123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613 |
- //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the code that handles AST -> LLVM type lowering.
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenTypes.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/AST/AST.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Module.h"
- #include "llvm/Target/TargetData.h"
- using namespace clang;
- using namespace CodeGen;
- namespace {
- /// RecordOrganizer - This helper class, used by CGRecordLayout, layouts
- /// structs and unions. It manages transient information used during layout.
- /// FIXME : Handle field aligments. Handle packed structs.
- class RecordOrganizer {
- public:
- explicit RecordOrganizer(CodeGenTypes &Types) :
- CGT(Types), STy(NULL), llvmFieldNo(0), Cursor(0),
- llvmSize(0) {}
-
- /// addField - Add new field.
- void addField(const FieldDecl *FD);
- /// addLLVMField - Add llvm struct field that corresponds to llvm type Ty.
- /// Increment field count.
- void addLLVMField(const llvm::Type *Ty, bool isPaddingField = false);
- /// addPaddingFields - Current cursor is not suitable place to add next
- /// field. Add required padding fields.
- void addPaddingFields(unsigned WaterMark);
- /// layoutStructFields - Do the actual work and lay out all fields. Create
- /// corresponding llvm struct type. This should be invoked only after
- /// all fields are added.
- void layoutStructFields(const ASTRecordLayout &RL);
- /// layoutUnionFields - Do the actual work and lay out all fields. Create
- /// corresponding llvm struct type. This should be invoked only after
- /// all fields are added.
- void layoutUnionFields();
- /// getLLVMType - Return associated llvm struct type. This may be NULL
- /// if fields are not laid out.
- llvm::Type *getLLVMType() const {
- return STy;
- }
- /// placeBitField - Find a place for FD, which is a bit-field.
- void placeBitField(const FieldDecl *FD);
- llvm::SmallSet<unsigned, 8> &getPaddingFields() {
- return PaddingFields;
- }
- private:
- CodeGenTypes &CGT;
- llvm::Type *STy;
- unsigned llvmFieldNo;
- uint64_t Cursor;
- uint64_t llvmSize;
- llvm::SmallVector<const FieldDecl *, 8> FieldDecls;
- std::vector<const llvm::Type*> LLVMFields;
- llvm::SmallSet<unsigned, 8> PaddingFields;
- };
- }
- CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
- const llvm::TargetData &TD)
- : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD) {
- }
- CodeGenTypes::~CodeGenTypes() {
- for(llvm::DenseMap<const TagDecl *, CGRecordLayout *>::iterator
- I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
- I != E; ++I)
- delete I->second;
- CGRecordLayouts.clear();
- }
- /// ConvertType - Convert the specified type to its LLVM form.
- const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
- // See if type is already cached.
- llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
- I = TypeCache.find(T.getCanonicalType().getTypePtr());
- // If type is found in map and this is not a definition for a opaque
- // place holder type then use it. Otherwise, convert type T.
- if (I != TypeCache.end())
- return I->second.get();
- const llvm::Type *ResultType = ConvertNewType(T);
- TypeCache.insert(std::make_pair(T.getCanonicalType().getTypePtr(),
- llvm::PATypeHolder(ResultType)));
- return ResultType;
- }
- /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
- /// ConvertType in that it is used to convert to the memory representation for
- /// a type. For example, the scalar representation for _Bool is i1, but the
- /// memory representation is usually i8 or i32, depending on the target.
- const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
- const llvm::Type *R = ConvertType(T);
-
- // If this is a non-bool type, don't map it.
- if (R != llvm::Type::Int1Ty)
- return R;
-
- // Otherwise, return an integer of the target-specified size.
- return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
-
- }
- /// UpdateCompletedType - When we find the full definition for a TagDecl,
- /// replace the 'opaque' type we previously made for it if applicable.
- void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
- llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
- TagDeclTypes.find(TD);
- if (TDTI == TagDeclTypes.end()) return;
-
- // Remember the opaque LLVM type for this tagdecl.
- llvm::PATypeHolder OpaqueHolder = TDTI->second;
- assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
- "Updating compilation of an already non-opaque type?");
-
- // Remove it from TagDeclTypes so that it will be regenerated.
- TagDeclTypes.erase(TDTI);
- // Generate the new type.
- const llvm::Type *NT = ConvertTagDeclType(TD);
- // Refine the old opaque type to its new definition.
- cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
- }
- /// Produces a vector containing the all of the instance variables in an
- /// Objective-C object, in the order that they appear. Used to create LLVM
- /// structures corresponding to Objective-C objects.
- void CodeGenTypes::CollectObjCIvarTypes(ObjCInterfaceDecl *ObjCClass,
- std::vector<const llvm::Type*> &IvarTypes) {
- ObjCInterfaceDecl *SuperClass = ObjCClass->getSuperClass();
- if(SuperClass) {
- CollectObjCIvarTypes(SuperClass, IvarTypes);
- }
- for(ObjCInterfaceDecl::ivar_iterator ivar=ObjCClass->ivar_begin() ;
- ivar != ObjCClass->ivar_end() ;
- ivar++) {
- IvarTypes.push_back(ConvertType((*ivar)->getType()));
- ObjCIvarInfo[*ivar] = IvarTypes.size() - 1;
- }
- }
- const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
- const clang::Type &Ty = *T.getCanonicalType();
-
- switch (Ty.getTypeClass()) {
- case Type::TypeName: // typedef isn't canonical.
- case Type::TypeOfExp: // typeof isn't canonical.
- case Type::TypeOfTyp: // typeof isn't canonical.
- assert(0 && "Non-canonical type, shouldn't happen");
- case Type::Builtin: {
- switch (cast<BuiltinType>(Ty).getKind()) {
- case BuiltinType::Void:
- // LLVM void type can only be used as the result of a function call. Just
- // map to the same as char.
- return llvm::IntegerType::get(8);
- case BuiltinType::Bool:
- // Note that we always return bool as i1 for use as a scalar type.
- return llvm::Type::Int1Ty;
-
- case BuiltinType::Char_S:
- case BuiltinType::Char_U:
- case BuiltinType::SChar:
- case BuiltinType::UChar:
- case BuiltinType::Short:
- case BuiltinType::UShort:
- case BuiltinType::Int:
- case BuiltinType::UInt:
- case BuiltinType::Long:
- case BuiltinType::ULong:
- case BuiltinType::LongLong:
- case BuiltinType::ULongLong:
- return llvm::IntegerType::get(
- static_cast<unsigned>(Context.getTypeSize(T)));
-
- case BuiltinType::Float: return llvm::Type::FloatTy;
- case BuiltinType::Double: return llvm::Type::DoubleTy;
- case BuiltinType::LongDouble:
- // FIXME: mapping long double onto double.
- return llvm::Type::DoubleTy;
- }
- break;
- }
- case Type::Complex: {
- const llvm::Type *EltTy =
- ConvertType(cast<ComplexType>(Ty).getElementType());
- return llvm::StructType::get(EltTy, EltTy, NULL);
- }
- case Type::Pointer: {
- const PointerType &P = cast<PointerType>(Ty);
- QualType ETy = P.getPointeeType();
- return llvm::PointerType::get(ConvertType(ETy), ETy.getAddressSpace());
- }
- case Type::Reference: {
- const ReferenceType &R = cast<ReferenceType>(Ty);
- return llvm::PointerType::getUnqual(ConvertType(R.getReferenceeType()));
- }
-
- case Type::VariableArray: {
- const VariableArrayType &A = cast<VariableArrayType>(Ty);
- assert(A.getIndexTypeQualifier() == 0 &&
- "FIXME: We only handle trivial array types so far!");
- // VLAs resolve to the innermost element type; this matches
- // the return of alloca, and there isn't any obviously better choice.
- return ConvertType(A.getElementType());
- }
- case Type::IncompleteArray: {
- const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
- assert(A.getIndexTypeQualifier() == 0 &&
- "FIXME: We only handle trivial array types so far!");
- // int X[] -> [0 x int]
- return llvm::ArrayType::get(ConvertType(A.getElementType()), 0);
- }
- case Type::ConstantArray: {
- const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
- const llvm::Type *EltTy = ConvertType(A.getElementType());
- return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
- }
- case Type::OCUVector:
- case Type::Vector: {
- const VectorType &VT = cast<VectorType>(Ty);
- return llvm::VectorType::get(ConvertType(VT.getElementType()),
- VT.getNumElements());
- }
- case Type::FunctionNoProto:
- case Type::FunctionProto: {
- const FunctionType &FP = cast<FunctionType>(Ty);
- const llvm::Type *ResultType;
-
- if (FP.getResultType()->isVoidType())
- ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
- else
- ResultType = ConvertType(FP.getResultType());
-
- // FIXME: Convert argument types.
- bool isVarArg;
- std::vector<const llvm::Type*> ArgTys;
-
- // Struct return passes the struct byref.
- if (!ResultType->isFirstClassType() && ResultType != llvm::Type::VoidTy) {
- ArgTys.push_back(llvm::PointerType::get(ResultType,
- FP.getResultType().getAddressSpace()));
- ResultType = llvm::Type::VoidTy;
- }
-
- if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
- DecodeArgumentTypes(*FTP, ArgTys);
- isVarArg = FTP->isVariadic();
- } else {
- isVarArg = true;
- }
-
- return llvm::FunctionType::get(ResultType, ArgTys, isVarArg);
- }
-
- case Type::ASQual:
- return ConvertType(QualType(cast<ASQualType>(Ty).getBaseType(), 0));
- case Type::ObjCInterface: {
- // Warning: Use of this is strongly discouraged. Late binding of instance
- // variables is supported on some runtimes and so using static binding can
- // break code when libraries are updated. Only use this if you have
- // previously checked that the ObjCRuntime subclass in use does not support
- // late-bound ivars.
- ObjCInterfaceType OIT = cast<ObjCInterfaceType>(Ty);
- std::vector<const llvm::Type*> IvarTypes;
- // Pointer to the class. This is just a placeholder. Operations that
- // actually use the isa pointer should cast it to the Class type provided
- // by the runtime.
- IvarTypes.push_back(llvm::PointerType::getUnqual(llvm::Type::Int8Ty));
- CollectObjCIvarTypes(OIT.getDecl(), IvarTypes);
- return llvm::StructType::get(IvarTypes);
- }
-
- case Type::ObjCQualifiedInterface:
- assert(0 && "FIXME: add missing functionality here");
- break;
- case Type::ObjCQualifiedId:
- assert(0 && "FIXME: add missing functionality here");
- break;
- case Type::Tagged: {
- const TagDecl *TD = cast<TagType>(Ty).getDecl();
- const llvm::Type *Res = ConvertTagDeclType(TD);
-
- std::string TypeName(TD->getKindName());
- TypeName += '.';
-
- // Name the codegen type after the typedef name
- // if there is no tag type name available
- if (TD->getIdentifier())
- TypeName += TD->getName();
- else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
- TypeName += TdT->getDecl()->getName();
- else
- TypeName += "anon";
-
- TheModule.addTypeName(TypeName, Res);
- return Res;
- }
- }
-
- // FIXME: implement.
- return llvm::OpaqueType::get();
- }
- void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
- std::vector<const llvm::Type*> &ArgTys) {
- for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
- const llvm::Type *Ty = ConvertType(FTP.getArgType(i));
- if (Ty->isFirstClassType())
- ArgTys.push_back(Ty);
- else
- // byval arguments are always on the stack, which is addr space #0.
- ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
- }
- }
- /// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
- /// enum.
- const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
- llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
- TagDeclTypes.find(TD);
-
- // If we've already compiled this tag type, use the previous definition.
- if (TDTI != TagDeclTypes.end())
- return TDTI->second;
-
- // If this is still a forward definition, just define an opaque type to use
- // for this tagged decl.
- if (!TD->isDefinition()) {
- llvm::Type *ResultType = llvm::OpaqueType::get();
- TagDeclTypes.insert(std::make_pair(TD, ResultType));
- return ResultType;
- }
-
- // Okay, this is a definition of a type. Compile the implementation now.
-
- if (TD->getKind() == Decl::Enum) {
- // Don't bother storing enums in TagDeclTypes.
- return ConvertType(cast<EnumDecl>(TD)->getIntegerType());
- }
-
- // This decl could well be recursive. In this case, insert an opaque
- // definition of this type, which the recursive uses will get. We will then
- // refine this opaque version later.
- // Create new OpaqueType now for later use in case this is a recursive
- // type. This will later be refined to the actual type.
- llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get();
- TagDeclTypes.insert(std::make_pair(TD, ResultHolder));
-
- const llvm::Type *ResultType;
- const RecordDecl *RD = cast<const RecordDecl>(TD);
- if (TD->getKind() == Decl::Struct || TD->getKind() == Decl::Class) {
- // Layout fields.
- RecordOrganizer RO(*this);
- for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
- RO.addField(RD->getMember(i));
-
- RO.layoutStructFields(Context.getASTRecordLayout(RD));
-
- // Get llvm::StructType.
- CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
- RO.getPaddingFields());
- ResultType = RO.getLLVMType();
-
- } else if (TD->getKind() == Decl::Union) {
- // Just use the largest element of the union, breaking ties with the
- // highest aligned member.
- if (RD->getNumMembers() != 0) {
- RecordOrganizer RO(*this);
- for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
- RO.addField(RD->getMember(i));
-
- RO.layoutUnionFields();
-
- // Get llvm::StructType.
- CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
- RO.getPaddingFields());
- ResultType = RO.getLLVMType();
- } else {
- ResultType = llvm::StructType::get(std::vector<const llvm::Type*>());
- }
- } else {
- assert(0 && "FIXME: Unknown tag decl kind!");
- }
-
- // Refine our Opaque type to ResultType. This can invalidate ResultType, so
- // make sure to read the result out of the holder.
- cast<llvm::OpaqueType>(ResultHolder.get())
- ->refineAbstractTypeTo(ResultType);
-
- return ResultHolder.get();
- }
- /// getLLVMFieldNo - Return llvm::StructType element number
- /// that corresponds to the field FD.
- unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
- llvm::DenseMap<const FieldDecl *, unsigned>::iterator
- I = FieldInfo.find(FD);
- assert (I != FieldInfo.end() && "Unable to find field info");
- return I->second;
- }
- unsigned CodeGenTypes::getLLVMFieldNo(const ObjCIvarDecl *OID) {
- llvm::DenseMap<const ObjCIvarDecl*, unsigned>::iterator
- I = ObjCIvarInfo.find(OID);
- assert (I != ObjCIvarInfo.end() && "Unable to find field info");
- return I->second;
- }
- /// addFieldInfo - Assign field number to field FD.
- void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
- FieldInfo[FD] = No;
- }
- /// getBitFieldInfo - Return the BitFieldInfo that corresponds to the field FD.
- CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
- llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
- I = BitFields.find(FD);
- assert (I != BitFields.end() && "Unable to find bitfield info");
- return I->second;
- }
- /// addBitFieldInfo - Assign a start bit and a size to field FD.
- void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin,
- unsigned Size) {
- BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size)));
- }
- /// getCGRecordLayout - Return record layout info for the given llvm::Type.
- const CGRecordLayout *
- CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
- llvm::DenseMap<const TagDecl*, CGRecordLayout *>::iterator I
- = CGRecordLayouts.find(TD);
- assert (I != CGRecordLayouts.end()
- && "Unable to find record layout information for type");
- return I->second;
- }
- /// addField - Add new field.
- void RecordOrganizer::addField(const FieldDecl *FD) {
- assert (!STy && "Record fields are already laid out");
- FieldDecls.push_back(FD);
- }
- /// layoutStructFields - Do the actual work and lay out all fields. Create
- /// corresponding llvm struct type. This should be invoked only after
- /// all fields are added.
- /// FIXME : At the moment assume
- /// - one to one mapping between AST FieldDecls and
- /// llvm::StructType elements.
- /// - Ignore bit fields
- /// - Ignore field aligments
- /// - Ignore packed structs
- void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) {
- // FIXME : Use SmallVector
- llvmSize = 0;
- llvmFieldNo = 0;
- Cursor = 0;
- LLVMFields.clear();
- for (llvm::SmallVector<const FieldDecl *, 8>::iterator I = FieldDecls.begin(),
- E = FieldDecls.end(); I != E; ++I) {
- const FieldDecl *FD = *I;
- if (FD->isBitField())
- placeBitField(FD);
- else {
- const llvm::Type *Ty = CGT.ConvertType(FD->getType());
- addLLVMField(Ty);
- CGT.addFieldInfo(FD, llvmFieldNo - 1);
- Cursor = llvmSize;
- }
- }
- unsigned StructAlign = RL.getAlignment();
- if (llvmSize % StructAlign) {
- unsigned StructPadding = StructAlign - (llvmSize % StructAlign);
- addPaddingFields(llvmSize + StructPadding);
- }
- STy = llvm::StructType::get(LLVMFields);
- }
- /// addPaddingFields - Current cursor is not suitable place to add next field.
- /// Add required padding fields.
- void RecordOrganizer::addPaddingFields(unsigned WaterMark) {
- assert(WaterMark >= llvmSize && "Invalid padding Field");
- unsigned RequiredBits = WaterMark - llvmSize;
- unsigned RequiredBytes = (RequiredBits + 7) / 8;
- for (unsigned i = 0; i != RequiredBytes; ++i)
- addLLVMField(llvm::Type::Int8Ty, true);
- }
- /// addLLVMField - Add llvm struct field that corresponds to llvm type Ty.
- /// Increment field count.
- void RecordOrganizer::addLLVMField(const llvm::Type *Ty, bool isPaddingField) {
- unsigned AlignmentInBits = CGT.getTargetData().getABITypeAlignment(Ty) * 8;
- if (llvmSize % AlignmentInBits) {
- // At the moment, insert padding fields even if target specific llvm
- // type alignment enforces implict padding fields for FD. Later on,
- // optimize llvm fields by removing implicit padding fields and
- // combining consequetive padding fields.
- unsigned Padding = AlignmentInBits - (llvmSize % AlignmentInBits);
- addPaddingFields(llvmSize + Padding);
- }
- unsigned TySize = CGT.getTargetData().getABITypeSizeInBits(Ty);
- llvmSize += TySize;
- if (isPaddingField)
- PaddingFields.insert(llvmFieldNo);
- LLVMFields.push_back(Ty);
- ++llvmFieldNo;
- }
- /// layoutUnionFields - Do the actual work and lay out all fields. Create
- /// corresponding llvm struct type. This should be invoked only after
- /// all fields are added.
- void RecordOrganizer::layoutUnionFields() {
-
- unsigned PrimaryEltNo = 0;
- std::pair<uint64_t, unsigned> PrimaryElt =
- CGT.getContext().getTypeInfo(FieldDecls[0]->getType());
- CGT.addFieldInfo(FieldDecls[0], 0);
- unsigned Size = FieldDecls.size();
- for(unsigned i = 1; i != Size; ++i) {
- const FieldDecl *FD = FieldDecls[i];
- assert (!FD->isBitField() && "Bit fields are not yet supported");
- std::pair<uint64_t, unsigned> EltInfo =
- CGT.getContext().getTypeInfo(FD->getType());
- // Use largest element, breaking ties with the hightest aligned member.
- if (EltInfo.first > PrimaryElt.first ||
- (EltInfo.first == PrimaryElt.first &&
- EltInfo.second > PrimaryElt.second)) {
- PrimaryElt = EltInfo;
- PrimaryEltNo = i;
- }
- // In union, each field gets first slot.
- CGT.addFieldInfo(FD, 0);
- }
- std::vector<const llvm::Type*> Fields;
- const llvm::Type *Ty = CGT.ConvertType(FieldDecls[PrimaryEltNo]->getType());
- Fields.push_back(Ty);
- STy = llvm::StructType::get(Fields);
- }
- /// placeBitField - Find a place for FD, which is a bit-field.
- /// This function searches for the last aligned field. If the bit-field fits in
- /// it, it is reused. Otherwise, the bit-field is placed in a new field.
- void RecordOrganizer::placeBitField(const FieldDecl *FD) {
- assert (FD->isBitField() && "FD is not a bit-field");
- Expr *BitWidth = FD->getBitWidth();
- llvm::APSInt FieldSize(32);
- bool isBitField =
- BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
- assert (isBitField && "Invalid BitField size expression");
- uint64_t BitFieldSize = FieldSize.getZExtValue();
- const llvm::Type *Ty = CGT.ConvertType(FD->getType());
- uint64_t TySize = CGT.getTargetData().getABITypeSizeInBits(Ty);
- unsigned Idx = Cursor / TySize;
- unsigned BitsLeft = TySize - (Cursor % TySize);
- if (BitsLeft >= BitFieldSize) {
- // The bitfield fits in the last aligned field.
- // This is : struct { char a; int CurrentField:10;};
- // where 'CurrentField' shares first field with 'a'.
- CGT.addFieldInfo(FD, Idx);
- CGT.addBitFieldInfo(FD, TySize - BitsLeft, BitFieldSize);
- Cursor += BitFieldSize;
- } else {
- // Place the bitfield in a new LLVM field.
- // This is : struct { char a; short CurrentField:10;};
- // where 'CurrentField' needs a new llvm field.
- CGT.addFieldInfo(FD, Idx + 1);
- CGT.addBitFieldInfo(FD, 0, BitFieldSize);
- Cursor = (Idx + 1) * TySize + BitFieldSize;
- }
- if (Cursor > llvmSize)
- addPaddingFields(Cursor);
- }
|