1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012 |
- //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines ExprEngine's support for C expressions.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/AST/ExprCXX.h"
- #include "clang/StaticAnalyzer/Core/CheckerManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
- using namespace clang;
- using namespace ento;
- using llvm::APSInt;
- void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- Expr *LHS = B->getLHS()->IgnoreParens();
- Expr *RHS = B->getRHS()->IgnoreParens();
- // FIXME: Prechecks eventually go in ::Visit().
- ExplodedNodeSet CheckedSet;
- ExplodedNodeSet Tmp2;
- getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
- // With both the LHS and RHS evaluated, process the operation itself.
- for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
- it != ei; ++it) {
- ProgramStateRef state = (*it)->getState();
- const LocationContext *LCtx = (*it)->getLocationContext();
- SVal LeftV = state->getSVal(LHS, LCtx);
- SVal RightV = state->getSVal(RHS, LCtx);
- BinaryOperator::Opcode Op = B->getOpcode();
- if (Op == BO_Assign) {
- // EXPERIMENTAL: "Conjured" symbols.
- // FIXME: Handle structs.
- if (RightV.isUnknown()) {
- unsigned Count = currBldrCtx->blockCount();
- RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
- Count);
- }
- // Simulate the effects of a "store": bind the value of the RHS
- // to the L-Value represented by the LHS.
- SVal ExprVal = B->isGLValue() ? LeftV : RightV;
- evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
- LeftV, RightV);
- continue;
- }
- if (!B->isAssignmentOp()) {
- StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
- if (B->isAdditiveOp()) {
- // If one of the operands is a location, conjure a symbol for the other
- // one (offset) if it's unknown so that memory arithmetic always
- // results in an ElementRegion.
- // TODO: This can be removed after we enable history tracking with
- // SymSymExpr.
- unsigned Count = currBldrCtx->blockCount();
- if (LeftV.getAs<Loc>() &&
- RHS->getType()->isIntegralOrEnumerationType() &&
- RightV.isUnknown()) {
- RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
- Count);
- }
- if (RightV.getAs<Loc>() &&
- LHS->getType()->isIntegralOrEnumerationType() &&
- LeftV.isUnknown()) {
- LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
- Count);
- }
- }
- // Although we don't yet model pointers-to-members, we do need to make
- // sure that the members of temporaries have a valid 'this' pointer for
- // other checks.
- if (B->getOpcode() == BO_PtrMemD)
- state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
- // Process non-assignments except commas or short-circuited
- // logical expressions (LAnd and LOr).
- SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
- if (Result.isUnknown()) {
- Bldr.generateNode(B, *it, state);
- continue;
- }
- state = state->BindExpr(B, LCtx, Result);
- Bldr.generateNode(B, *it, state);
- continue;
- }
- assert (B->isCompoundAssignmentOp());
- switch (Op) {
- default:
- llvm_unreachable("Invalid opcode for compound assignment.");
- case BO_MulAssign: Op = BO_Mul; break;
- case BO_DivAssign: Op = BO_Div; break;
- case BO_RemAssign: Op = BO_Rem; break;
- case BO_AddAssign: Op = BO_Add; break;
- case BO_SubAssign: Op = BO_Sub; break;
- case BO_ShlAssign: Op = BO_Shl; break;
- case BO_ShrAssign: Op = BO_Shr; break;
- case BO_AndAssign: Op = BO_And; break;
- case BO_XorAssign: Op = BO_Xor; break;
- case BO_OrAssign: Op = BO_Or; break;
- }
- // Perform a load (the LHS). This performs the checks for
- // null dereferences, and so on.
- ExplodedNodeSet Tmp;
- SVal location = LeftV;
- evalLoad(Tmp, B, LHS, *it, state, location);
- for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
- ++I) {
- state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- SVal V = state->getSVal(LHS, LCtx);
- // Get the computation type.
- QualType CTy =
- cast<CompoundAssignOperator>(B)->getComputationResultType();
- CTy = getContext().getCanonicalType(CTy);
- QualType CLHSTy =
- cast<CompoundAssignOperator>(B)->getComputationLHSType();
- CLHSTy = getContext().getCanonicalType(CLHSTy);
- QualType LTy = getContext().getCanonicalType(LHS->getType());
- // Promote LHS.
- V = svalBuilder.evalCast(V, CLHSTy, LTy);
- // Compute the result of the operation.
- SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
- B->getType(), CTy);
- // EXPERIMENTAL: "Conjured" symbols.
- // FIXME: Handle structs.
- SVal LHSVal;
- if (Result.isUnknown()) {
- // The symbolic value is actually for the type of the left-hand side
- // expression, not the computation type, as this is the value the
- // LValue on the LHS will bind to.
- LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
- currBldrCtx->blockCount());
- // However, we need to convert the symbol to the computation type.
- Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
- }
- else {
- // The left-hand side may bind to a different value then the
- // computation type.
- LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
- }
- // In C++, assignment and compound assignment operators return an
- // lvalue.
- if (B->isGLValue())
- state = state->BindExpr(B, LCtx, location);
- else
- state = state->BindExpr(B, LCtx, Result);
- evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
- }
- }
- // FIXME: postvisits eventually go in ::Visit()
- getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
- }
- void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- CanQualType T = getContext().getCanonicalType(BE->getType());
- const BlockDecl *BD = BE->getBlockDecl();
- // Get the value of the block itself.
- SVal V = svalBuilder.getBlockPointer(BD, T,
- Pred->getLocationContext(),
- currBldrCtx->blockCount());
- ProgramStateRef State = Pred->getState();
- // If we created a new MemRegion for the block, we should explicitly bind
- // the captured variables.
- if (const BlockDataRegion *BDR =
- dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
- BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
- E = BDR->referenced_vars_end();
- auto CI = BD->capture_begin();
- auto CE = BD->capture_end();
- for (; I != E; ++I) {
- const VarRegion *capturedR = I.getCapturedRegion();
- const VarRegion *originalR = I.getOriginalRegion();
- // If the capture had a copy expression, use the result of evaluating
- // that expression, otherwise use the original value.
- // We rely on the invariant that the block declaration's capture variables
- // are a prefix of the BlockDataRegion's referenced vars (which may include
- // referenced globals, etc.) to enable fast lookup of the capture for a
- // given referenced var.
- const Expr *copyExpr = nullptr;
- if (CI != CE) {
- assert(CI->getVariable() == capturedR->getDecl());
- copyExpr = CI->getCopyExpr();
- CI++;
- }
- if (capturedR != originalR) {
- SVal originalV;
- if (copyExpr) {
- originalV = State->getSVal(copyExpr, Pred->getLocationContext());
- } else {
- originalV = State->getSVal(loc::MemRegionVal(originalR));
- }
- State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
- }
- }
- }
- ExplodedNodeSet Tmp;
- StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
- Bldr.generateNode(BE, Pred,
- State->BindExpr(BE, Pred->getLocationContext(), V),
- nullptr, ProgramPoint::PostLValueKind);
- // FIXME: Move all post/pre visits to ::Visit().
- getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
- }
- void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
- ExplodedNode *Pred, ExplodedNodeSet &Dst) {
- ExplodedNodeSet dstPreStmt;
- getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
- if (CastE->getCastKind() == CK_LValueToRValue) {
- for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
- I!=E; ++I) {
- ExplodedNode *subExprNode = *I;
- ProgramStateRef state = subExprNode->getState();
- const LocationContext *LCtx = subExprNode->getLocationContext();
- evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
- }
- return;
- }
- // All other casts.
- QualType T = CastE->getType();
- QualType ExTy = Ex->getType();
- if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
- T = ExCast->getTypeAsWritten();
- StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
- for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
- I != E; ++I) {
- Pred = *I;
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- switch (CastE->getCastKind()) {
- case CK_LValueToRValue:
- llvm_unreachable("LValueToRValue casts handled earlier.");
- case CK_ToVoid:
- continue;
- // The analyzer doesn't do anything special with these casts,
- // since it understands retain/release semantics already.
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject: // Fall-through.
- case CK_CopyAndAutoreleaseBlockObject:
- // The analyser can ignore atomic casts for now, although some future
- // checkers may want to make certain that you're not modifying the same
- // value through atomic and nonatomic pointers.
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- // True no-ops.
- case CK_NoOp:
- case CK_ConstructorConversion:
- case CK_UserDefinedConversion:
- case CK_FunctionToPointerDecay:
- case CK_BuiltinFnToFnPtr: {
- // Copy the SVal of Ex to CastE.
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- SVal V = state->getSVal(Ex, LCtx);
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_MemberPointerToBoolean:
- // FIXME: For now, member pointers are represented by void *.
- // FALLTHROUGH
- case CK_Dependent:
- case CK_ArrayToPointerDecay:
- case CK_BitCast:
- case CK_AddressSpaceConversion:
- case CK_BooleanToSignedIntegral:
- case CK_NullToPointer:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral:
- case CK_PointerToBoolean:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_ZeroToOCLEvent:
- case CK_LValueBitCast: {
- // Delegate to SValBuilder to process.
- SVal V = state->getSVal(Ex, LCtx);
- V = svalBuilder.evalCast(V, T, ExTy);
- // Negate the result if we're treating the boolean as a signed i1
- if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
- V = evalMinus(V);
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_IntegralCast: {
- // Delegate to SValBuilder to process.
- SVal V = state->getSVal(Ex, LCtx);
- V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase: {
- // For DerivedToBase cast, delegate to the store manager.
- SVal val = state->getSVal(Ex, LCtx);
- val = getStoreManager().evalDerivedToBase(val, CastE);
- state = state->BindExpr(CastE, LCtx, val);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- // Handle C++ dyn_cast.
- case CK_Dynamic: {
- SVal val = state->getSVal(Ex, LCtx);
- // Compute the type of the result.
- QualType resultType = CastE->getType();
- if (CastE->isGLValue())
- resultType = getContext().getPointerType(resultType);
- bool Failed = false;
- // Check if the value being cast evaluates to 0.
- if (val.isZeroConstant())
- Failed = true;
- // Else, evaluate the cast.
- else
- val = getStoreManager().evalDynamicCast(val, T, Failed);
- if (Failed) {
- if (T->isReferenceType()) {
- // A bad_cast exception is thrown if input value is a reference.
- // Currently, we model this, by generating a sink.
- Bldr.generateSink(CastE, Pred, state);
- continue;
- } else {
- // If the cast fails on a pointer, bind to 0.
- state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
- }
- } else {
- // If we don't know if the cast succeeded, conjure a new symbol.
- if (val.isUnknown()) {
- DefinedOrUnknownSVal NewSym =
- svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
- currBldrCtx->blockCount());
- state = state->BindExpr(CastE, LCtx, NewSym);
- } else
- // Else, bind to the derived region value.
- state = state->BindExpr(CastE, LCtx, val);
- }
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_NullToMemberPointer: {
- // FIXME: For now, member pointers are represented by void *.
- SVal V = svalBuilder.makeNull();
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- // Various C++ casts that are not handled yet.
- case CK_ToUnion:
- case CK_BaseToDerived:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_ReinterpretMemberPointer:
- case CK_VectorSplat: {
- // Recover some path-sensitivty by conjuring a new value.
- QualType resultType = CastE->getType();
- if (CastE->isGLValue())
- resultType = getContext().getPointerType(resultType);
- SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
- resultType,
- currBldrCtx->blockCount());
- state = state->BindExpr(CastE, LCtx, result);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- }
- }
- }
- void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- ProgramStateRef State = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- const Expr *Init = CL->getInitializer();
- SVal V = State->getSVal(CL->getInitializer(), LCtx);
- if (isa<CXXConstructExpr>(Init)) {
- // No work needed. Just pass the value up to this expression.
- } else {
- assert(isa<InitListExpr>(Init));
- Loc CLLoc = State->getLValue(CL, LCtx);
- State = State->bindLoc(CLLoc, V);
- // Compound literal expressions are a GNU extension in C++.
- // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
- // and like temporary objects created by the functional notation T()
- // CLs are destroyed at the end of the containing full-expression.
- // HOWEVER, an rvalue of array type is not something the analyzer can
- // reason about, since we expect all regions to be wrapped in Locs.
- // So we treat array CLs as lvalues as well, knowing that they will decay
- // to pointers as soon as they are used.
- if (CL->isGLValue() || CL->getType()->isArrayType())
- V = CLLoc;
- }
- B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
- }
- void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // Assumption: The CFG has one DeclStmt per Decl.
- const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
- if (!VD) {
- //TODO:AZ: remove explicit insertion after refactoring is done.
- Dst.insert(Pred);
- return;
- }
- // FIXME: all pre/post visits should eventually be handled by ::Visit().
- ExplodedNodeSet dstPreVisit;
- getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
- ExplodedNodeSet dstEvaluated;
- StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
- for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
- I!=E; ++I) {
- ExplodedNode *N = *I;
- ProgramStateRef state = N->getState();
- const LocationContext *LC = N->getLocationContext();
- // Decls without InitExpr are not initialized explicitly.
- if (const Expr *InitEx = VD->getInit()) {
- // Note in the state that the initialization has occurred.
- ExplodedNode *UpdatedN = N;
- SVal InitVal = state->getSVal(InitEx, LC);
- assert(DS->isSingleDecl());
- if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) {
- assert(InitEx->IgnoreImplicit() == CtorExpr);
- (void)CtorExpr;
- // We constructed the object directly in the variable.
- // No need to bind anything.
- B.generateNode(DS, UpdatedN, state);
- } else {
- // We bound the temp obj region to the CXXConstructExpr. Now recover
- // the lazy compound value when the variable is not a reference.
- if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
- !VD->getType()->isReferenceType()) {
- if (Optional<loc::MemRegionVal> M =
- InitVal.getAs<loc::MemRegionVal>()) {
- InitVal = state->getSVal(M->getRegion());
- assert(InitVal.getAs<nonloc::LazyCompoundVal>());
- }
- }
- // Recover some path-sensitivity if a scalar value evaluated to
- // UnknownVal.
- if (InitVal.isUnknown()) {
- QualType Ty = InitEx->getType();
- if (InitEx->isGLValue()) {
- Ty = getContext().getPointerType(Ty);
- }
- InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
- currBldrCtx->blockCount());
- }
- B.takeNodes(UpdatedN);
- ExplodedNodeSet Dst2;
- evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
- B.addNodes(Dst2);
- }
- }
- else {
- B.generateNode(DS, N, state);
- }
- }
- getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
- }
- void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- assert(B->getOpcode() == BO_LAnd ||
- B->getOpcode() == BO_LOr);
- StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
- ProgramStateRef state = Pred->getState();
- ExplodedNode *N = Pred;
- while (!N->getLocation().getAs<BlockEntrance>()) {
- ProgramPoint P = N->getLocation();
- assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
- (void) P;
- assert(N->pred_size() == 1);
- N = *N->pred_begin();
- }
- assert(N->pred_size() == 1);
- N = *N->pred_begin();
- BlockEdge BE = N->getLocation().castAs<BlockEdge>();
- SVal X;
- // Determine the value of the expression by introspecting how we
- // got this location in the CFG. This requires looking at the previous
- // block we were in and what kind of control-flow transfer was involved.
- const CFGBlock *SrcBlock = BE.getSrc();
- // The only terminator (if there is one) that makes sense is a logical op.
- CFGTerminator T = SrcBlock->getTerminator();
- if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
- (void) Term;
- assert(Term->isLogicalOp());
- assert(SrcBlock->succ_size() == 2);
- // Did we take the true or false branch?
- unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
- X = svalBuilder.makeIntVal(constant, B->getType());
- }
- else {
- // If there is no terminator, by construction the last statement
- // in SrcBlock is the value of the enclosing expression.
- // However, we still need to constrain that value to be 0 or 1.
- assert(!SrcBlock->empty());
- CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
- const Expr *RHS = cast<Expr>(Elem.getStmt());
- SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
- if (RHSVal.isUndef()) {
- X = RHSVal;
- } else {
- DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
- ProgramStateRef StTrue, StFalse;
- std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
- if (StTrue) {
- if (StFalse) {
- // We can't constrain the value to 0 or 1.
- // The best we can do is a cast.
- X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
- } else {
- // The value is known to be true.
- X = getSValBuilder().makeIntVal(1, B->getType());
- }
- } else {
- // The value is known to be false.
- assert(StFalse && "Infeasible path!");
- X = getSValBuilder().makeIntVal(0, B->getType());
- }
- }
- }
- Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
- }
- void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- QualType T = getContext().getCanonicalType(IE->getType());
- unsigned NumInitElements = IE->getNumInits();
- if (!IE->isGLValue() &&
- (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
- T->isAnyComplexType())) {
- llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
- // Handle base case where the initializer has no elements.
- // e.g: static int* myArray[] = {};
- if (NumInitElements == 0) {
- SVal V = svalBuilder.makeCompoundVal(T, vals);
- B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
- return;
- }
- for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
- ei = IE->rend(); it != ei; ++it) {
- SVal V = state->getSVal(cast<Expr>(*it), LCtx);
- vals = getBasicVals().consVals(V, vals);
- }
- B.generateNode(IE, Pred,
- state->BindExpr(IE, LCtx,
- svalBuilder.makeCompoundVal(T, vals)));
- return;
- }
- // Handle scalars: int{5} and int{} and GLvalues.
- // Note, if the InitListExpr is a GLvalue, it means that there is an address
- // representing it, so it must have a single init element.
- assert(NumInitElements <= 1);
- SVal V;
- if (NumInitElements == 0)
- V = getSValBuilder().makeZeroVal(T);
- else
- V = state->getSVal(IE->getInit(0), LCtx);
- B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
- }
- void ExprEngine::VisitGuardedExpr(const Expr *Ex,
- const Expr *L,
- const Expr *R,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- assert(L && R);
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- const CFGBlock *SrcBlock = nullptr;
- // Find the predecessor block.
- ProgramStateRef SrcState = state;
- for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
- ProgramPoint PP = N->getLocation();
- if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
- assert(N->pred_size() == 1);
- continue;
- }
- SrcBlock = PP.castAs<BlockEdge>().getSrc();
- SrcState = N->getState();
- break;
- }
- assert(SrcBlock && "missing function entry");
- // Find the last expression in the predecessor block. That is the
- // expression that is used for the value of the ternary expression.
- bool hasValue = false;
- SVal V;
- for (CFGElement CE : llvm::reverse(*SrcBlock)) {
- if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
- const Expr *ValEx = cast<Expr>(CS->getStmt());
- ValEx = ValEx->IgnoreParens();
- // For GNU extension '?:' operator, the left hand side will be an
- // OpaqueValueExpr, so get the underlying expression.
- if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
- L = OpaqueEx->getSourceExpr();
- // If the last expression in the predecessor block matches true or false
- // subexpression, get its the value.
- if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
- hasValue = true;
- V = SrcState->getSVal(ValEx, LCtx);
- }
- break;
- }
- }
- if (!hasValue)
- V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
- currBldrCtx->blockCount());
- // Generate a new node with the binding from the appropriate path.
- B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
- }
- void ExprEngine::
- VisitOffsetOfExpr(const OffsetOfExpr *OOE,
- ExplodedNode *Pred, ExplodedNodeSet &Dst) {
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- APSInt IV;
- if (OOE->EvaluateAsInt(IV, getContext())) {
- assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
- assert(OOE->getType()->isBuiltinType());
- assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
- assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
- SVal X = svalBuilder.makeIntVal(IV);
- B.generateNode(OOE, Pred,
- Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
- X));
- }
- // FIXME: Handle the case where __builtin_offsetof is not a constant.
- }
- void ExprEngine::
- VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // FIXME: Prechecks eventually go in ::Visit().
- ExplodedNodeSet CheckedSet;
- getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
- ExplodedNodeSet EvalSet;
- StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
- QualType T = Ex->getTypeOfArgument();
- for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
- I != E; ++I) {
- if (Ex->getKind() == UETT_SizeOf) {
- if (!T->isIncompleteType() && !T->isConstantSizeType()) {
- assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
- // FIXME: Add support for VLA type arguments and VLA expressions.
- // When that happens, we should probably refactor VLASizeChecker's code.
- continue;
- } else if (T->getAs<ObjCObjectType>()) {
- // Some code tries to take the sizeof an ObjCObjectType, relying that
- // the compiler has laid out its representation. Just report Unknown
- // for these.
- continue;
- }
- }
- APSInt Value = Ex->EvaluateKnownConstInt(getContext());
- CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
- ProgramStateRef state = (*I)->getState();
- state = state->BindExpr(Ex, (*I)->getLocationContext(),
- svalBuilder.makeIntVal(amt.getQuantity(),
- Ex->getType()));
- Bldr.generateNode(Ex, *I, state);
- }
- getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
- }
- void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // FIXME: Prechecks eventually go in ::Visit().
- ExplodedNodeSet CheckedSet;
- getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
- ExplodedNodeSet EvalSet;
- StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
- for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
- I != E; ++I) {
- switch (U->getOpcode()) {
- default: {
- Bldr.takeNodes(*I);
- ExplodedNodeSet Tmp;
- VisitIncrementDecrementOperator(U, *I, Tmp);
- Bldr.addNodes(Tmp);
- break;
- }
- case UO_Real: {
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- // FIXME: We don't have complex SValues yet.
- if (Ex->getType()->isAnyComplexType()) {
- // Just report "Unknown."
- break;
- }
- // For all other types, UO_Real is an identity operation.
- assert (U->getType() == Ex->getType());
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
- state->getSVal(Ex, LCtx)));
- break;
- }
- case UO_Imag: {
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- // FIXME: We don't have complex SValues yet.
- if (Ex->getType()->isAnyComplexType()) {
- // Just report "Unknown."
- break;
- }
- // For all other types, UO_Imag returns 0.
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- SVal X = svalBuilder.makeZeroVal(Ex->getType());
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
- break;
- }
- case UO_Plus:
- assert(!U->isGLValue());
- // FALL-THROUGH.
- case UO_Deref:
- case UO_AddrOf:
- case UO_Extension: {
- // FIXME: We can probably just have some magic in Environment::getSVal()
- // that propagates values, instead of creating a new node here.
- //
- // Unary "+" is a no-op, similar to a parentheses. We still have places
- // where it may be a block-level expression, so we need to
- // generate an extra node that just propagates the value of the
- // subexpression.
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
- state->getSVal(Ex, LCtx)));
- break;
- }
- case UO_LNot:
- case UO_Minus:
- case UO_Not: {
- assert (!U->isGLValue());
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- // Get the value of the subexpression.
- SVal V = state->getSVal(Ex, LCtx);
- if (V.isUnknownOrUndef()) {
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
- break;
- }
- switch (U->getOpcode()) {
- default:
- llvm_unreachable("Invalid Opcode.");
- case UO_Not:
- // FIXME: Do we need to handle promotions?
- state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
- break;
- case UO_Minus:
- // FIXME: Do we need to handle promotions?
- state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
- break;
- case UO_LNot:
- // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
- //
- // Note: technically we do "E == 0", but this is the same in the
- // transfer functions as "0 == E".
- SVal Result;
- if (Optional<Loc> LV = V.getAs<Loc>()) {
- Loc X = svalBuilder.makeNull();
- Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
- }
- else if (Ex->getType()->isFloatingType()) {
- // FIXME: handle floating point types.
- Result = UnknownVal();
- } else {
- nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
- Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
- U->getType());
- }
- state = state->BindExpr(U, LCtx, Result);
- break;
- }
- Bldr.generateNode(U, *I, state);
- break;
- }
- }
- }
- getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
- }
- void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // Handle ++ and -- (both pre- and post-increment).
- assert (U->isIncrementDecrementOp());
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- const LocationContext *LCtx = Pred->getLocationContext();
- ProgramStateRef state = Pred->getState();
- SVal loc = state->getSVal(Ex, LCtx);
- // Perform a load.
- ExplodedNodeSet Tmp;
- evalLoad(Tmp, U, Ex, Pred, state, loc);
- ExplodedNodeSet Dst2;
- StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
- for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
- state = (*I)->getState();
- assert(LCtx == (*I)->getLocationContext());
- SVal V2_untested = state->getSVal(Ex, LCtx);
- // Propagate unknown and undefined values.
- if (V2_untested.isUnknownOrUndef()) {
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
- continue;
- }
- DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
- // Handle all other values.
- BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
- // If the UnaryOperator has non-location type, use its type to create the
- // constant value. If the UnaryOperator has location type, create the
- // constant with int type and pointer width.
- SVal RHS;
- if (U->getType()->isAnyPointerType())
- RHS = svalBuilder.makeArrayIndex(1);
- else if (U->getType()->isIntegralOrEnumerationType())
- RHS = svalBuilder.makeIntVal(1, U->getType());
- else
- RHS = UnknownVal();
- SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
- // Conjure a new symbol if necessary to recover precision.
- if (Result.isUnknown()){
- DefinedOrUnknownSVal SymVal =
- svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
- currBldrCtx->blockCount());
- Result = SymVal;
- // If the value is a location, ++/-- should always preserve
- // non-nullness. Check if the original value was non-null, and if so
- // propagate that constraint.
- if (Loc::isLocType(U->getType())) {
- DefinedOrUnknownSVal Constraint =
- svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
- if (!state->assume(Constraint, true)) {
- // It isn't feasible for the original value to be null.
- // Propagate this constraint.
- Constraint = svalBuilder.evalEQ(state, SymVal,
- svalBuilder.makeZeroVal(U->getType()));
- state = state->assume(Constraint, false);
- assert(state);
- }
- }
- }
- // Since the lvalue-to-rvalue conversion is explicit in the AST,
- // we bind an l-value if the operator is prefix and an lvalue (in C++).
- if (U->isGLValue())
- state = state->BindExpr(U, LCtx, loc);
- else
- state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
- // Perform the store.
- Bldr.takeNodes(*I);
- ExplodedNodeSet Dst3;
- evalStore(Dst3, U, U, *I, state, loc, Result);
- Bldr.addNodes(Dst3);
- }
- Dst.insert(Dst2);
- }
|