- }
- /// Appends enum types to Enc and adds the encoding to the cache.
- static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
- TypeStringCache &TSC,
- const IdentifierInfo *ID) {
- // Append the cached TypeString if we have one.
- StringRef TypeString = TSC.lookupStr(ID);
- if (!TypeString.empty()) {
- Enc += TypeString;
- return true;
- }
- size_t Start = Enc.size();
- Enc += "e(";
- if (ID)
- Enc += ID->getName();
- Enc += "){";
- // We collect all encoded enumerations and order them alphanumerically.
- if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
- SmallVector<FieldEncoding, 16> FE;
- for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
- ++I) {
- SmallStringEnc EnumEnc;
- EnumEnc += "m(";
- EnumEnc += I->getName();
- EnumEnc += "){";
- I->getInitVal().toString(EnumEnc);
- EnumEnc += '}';
- FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
- }
- llvm::sort(FE);
- unsigned E = FE.size();
- for (unsigned I = 0; I != E; ++I) {
- if (I)
- Enc += ',';
- Enc += FE[I].str();
- }
- }
- Enc += '}';
- TSC.addIfComplete(ID, Enc.substr(Start), false);
- return true;
- }
- /// Appends type's qualifier to Enc.
- /// This is done prior to appending the type's encoding.
- static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
- // Qualifiers are emitted in alphabetical order.
- static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
- int Lookup = 0;
- if (QT.isConstQualified())
- Lookup += 1<<0;
- if (QT.isRestrictQualified())
- Lookup += 1<<1;
- if (QT.isVolatileQualified())
- Lookup += 1<<2;
- Enc += Table[Lookup];
- }
- /// Appends built-in types to Enc.
- static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
- const char *EncType;
- switch (BT->getKind()) {
- case BuiltinType::Void:
- EncType = "0";
- break;
- case BuiltinType::Bool:
- EncType = "b";
- break;
- case BuiltinType::Char_U:
- EncType = "uc";
- break;
- case BuiltinType::UChar:
- EncType = "uc";
- break;
- case BuiltinType::SChar:
- EncType = "sc";
- break;
- case BuiltinType::UShort:
- EncType = "us";
- break;
- case BuiltinType::Short:
- EncType = "ss";
- break;
- case BuiltinType::UInt:
- EncType = "ui";
- break;
- case BuiltinType::Int:
- EncType = "si";
- break;
- case BuiltinType::ULong:
- EncType = "ul";
- break;
- case BuiltinType::Long:
- EncType = "sl";
- break;
- case BuiltinType::ULongLong:
- EncType = "ull";
- break;
- case BuiltinType::LongLong:
- EncType = "sll";
- break;
- case BuiltinType::Float:
- EncType = "ft";
- break;
- case BuiltinType::Double:
- EncType = "d";
- break;
- case BuiltinType::LongDouble:
- EncType = "ld";
- break;
- default:
- return false;
- }
- Enc += EncType;
- return true;
- }
- /// Appends a pointer encoding to Enc before calling appendType for the pointee.
- static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- Enc += "p(";
- if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
- return false;
- Enc += ')';
- return true;
- }
- /// Appends array encoding to Enc before calling appendType for the element.
- static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
- const ArrayType *AT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC, StringRef NoSizeEnc) {
- if (AT->getSizeModifier() != ArrayType::Normal)
- return false;
- Enc += "a(";
- if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
- CAT->getSize().toStringUnsigned(Enc);
- else
- Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
- Enc += ':';
- // The Qualifiers should be attached to the type rather than the array.
- appendQualifier(Enc, QT);
- if (!appendType(Enc, AT->getElementType(), CGM, TSC))
- return false;
- Enc += ')';
- return true;
- }
- /// Appends a function encoding to Enc, calling appendType for the return type
- /// and the arguments.
- static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- Enc += "f{";
- if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
- return false;
- Enc += "}(";
- if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
- // N.B. we are only interested in the adjusted param types.
- auto I = FPT->param_type_begin();
- auto E = FPT->param_type_end();
- if (I != E) {
- do {
- if (!appendType(Enc, *I, CGM, TSC))
- return false;
- ++I;
- if (I != E)
- Enc += ',';
- } while (I != E);
- if (FPT->isVariadic())
- Enc += ",va";
- } else {
- if (FPT->isVariadic())
- Enc += "va";
- else
- Enc += '0';
- }
- }
- Enc += ')';
- return true;
- }
- /// Handles the type's qualifier before dispatching a call to handle specific
- /// type encodings.
- static bool appendType(SmallStringEnc &Enc, QualType QType,
- const CodeGen::CodeGenModule &CGM,
- TypeStringCache &TSC) {
- QualType QT = QType.getCanonicalType();
- if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
- // The Qualifiers should be attached to the type rather than the array.
- // Thus we don't call appendQualifier() here.
- return appendArrayType(Enc, QT, AT, CGM, TSC, "");
- appendQualifier(Enc, QT);
- if (const BuiltinType *BT = QT->getAs<BuiltinType>())
- return appendBuiltinType(Enc, BT);
- if (const PointerType *PT = QT->getAs<PointerType>())
- return appendPointerType(Enc, PT, CGM, TSC);
- if (const EnumType *ET = QT->getAs<EnumType>())
- return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
- if (const RecordType *RT = QT->getAsStructureType())
- return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
- if (const RecordType *RT = QT->getAsUnionType())
- return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
- if (const FunctionType *FT = QT->getAs<FunctionType>())
- return appendFunctionType(Enc, FT, CGM, TSC);
- return false;
- }
- static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
- CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
- if (!D)
- return false;
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->getLanguageLinkage() != CLanguageLinkage)
- return false;
- return appendType(Enc, FD->getType(), CGM, TSC);
- }
- if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
- if (VD->getLanguageLinkage() != CLanguageLinkage)
- return false;
- QualType QT = VD->getType().getCanonicalType();
- if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
- // Global ArrayTypes are given a size of '*' if the size is unknown.
- // The Qualifiers should be attached to the type rather than the array.
- // Thus we don't call appendQualifier() here.
- return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
- }
- return appendType(Enc, QT, CGM, TSC);
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // RISCV ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class RISCVABIInfo : public DefaultABIInfo {
- private:
- unsigned XLen; // Size of the integer ('x') registers in bits.
- static const int NumArgGPRs = 8;
- public:
- RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
- : DefaultABIInfo(CGT), XLen(XLen) {}
- // DefaultABIInfo's classifyReturnType and classifyArgumentType are
- // non-virtual, but computeInfo is virtual, so we overload it.
- void computeInfo(CGFunctionInfo &FI) const override;
- ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
- int &ArgGPRsLeft) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const override;
- ABIArgInfo extendType(QualType Ty) const;
- };
- } // end anonymous namespace
- void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
- QualType RetTy = FI.getReturnType();
- if (!getCXXABI().classifyReturnType(FI))
- FI.getReturnInfo() = classifyReturnType(RetTy);
- // IsRetIndirect is true if classifyArgumentType indicated the value should
- // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
- // is passed direct in LLVM IR, relying on the backend lowering code to
- // rewrite the argument list and pass indirectly on RV32.
- bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
- getContext().getTypeSize(RetTy) > (2 * XLen);
- // We must track the number of GPRs used in order to conform to the RISC-V
- // ABI, as integer scalars passed in registers should have signext/zeroext
- // when promoted, but are anyext if passed on the stack. As GPR usage is
- // different for variadic arguments, we must also track whether we are
- // examining a vararg or not.
- int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
- int NumFixedArgs = FI.getNumRequiredArgs();
- int ArgNum = 0;
- for (auto &ArgInfo : FI.arguments()) {
- bool IsFixed = ArgNum < NumFixedArgs;
- ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
- ArgNum++;
- }
- }
- ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
- int &ArgGPRsLeft) const {
- assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
- Ty = useFirstFieldIfTransparentUnion(Ty);
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always passed indirectly.
- if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
- if (ArgGPRsLeft)
- ArgGPRsLeft -= 1;
- return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
- CGCXXABI::RAA_DirectInMemory);
- }
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- uint64_t Size = getContext().getTypeSize(Ty);
- uint64_t NeededAlign = getContext().getTypeAlign(Ty);
- bool MustUseStack = false;
- // Determine the number of GPRs needed to pass the current argument
- // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
- // register pairs, so may consume 3 registers.
- int NeededArgGPRs = 1;
- if (!IsFixed && NeededAlign == 2 * XLen)
- NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
- else if (Size > XLen && Size <= 2 * XLen)
- NeededArgGPRs = 2;
- if (NeededArgGPRs > ArgGPRsLeft) {
- MustUseStack = true;
- NeededArgGPRs = ArgGPRsLeft;
- }
- ArgGPRsLeft -= NeededArgGPRs;
- if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- // All integral types are promoted to XLen width, unless passed on the
- // stack.
- if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
- return extendType(Ty);
- }
- return ABIArgInfo::getDirect();
- }
- // Aggregates which are <= 2*XLen will be passed in registers if possible,
- // so coerce to integers.
- if (Size <= 2 * XLen) {
- unsigned Alignment = getContext().getTypeAlign(Ty);
- // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
- // required, and a 2-element XLen array if only XLen alignment is required.
- if (Size <= XLen) {
- return ABIArgInfo::getDirect(
- llvm::IntegerType::get(getVMContext(), XLen));
- } else if (Alignment == 2 * XLen) {
- return ABIArgInfo::getDirect(
- llvm::IntegerType::get(getVMContext(), 2 * XLen));
- } else {
- return ABIArgInfo::getDirect(llvm::ArrayType::get(
- llvm::IntegerType::get(getVMContext(), XLen), 2));
- }
- }
- return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
- }
- ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- int ArgGPRsLeft = 2;
- // The rules for return and argument types are the same, so defer to
- // classifyArgumentType.
- return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
- }
- Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
- QualType Ty) const {
- CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
- // Empty records are ignored for parameter passing purposes.
- if (isEmptyRecord(getContext(), Ty, true)) {
- Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
- Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
- return Addr;
- }
- std::pair<CharUnits, CharUnits> SizeAndAlign =
- getContext().getTypeInfoInChars(Ty);
- // Arguments bigger than 2*Xlen bytes are passed indirectly.
- bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
- return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
- SlotSize, /*AllowHigherAlign=*/true);
- }
- ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
- int TySize = getContext().getTypeSize(Ty);
- // RV64 ABI requires unsigned 32 bit integers to be sign extended.
- if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
- return ABIArgInfo::getSignExtend(Ty);
- return ABIArgInfo::getExtend(Ty);
- }
- namespace {
- class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
- : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
- void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const override {
- const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
- if (!FD) return;
- const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
- if (!Attr)
- return;
- const char *Kind;
- switch (Attr->getInterrupt()) {
- case RISCVInterruptAttr::user: Kind = "user"; break;
- case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
- case RISCVInterruptAttr::machine: Kind = "machine"; break;
- }
- auto *Fn = cast<llvm::Function>(GV);
- Fn->addFnAttr("interrupt", Kind);
- }
- };
- } // namespace
- //===----------------------------------------------------------------------===//
- // Driver code
- //===----------------------------------------------------------------------===//
- bool CodeGenModule::supportsCOMDAT() const {
- return getTriple().supportsCOMDAT();
- }
- const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
- if (TheTargetCodeGenInfo)
- return *TheTargetCodeGenInfo;
- // Helper to set the unique_ptr while still keeping the return value.
- auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
- this->TheTargetCodeGenInfo.reset(P);
- return *P;
- };
- const llvm::Triple &Triple = getTarget().getTriple();
- switch (Triple.getArch()) {
- default:
- return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
- case llvm::Triple::le32:
- return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
- case llvm::Triple::mips:
- case llvm::Triple::mipsel:
- if (Triple.getOS() == llvm::Triple::NaCl)
- return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
- return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
- case llvm::Triple::mips64:
- case llvm::Triple::mips64el:
- return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
- case llvm::Triple::avr:
- return SetCGInfo(new AVRTargetCodeGenInfo(Types));
- case llvm::Triple::aarch64:
- case llvm::Triple::aarch64_be: {
- AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
- if (getTarget().getABI() == "darwinpcs")
- Kind = AArch64ABIInfo::DarwinPCS;
- else if (Triple.isOSWindows())
- return SetCGInfo(
- new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
- return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
- }
- case llvm::Triple::wasm32:
- case llvm::Triple::wasm64:
- return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
- case llvm::Triple::arm:
- case llvm::Triple::armeb:
- case llvm::Triple::thumb:
- case llvm::Triple::thumbeb: {
- if (Triple.getOS() == llvm::Triple::Win32) {
- return SetCGInfo(
- new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
- }
- ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
- StringRef ABIStr = getTarget().getABI();
- if (ABIStr == "apcs-gnu")
- Kind = ARMABIInfo::APCS;
- else if (ABIStr == "aapcs16")
- Kind = ARMABIInfo::AAPCS16_VFP;
- else if (CodeGenOpts.FloatABI == "hard" ||
- (CodeGenOpts.FloatABI != "soft" &&
- (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
- Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
- Triple.getEnvironment() == llvm::Triple::EABIHF)))
- Kind = ARMABIInfo::AAPCS_VFP;
- return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
- }
- case llvm::Triple::ppc:
- return SetCGInfo(
- new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
- case llvm::Triple::ppc64:
- if (Triple.isOSBinFormatELF()) {
- PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
- if (getTarget().getABI() == "elfv2")
- Kind = PPC64_SVR4_ABIInfo::ELFv2;
- bool HasQPX = getTarget().getABI() == "elfv1-qpx";
- bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
- return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
- IsSoftFloat));
- } else
- return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
- case llvm::Triple::ppc64le: {
- assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
- PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
- if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
- Kind = PPC64_SVR4_ABIInfo::ELFv1;
- bool HasQPX = getTarget().getABI() == "elfv1-qpx";
- bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
- return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
- IsSoftFloat));
- }
- case llvm::Triple::nvptx:
- case llvm::Triple::nvptx64:
- return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
- case llvm::Triple::msp430:
- return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
- case llvm::Triple::riscv32:
- return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
- case llvm::Triple::riscv64:
- return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
- case llvm::Triple::systemz: {
- bool HasVector = getTarget().getABI() == "vector";
- return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
- }
- case llvm::Triple::tce:
- case llvm::Triple::tcele:
- return SetCGInfo(new TCETargetCodeGenInfo(Types));
- case llvm::Triple::x86: {
- bool IsDarwinVectorABI = Triple.isOSDarwin();
- bool RetSmallStructInRegABI =
- X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
- bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
- if (Triple.getOS() == llvm::Triple::Win32) {
- return SetCGInfo(new WinX86_32TargetCodeGenInfo(
- Types, IsDarwinVectorABI, RetSmallStructInRegABI,
- IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
- } else {
- return SetCGInfo(new X86_32TargetCodeGenInfo(
- Types, IsDarwinVectorABI, RetSmallStructInRegABI,
- IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
- CodeGenOpts.FloatABI == "soft"));
- }
- }
- case llvm::Triple::x86_64: {
- StringRef ABI = getTarget().getABI();
- X86AVXABILevel AVXLevel =
- (ABI == "avx512"
- ? X86AVXABILevel::AVX512
- : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
- switch (Triple.getOS()) {
- case llvm::Triple::Win32:
- return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
- case llvm::Triple::PS4:
- return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
- default:
- return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
- }
- }
- case llvm::Triple::hexagon:
- return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
- case llvm::Triple::lanai:
- return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
- case llvm::Triple::r600:
- return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
- case llvm::Triple::amdgcn:
- return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
- case llvm::Triple::sparc:
- return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
- case llvm::Triple::sparcv9:
- return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
- case llvm::Triple::xcore:
- return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
- case llvm::Triple::arc:
- return SetCGInfo(new ARCTargetCodeGenInfo(Types));
- case llvm::Triple::spir:
- case llvm::Triple::spir64:
- return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
- }
- }
- /// Create an OpenCL kernel for an enqueued block.
- ///
- /// The kernel has the same function type as the block invoke function. Its
- /// name is the name of the block invoke function postfixed with "_kernel".
- /// It simply calls the block invoke function then returns.
- llvm::Function *
- TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
- llvm::Function *Invoke,
- llvm::Value *BlockLiteral) const {
- auto *InvokeFT = Invoke->getFunctionType();
- llvm::SmallVector<llvm::Type *, 2> ArgTys;
- for (auto &P : InvokeFT->params())
- ArgTys.push_back(P);
- auto &C = CGF.getLLVMContext();
- std::string Name = Invoke->getName().str() + "_kernel";
- auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
- auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
- &CGF.CGM.getModule());
- auto IP = CGF.Builder.saveIP();
- auto *BB = llvm::BasicBlock::Create(C, "entry", F);
- auto &Builder = CGF.Builder;
- Builder.SetInsertPoint(BB);
- llvm::SmallVector<llvm::Value *, 2> Args;
- for (auto &A : F->args())
- Args.push_back(&A);
- Builder.CreateCall(Invoke, Args);
- Builder.CreateRetVoid();
- Builder.restoreIP(IP);
- return F;
- }
- /// Create an OpenCL kernel for an enqueued block.
- ///
- /// The type of the first argument (the block literal) is the struct type
- /// of the block literal instead of a pointer type. The first argument
- /// (block literal) is passed directly by value to the kernel. The kernel
- /// allocates the same type of struct on stack and stores the block literal
- /// to it and passes its pointer to the block invoke function. The kernel
- /// has "enqueued-block" function attribute and kernel argument metadata.
- llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
- CodeGenFunction &CGF, llvm::Function *Invoke,
- llvm::Value *BlockLiteral) const {
- auto &Builder = CGF.Builder;
- auto &C = CGF.getLLVMContext();
- auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
- auto *InvokeFT = Invoke->getFunctionType();
- llvm::SmallVector<llvm::Type *, 2> ArgTys;
- llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
- llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
- llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
- llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
- llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
- llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
- ArgTys.push_back(BlockTy);
- ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
- AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
- ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
- ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
- AccessQuals.push_back(llvm::MDString::get(C, "none"));
- ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
- for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
- ArgTys.push_back(InvokeFT->getParamType(I));
- ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
- AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
- AccessQuals.push_back(llvm::MDString::get(C, "none"));
- ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
- ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
- ArgNames.push_back(
- llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
- }
- std::string Name = Invoke->getName().str() + "_kernel";
- auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
- auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
- &CGF.CGM.getModule());
- F->addFnAttr("enqueued-block");
- auto IP = CGF.Builder.saveIP();
- auto *BB = llvm::BasicBlock::Create(C, "entry", F);
- Builder.SetInsertPoint(BB);
- unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
- auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
- BlockPtr->setAlignment(BlockAlign);
- Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
- auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
- llvm::SmallVector<llvm::Value *, 2> Args;
- Args.push_back(Cast);
- for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
- Args.push_back(I);
- Builder.CreateCall(Invoke, Args);
- Builder.CreateRetVoid();
- Builder.restoreIP(IP);
- F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
- F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
- F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
- F->setMetadata("kernel_arg_base_type",
- llvm::MDNode::get(C, ArgBaseTypeNames));
- F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
- if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
- F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
- return F;
- }
|