CGExpr.cpp 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922
  1. //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This contains code to emit Expr nodes as LLVM code.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "CGCXXABI.h"
  13. #include "CGCall.h"
  14. #include "CGCleanup.h"
  15. #include "CGDebugInfo.h"
  16. #include "CGObjCRuntime.h"
  17. #include "CGOpenMPRuntime.h"
  18. #include "CGRecordLayout.h"
  19. #include "CodeGenFunction.h"
  20. #include "CodeGenModule.h"
  21. #include "ConstantEmitter.h"
  22. #include "TargetInfo.h"
  23. #include "clang/AST/ASTContext.h"
  24. #include "clang/AST/Attr.h"
  25. #include "clang/AST/DeclObjC.h"
  26. #include "clang/AST/NSAPI.h"
  27. #include "clang/Basic/CodeGenOptions.h"
  28. #include "llvm/ADT/Hashing.h"
  29. #include "llvm/ADT/StringExtras.h"
  30. #include "llvm/IR/DataLayout.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/LLVMContext.h"
  33. #include "llvm/IR/MDBuilder.h"
  34. #include "llvm/Support/ConvertUTF.h"
  35. #include "llvm/Support/MathExtras.h"
  36. #include "llvm/Support/Path.h"
  37. #include "llvm/Transforms/Utils/SanitizerStats.h"
  38. #include <string>
  39. using namespace clang;
  40. using namespace CodeGen;
  41. //===--------------------------------------------------------------------===//
  42. // Miscellaneous Helper Methods
  43. //===--------------------------------------------------------------------===//
  44. llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
  45. unsigned addressSpace =
  46. cast<llvm::PointerType>(value->getType())->getAddressSpace();
  47. llvm::PointerType *destType = Int8PtrTy;
  48. if (addressSpace)
  49. destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
  50. if (value->getType() == destType) return value;
  51. return Builder.CreateBitCast(value, destType);
  52. }
  53. /// CreateTempAlloca - This creates a alloca and inserts it into the entry
  54. /// block.
  55. Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
  56. CharUnits Align,
  57. const Twine &Name,
  58. llvm::Value *ArraySize) {
  59. auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
  60. Alloca->setAlignment(Align.getQuantity());
  61. return Address(Alloca, Align);
  62. }
  63. /// CreateTempAlloca - This creates a alloca and inserts it into the entry
  64. /// block. The alloca is casted to default address space if necessary.
  65. Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
  66. const Twine &Name,
  67. llvm::Value *ArraySize,
  68. Address *AllocaAddr) {
  69. auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
  70. if (AllocaAddr)
  71. *AllocaAddr = Alloca;
  72. llvm::Value *V = Alloca.getPointer();
  73. // Alloca always returns a pointer in alloca address space, which may
  74. // be different from the type defined by the language. For example,
  75. // in C++ the auto variables are in the default address space. Therefore
  76. // cast alloca to the default address space when necessary.
  77. if (getASTAllocaAddressSpace() != LangAS::Default) {
  78. auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
  79. llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
  80. // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
  81. // otherwise alloca is inserted at the current insertion point of the
  82. // builder.
  83. if (!ArraySize)
  84. Builder.SetInsertPoint(AllocaInsertPt);
  85. V = getTargetHooks().performAddrSpaceCast(
  86. *this, V, getASTAllocaAddressSpace(), LangAS::Default,
  87. Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
  88. }
  89. return Address(V, Align);
  90. }
  91. /// CreateTempAlloca - This creates an alloca and inserts it into the entry
  92. /// block if \p ArraySize is nullptr, otherwise inserts it at the current
  93. /// insertion point of the builder.
  94. llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
  95. const Twine &Name,
  96. llvm::Value *ArraySize) {
  97. if (ArraySize)
  98. return Builder.CreateAlloca(Ty, ArraySize, Name);
  99. return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
  100. ArraySize, Name, AllocaInsertPt);
  101. }
  102. /// CreateDefaultAlignTempAlloca - This creates an alloca with the
  103. /// default alignment of the corresponding LLVM type, which is *not*
  104. /// guaranteed to be related in any way to the expected alignment of
  105. /// an AST type that might have been lowered to Ty.
  106. Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
  107. const Twine &Name) {
  108. CharUnits Align =
  109. CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
  110. return CreateTempAlloca(Ty, Align, Name);
  111. }
  112. void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
  113. assert(isa<llvm::AllocaInst>(Var.getPointer()));
  114. auto *Store = new llvm::StoreInst(Init, Var.getPointer());
  115. Store->setAlignment(Var.getAlignment().getQuantity());
  116. llvm::BasicBlock *Block = AllocaInsertPt->getParent();
  117. Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
  118. }
  119. Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
  120. CharUnits Align = getContext().getTypeAlignInChars(Ty);
  121. return CreateTempAlloca(ConvertType(Ty), Align, Name);
  122. }
  123. Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
  124. Address *Alloca) {
  125. // FIXME: Should we prefer the preferred type alignment here?
  126. return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
  127. }
  128. Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
  129. const Twine &Name, Address *Alloca) {
  130. return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
  131. /*ArraySize=*/nullptr, Alloca);
  132. }
  133. Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
  134. const Twine &Name) {
  135. return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
  136. }
  137. Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
  138. const Twine &Name) {
  139. return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
  140. Name);
  141. }
  142. /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
  143. /// expression and compare the result against zero, returning an Int1Ty value.
  144. llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
  145. PGO.setCurrentStmt(E);
  146. if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
  147. llvm::Value *MemPtr = EmitScalarExpr(E);
  148. return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
  149. }
  150. QualType BoolTy = getContext().BoolTy;
  151. SourceLocation Loc = E->getExprLoc();
  152. if (!E->getType()->isAnyComplexType())
  153. return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
  154. return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
  155. Loc);
  156. }
  157. /// EmitIgnoredExpr - Emit code to compute the specified expression,
  158. /// ignoring the result.
  159. void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
  160. if (E->isRValue())
  161. return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
  162. // Just emit it as an l-value and drop the result.
  163. EmitLValue(E);
  164. }
  165. /// EmitAnyExpr - Emit code to compute the specified expression which
  166. /// can have any type. The result is returned as an RValue struct.
  167. /// If this is an aggregate expression, AggSlot indicates where the
  168. /// result should be returned.
  169. RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
  170. AggValueSlot aggSlot,
  171. bool ignoreResult) {
  172. switch (getEvaluationKind(E->getType())) {
  173. case TEK_Scalar:
  174. return RValue::get(EmitScalarExpr(E, ignoreResult));
  175. case TEK_Complex:
  176. return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
  177. case TEK_Aggregate:
  178. if (!ignoreResult && aggSlot.isIgnored())
  179. aggSlot = CreateAggTemp(E->getType(), "agg-temp");
  180. EmitAggExpr(E, aggSlot);
  181. return aggSlot.asRValue();
  182. }
  183. llvm_unreachable("bad evaluation kind");
  184. }
  185. /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
  186. /// always be accessible even if no aggregate location is provided.
  187. RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
  188. AggValueSlot AggSlot = AggValueSlot::ignored();
  189. if (hasAggregateEvaluationKind(E->getType()))
  190. AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
  191. return EmitAnyExpr(E, AggSlot);
  192. }
  193. /// EmitAnyExprToMem - Evaluate an expression into a given memory
  194. /// location.
  195. void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
  196. Address Location,
  197. Qualifiers Quals,
  198. bool IsInit) {
  199. // FIXME: This function should take an LValue as an argument.
  200. switch (getEvaluationKind(E->getType())) {
  201. case TEK_Complex:
  202. EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
  203. /*isInit*/ false);
  204. return;
  205. case TEK_Aggregate: {
  206. EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
  207. AggValueSlot::IsDestructed_t(IsInit),
  208. AggValueSlot::DoesNotNeedGCBarriers,
  209. AggValueSlot::IsAliased_t(!IsInit),
  210. AggValueSlot::MayOverlap));
  211. return;
  212. }
  213. case TEK_Scalar: {
  214. RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
  215. LValue LV = MakeAddrLValue(Location, E->getType());
  216. EmitStoreThroughLValue(RV, LV);
  217. return;
  218. }
  219. }
  220. llvm_unreachable("bad evaluation kind");
  221. }
  222. static void
  223. pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
  224. const Expr *E, Address ReferenceTemporary) {
  225. // Objective-C++ ARC:
  226. // If we are binding a reference to a temporary that has ownership, we
  227. // need to perform retain/release operations on the temporary.
  228. //
  229. // FIXME: This should be looking at E, not M.
  230. if (auto Lifetime = M->getType().getObjCLifetime()) {
  231. switch (Lifetime) {
  232. case Qualifiers::OCL_None:
  233. case Qualifiers::OCL_ExplicitNone:
  234. // Carry on to normal cleanup handling.
  235. break;
  236. case Qualifiers::OCL_Autoreleasing:
  237. // Nothing to do; cleaned up by an autorelease pool.
  238. return;
  239. case Qualifiers::OCL_Strong:
  240. case Qualifiers::OCL_Weak:
  241. switch (StorageDuration Duration = M->getStorageDuration()) {
  242. case SD_Static:
  243. // Note: we intentionally do not register a cleanup to release
  244. // the object on program termination.
  245. return;
  246. case SD_Thread:
  247. // FIXME: We should probably register a cleanup in this case.
  248. return;
  249. case SD_Automatic:
  250. case SD_FullExpression:
  251. CodeGenFunction::Destroyer *Destroy;
  252. CleanupKind CleanupKind;
  253. if (Lifetime == Qualifiers::OCL_Strong) {
  254. const ValueDecl *VD = M->getExtendingDecl();
  255. bool Precise =
  256. VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
  257. CleanupKind = CGF.getARCCleanupKind();
  258. Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
  259. : &CodeGenFunction::destroyARCStrongImprecise;
  260. } else {
  261. // __weak objects always get EH cleanups; otherwise, exceptions
  262. // could cause really nasty crashes instead of mere leaks.
  263. CleanupKind = NormalAndEHCleanup;
  264. Destroy = &CodeGenFunction::destroyARCWeak;
  265. }
  266. if (Duration == SD_FullExpression)
  267. CGF.pushDestroy(CleanupKind, ReferenceTemporary,
  268. M->getType(), *Destroy,
  269. CleanupKind & EHCleanup);
  270. else
  271. CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
  272. M->getType(),
  273. *Destroy, CleanupKind & EHCleanup);
  274. return;
  275. case SD_Dynamic:
  276. llvm_unreachable("temporary cannot have dynamic storage duration");
  277. }
  278. llvm_unreachable("unknown storage duration");
  279. }
  280. }
  281. CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
  282. if (const RecordType *RT =
  283. E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
  284. // Get the destructor for the reference temporary.
  285. auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
  286. if (!ClassDecl->hasTrivialDestructor())
  287. ReferenceTemporaryDtor = ClassDecl->getDestructor();
  288. }
  289. if (!ReferenceTemporaryDtor)
  290. return;
  291. // Call the destructor for the temporary.
  292. switch (M->getStorageDuration()) {
  293. case SD_Static:
  294. case SD_Thread: {
  295. llvm::FunctionCallee CleanupFn;
  296. llvm::Constant *CleanupArg;
  297. if (E->getType()->isArrayType()) {
  298. CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
  299. ReferenceTemporary, E->getType(),
  300. CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
  301. dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
  302. CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
  303. } else {
  304. CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(ReferenceTemporaryDtor,
  305. StructorType::Complete);
  306. CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
  307. }
  308. CGF.CGM.getCXXABI().registerGlobalDtor(
  309. CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
  310. break;
  311. }
  312. case SD_FullExpression:
  313. CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
  314. CodeGenFunction::destroyCXXObject,
  315. CGF.getLangOpts().Exceptions);
  316. break;
  317. case SD_Automatic:
  318. CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
  319. ReferenceTemporary, E->getType(),
  320. CodeGenFunction::destroyCXXObject,
  321. CGF.getLangOpts().Exceptions);
  322. break;
  323. case SD_Dynamic:
  324. llvm_unreachable("temporary cannot have dynamic storage duration");
  325. }
  326. }
  327. static Address createReferenceTemporary(CodeGenFunction &CGF,
  328. const MaterializeTemporaryExpr *M,
  329. const Expr *Inner,
  330. Address *Alloca = nullptr) {
  331. auto &TCG = CGF.getTargetHooks();
  332. switch (M->getStorageDuration()) {
  333. case SD_FullExpression:
  334. case SD_Automatic: {
  335. // If we have a constant temporary array or record try to promote it into a
  336. // constant global under the same rules a normal constant would've been
  337. // promoted. This is easier on the optimizer and generally emits fewer
  338. // instructions.
  339. QualType Ty = Inner->getType();
  340. if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
  341. (Ty->isArrayType() || Ty->isRecordType()) &&
  342. CGF.CGM.isTypeConstant(Ty, true))
  343. if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
  344. if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
  345. auto AS = AddrSpace.getValue();
  346. auto *GV = new llvm::GlobalVariable(
  347. CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
  348. llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
  349. llvm::GlobalValue::NotThreadLocal,
  350. CGF.getContext().getTargetAddressSpace(AS));
  351. CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
  352. GV->setAlignment(alignment.getQuantity());
  353. llvm::Constant *C = GV;
  354. if (AS != LangAS::Default)
  355. C = TCG.performAddrSpaceCast(
  356. CGF.CGM, GV, AS, LangAS::Default,
  357. GV->getValueType()->getPointerTo(
  358. CGF.getContext().getTargetAddressSpace(LangAS::Default)));
  359. // FIXME: Should we put the new global into a COMDAT?
  360. return Address(C, alignment);
  361. }
  362. }
  363. return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
  364. }
  365. case SD_Thread:
  366. case SD_Static:
  367. return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
  368. case SD_Dynamic:
  369. llvm_unreachable("temporary can't have dynamic storage duration");
  370. }
  371. llvm_unreachable("unknown storage duration");
  372. }
  373. LValue CodeGenFunction::
  374. EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
  375. const Expr *E = M->GetTemporaryExpr();
  376. assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
  377. !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
  378. "Reference should never be pseudo-strong!");
  379. // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
  380. // as that will cause the lifetime adjustment to be lost for ARC
  381. auto ownership = M->getType().getObjCLifetime();
  382. if (ownership != Qualifiers::OCL_None &&
  383. ownership != Qualifiers::OCL_ExplicitNone) {
  384. Address Object = createReferenceTemporary(*this, M, E);
  385. if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
  386. Object = Address(llvm::ConstantExpr::getBitCast(Var,
  387. ConvertTypeForMem(E->getType())
  388. ->getPointerTo(Object.getAddressSpace())),
  389. Object.getAlignment());
  390. // createReferenceTemporary will promote the temporary to a global with a
  391. // constant initializer if it can. It can only do this to a value of
  392. // ARC-manageable type if the value is global and therefore "immune" to
  393. // ref-counting operations. Therefore we have no need to emit either a
  394. // dynamic initialization or a cleanup and we can just return the address
  395. // of the temporary.
  396. if (Var->hasInitializer())
  397. return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
  398. Var->setInitializer(CGM.EmitNullConstant(E->getType()));
  399. }
  400. LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
  401. AlignmentSource::Decl);
  402. switch (getEvaluationKind(E->getType())) {
  403. default: llvm_unreachable("expected scalar or aggregate expression");
  404. case TEK_Scalar:
  405. EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
  406. break;
  407. case TEK_Aggregate: {
  408. EmitAggExpr(E, AggValueSlot::forAddr(Object,
  409. E->getType().getQualifiers(),
  410. AggValueSlot::IsDestructed,
  411. AggValueSlot::DoesNotNeedGCBarriers,
  412. AggValueSlot::IsNotAliased,
  413. AggValueSlot::DoesNotOverlap));
  414. break;
  415. }
  416. }
  417. pushTemporaryCleanup(*this, M, E, Object);
  418. return RefTempDst;
  419. }
  420. SmallVector<const Expr *, 2> CommaLHSs;
  421. SmallVector<SubobjectAdjustment, 2> Adjustments;
  422. E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
  423. for (const auto &Ignored : CommaLHSs)
  424. EmitIgnoredExpr(Ignored);
  425. if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
  426. if (opaque->getType()->isRecordType()) {
  427. assert(Adjustments.empty());
  428. return EmitOpaqueValueLValue(opaque);
  429. }
  430. }
  431. // Create and initialize the reference temporary.
  432. Address Alloca = Address::invalid();
  433. Address Object = createReferenceTemporary(*this, M, E, &Alloca);
  434. if (auto *Var = dyn_cast<llvm::GlobalVariable>(
  435. Object.getPointer()->stripPointerCasts())) {
  436. Object = Address(llvm::ConstantExpr::getBitCast(
  437. cast<llvm::Constant>(Object.getPointer()),
  438. ConvertTypeForMem(E->getType())->getPointerTo()),
  439. Object.getAlignment());
  440. // If the temporary is a global and has a constant initializer or is a
  441. // constant temporary that we promoted to a global, we may have already
  442. // initialized it.
  443. if (!Var->hasInitializer()) {
  444. Var->setInitializer(CGM.EmitNullConstant(E->getType()));
  445. EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
  446. }
  447. } else {
  448. switch (M->getStorageDuration()) {
  449. case SD_Automatic:
  450. if (auto *Size = EmitLifetimeStart(
  451. CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
  452. Alloca.getPointer())) {
  453. pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
  454. Alloca, Size);
  455. }
  456. break;
  457. case SD_FullExpression: {
  458. if (!ShouldEmitLifetimeMarkers)
  459. break;
  460. // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
  461. // marker. Instead, start the lifetime of a conditional temporary earlier
  462. // so that it's unconditional. Don't do this in ASan's use-after-scope
  463. // mode so that it gets the more precise lifetime marks. If the type has
  464. // a non-trivial destructor, we'll have a cleanup block for it anyway,
  465. // so this typically doesn't help; skip it in that case.
  466. ConditionalEvaluation *OldConditional = nullptr;
  467. CGBuilderTy::InsertPoint OldIP;
  468. if (isInConditionalBranch() && !E->getType().isDestructedType() &&
  469. !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
  470. OldConditional = OutermostConditional;
  471. OutermostConditional = nullptr;
  472. OldIP = Builder.saveIP();
  473. llvm::BasicBlock *Block = OldConditional->getStartingBlock();
  474. Builder.restoreIP(CGBuilderTy::InsertPoint(
  475. Block, llvm::BasicBlock::iterator(Block->back())));
  476. }
  477. if (auto *Size = EmitLifetimeStart(
  478. CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
  479. Alloca.getPointer())) {
  480. pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
  481. Size);
  482. }
  483. if (OldConditional) {
  484. OutermostConditional = OldConditional;
  485. Builder.restoreIP(OldIP);
  486. }
  487. break;
  488. }
  489. default:
  490. break;
  491. }
  492. EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
  493. }
  494. pushTemporaryCleanup(*this, M, E, Object);
  495. // Perform derived-to-base casts and/or field accesses, to get from the
  496. // temporary object we created (and, potentially, for which we extended
  497. // the lifetime) to the subobject we're binding the reference to.
  498. for (unsigned I = Adjustments.size(); I != 0; --I) {
  499. SubobjectAdjustment &Adjustment = Adjustments[I-1];
  500. switch (Adjustment.Kind) {
  501. case SubobjectAdjustment::DerivedToBaseAdjustment:
  502. Object =
  503. GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
  504. Adjustment.DerivedToBase.BasePath->path_begin(),
  505. Adjustment.DerivedToBase.BasePath->path_end(),
  506. /*NullCheckValue=*/ false, E->getExprLoc());
  507. break;
  508. case SubobjectAdjustment::FieldAdjustment: {
  509. LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
  510. LV = EmitLValueForField(LV, Adjustment.Field);
  511. assert(LV.isSimple() &&
  512. "materialized temporary field is not a simple lvalue");
  513. Object = LV.getAddress();
  514. break;
  515. }
  516. case SubobjectAdjustment::MemberPointerAdjustment: {
  517. llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
  518. Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
  519. Adjustment.Ptr.MPT);
  520. break;
  521. }
  522. }
  523. }
  524. return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
  525. }
  526. RValue
  527. CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
  528. // Emit the expression as an lvalue.
  529. LValue LV = EmitLValue(E);
  530. assert(LV.isSimple());
  531. llvm::Value *Value = LV.getPointer();
  532. if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
  533. // C++11 [dcl.ref]p5 (as amended by core issue 453):
  534. // If a glvalue to which a reference is directly bound designates neither
  535. // an existing object or function of an appropriate type nor a region of
  536. // storage of suitable size and alignment to contain an object of the
  537. // reference's type, the behavior is undefined.
  538. QualType Ty = E->getType();
  539. EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
  540. }
  541. return RValue::get(Value);
  542. }
  543. /// getAccessedFieldNo - Given an encoded value and a result number, return the
  544. /// input field number being accessed.
  545. unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
  546. const llvm::Constant *Elts) {
  547. return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
  548. ->getZExtValue();
  549. }
  550. /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
  551. static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
  552. llvm::Value *High) {
  553. llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
  554. llvm::Value *K47 = Builder.getInt64(47);
  555. llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
  556. llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
  557. llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
  558. llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
  559. return Builder.CreateMul(B1, KMul);
  560. }
  561. bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
  562. return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
  563. TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
  564. }
  565. bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
  566. CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
  567. return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
  568. (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
  569. TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
  570. TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
  571. }
  572. bool CodeGenFunction::sanitizePerformTypeCheck() const {
  573. return SanOpts.has(SanitizerKind::Null) |
  574. SanOpts.has(SanitizerKind::Alignment) |
  575. SanOpts.has(SanitizerKind::ObjectSize) |
  576. SanOpts.has(SanitizerKind::Vptr);
  577. }
  578. void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
  579. llvm::Value *Ptr, QualType Ty,
  580. CharUnits Alignment,
  581. SanitizerSet SkippedChecks,
  582. llvm::Value *ArraySize) {
  583. if (!sanitizePerformTypeCheck())
  584. return;
  585. // Don't check pointers outside the default address space. The null check
  586. // isn't correct, the object-size check isn't supported by LLVM, and we can't
  587. // communicate the addresses to the runtime handler for the vptr check.
  588. if (Ptr->getType()->getPointerAddressSpace())
  589. return;
  590. // Don't check pointers to volatile data. The behavior here is implementation-
  591. // defined.
  592. if (Ty.isVolatileQualified())
  593. return;
  594. SanitizerScope SanScope(this);
  595. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
  596. llvm::BasicBlock *Done = nullptr;
  597. // Quickly determine whether we have a pointer to an alloca. It's possible
  598. // to skip null checks, and some alignment checks, for these pointers. This
  599. // can reduce compile-time significantly.
  600. auto PtrToAlloca =
  601. dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
  602. llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
  603. llvm::Value *IsNonNull = nullptr;
  604. bool IsGuaranteedNonNull =
  605. SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
  606. bool AllowNullPointers = isNullPointerAllowed(TCK);
  607. if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
  608. !IsGuaranteedNonNull) {
  609. // The glvalue must not be an empty glvalue.
  610. IsNonNull = Builder.CreateIsNotNull(Ptr);
  611. // The IR builder can constant-fold the null check if the pointer points to
  612. // a constant.
  613. IsGuaranteedNonNull = IsNonNull == True;
  614. // Skip the null check if the pointer is known to be non-null.
  615. if (!IsGuaranteedNonNull) {
  616. if (AllowNullPointers) {
  617. // When performing pointer casts, it's OK if the value is null.
  618. // Skip the remaining checks in that case.
  619. Done = createBasicBlock("null");
  620. llvm::BasicBlock *Rest = createBasicBlock("not.null");
  621. Builder.CreateCondBr(IsNonNull, Rest, Done);
  622. EmitBlock(Rest);
  623. } else {
  624. Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
  625. }
  626. }
  627. }
  628. if (SanOpts.has(SanitizerKind::ObjectSize) &&
  629. !SkippedChecks.has(SanitizerKind::ObjectSize) &&
  630. !Ty->isIncompleteType()) {
  631. uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
  632. llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
  633. if (ArraySize)
  634. Size = Builder.CreateMul(Size, ArraySize);
  635. // Degenerate case: new X[0] does not need an objectsize check.
  636. llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
  637. if (!ConstantSize || !ConstantSize->isNullValue()) {
  638. // The glvalue must refer to a large enough storage region.
  639. // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
  640. // to check this.
  641. // FIXME: Get object address space
  642. llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
  643. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
  644. llvm::Value *Min = Builder.getFalse();
  645. llvm::Value *NullIsUnknown = Builder.getFalse();
  646. llvm::Value *Dynamic = Builder.getFalse();
  647. llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
  648. llvm::Value *LargeEnough = Builder.CreateICmpUGE(
  649. Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
  650. Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
  651. }
  652. }
  653. uint64_t AlignVal = 0;
  654. llvm::Value *PtrAsInt = nullptr;
  655. if (SanOpts.has(SanitizerKind::Alignment) &&
  656. !SkippedChecks.has(SanitizerKind::Alignment)) {
  657. AlignVal = Alignment.getQuantity();
  658. if (!Ty->isIncompleteType() && !AlignVal)
  659. AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
  660. // The glvalue must be suitably aligned.
  661. if (AlignVal > 1 &&
  662. (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
  663. PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
  664. llvm::Value *Align = Builder.CreateAnd(
  665. PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
  666. llvm::Value *Aligned =
  667. Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
  668. if (Aligned != True)
  669. Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
  670. }
  671. }
  672. if (Checks.size() > 0) {
  673. // Make sure we're not losing information. Alignment needs to be a power of
  674. // 2
  675. assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
  676. llvm::Constant *StaticData[] = {
  677. EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
  678. llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
  679. llvm::ConstantInt::get(Int8Ty, TCK)};
  680. EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
  681. PtrAsInt ? PtrAsInt : Ptr);
  682. }
  683. // If possible, check that the vptr indicates that there is a subobject of
  684. // type Ty at offset zero within this object.
  685. //
  686. // C++11 [basic.life]p5,6:
  687. // [For storage which does not refer to an object within its lifetime]
  688. // The program has undefined behavior if:
  689. // -- the [pointer or glvalue] is used to access a non-static data member
  690. // or call a non-static member function
  691. if (SanOpts.has(SanitizerKind::Vptr) &&
  692. !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
  693. // Ensure that the pointer is non-null before loading it. If there is no
  694. // compile-time guarantee, reuse the run-time null check or emit a new one.
  695. if (!IsGuaranteedNonNull) {
  696. if (!IsNonNull)
  697. IsNonNull = Builder.CreateIsNotNull(Ptr);
  698. if (!Done)
  699. Done = createBasicBlock("vptr.null");
  700. llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
  701. Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
  702. EmitBlock(VptrNotNull);
  703. }
  704. // Compute a hash of the mangled name of the type.
  705. //
  706. // FIXME: This is not guaranteed to be deterministic! Move to a
  707. // fingerprinting mechanism once LLVM provides one. For the time
  708. // being the implementation happens to be deterministic.
  709. SmallString<64> MangledName;
  710. llvm::raw_svector_ostream Out(MangledName);
  711. CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
  712. Out);
  713. // Blacklist based on the mangled type.
  714. if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
  715. SanitizerKind::Vptr, Out.str())) {
  716. llvm::hash_code TypeHash = hash_value(Out.str());
  717. // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
  718. llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
  719. llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
  720. Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
  721. llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
  722. llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
  723. llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
  724. Hash = Builder.CreateTrunc(Hash, IntPtrTy);
  725. // Look the hash up in our cache.
  726. const int CacheSize = 128;
  727. llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
  728. llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
  729. "__ubsan_vptr_type_cache");
  730. llvm::Value *Slot = Builder.CreateAnd(Hash,
  731. llvm::ConstantInt::get(IntPtrTy,
  732. CacheSize-1));
  733. llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
  734. llvm::Value *CacheVal =
  735. Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
  736. getPointerAlign());
  737. // If the hash isn't in the cache, call a runtime handler to perform the
  738. // hard work of checking whether the vptr is for an object of the right
  739. // type. This will either fill in the cache and return, or produce a
  740. // diagnostic.
  741. llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
  742. llvm::Constant *StaticData[] = {
  743. EmitCheckSourceLocation(Loc),
  744. EmitCheckTypeDescriptor(Ty),
  745. CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
  746. llvm::ConstantInt::get(Int8Ty, TCK)
  747. };
  748. llvm::Value *DynamicData[] = { Ptr, Hash };
  749. EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
  750. SanitizerHandler::DynamicTypeCacheMiss, StaticData,
  751. DynamicData);
  752. }
  753. }
  754. if (Done) {
  755. Builder.CreateBr(Done);
  756. EmitBlock(Done);
  757. }
  758. }
  759. /// Determine whether this expression refers to a flexible array member in a
  760. /// struct. We disable array bounds checks for such members.
  761. static bool isFlexibleArrayMemberExpr(const Expr *E) {
  762. // For compatibility with existing code, we treat arrays of length 0 or
  763. // 1 as flexible array members.
  764. const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
  765. if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
  766. if (CAT->getSize().ugt(1))
  767. return false;
  768. } else if (!isa<IncompleteArrayType>(AT))
  769. return false;
  770. E = E->IgnoreParens();
  771. // A flexible array member must be the last member in the class.
  772. if (const auto *ME = dyn_cast<MemberExpr>(E)) {
  773. // FIXME: If the base type of the member expr is not FD->getParent(),
  774. // this should not be treated as a flexible array member access.
  775. if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
  776. RecordDecl::field_iterator FI(
  777. DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
  778. return ++FI == FD->getParent()->field_end();
  779. }
  780. } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
  781. return IRE->getDecl()->getNextIvar() == nullptr;
  782. }
  783. return false;
  784. }
  785. llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
  786. QualType EltTy) {
  787. ASTContext &C = getContext();
  788. uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
  789. if (!EltSize)
  790. return nullptr;
  791. auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
  792. if (!ArrayDeclRef)
  793. return nullptr;
  794. auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
  795. if (!ParamDecl)
  796. return nullptr;
  797. auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
  798. if (!POSAttr)
  799. return nullptr;
  800. // Don't load the size if it's a lower bound.
  801. int POSType = POSAttr->getType();
  802. if (POSType != 0 && POSType != 1)
  803. return nullptr;
  804. // Find the implicit size parameter.
  805. auto PassedSizeIt = SizeArguments.find(ParamDecl);
  806. if (PassedSizeIt == SizeArguments.end())
  807. return nullptr;
  808. const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
  809. assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
  810. Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
  811. llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
  812. C.getSizeType(), E->getExprLoc());
  813. llvm::Value *SizeOfElement =
  814. llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
  815. return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
  816. }
  817. /// If Base is known to point to the start of an array, return the length of
  818. /// that array. Return 0 if the length cannot be determined.
  819. static llvm::Value *getArrayIndexingBound(
  820. CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
  821. // For the vector indexing extension, the bound is the number of elements.
  822. if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
  823. IndexedType = Base->getType();
  824. return CGF.Builder.getInt32(VT->getNumElements());
  825. }
  826. Base = Base->IgnoreParens();
  827. if (const auto *CE = dyn_cast<CastExpr>(Base)) {
  828. if (CE->getCastKind() == CK_ArrayToPointerDecay &&
  829. !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
  830. IndexedType = CE->getSubExpr()->getType();
  831. const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
  832. if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
  833. return CGF.Builder.getInt(CAT->getSize());
  834. else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
  835. return CGF.getVLASize(VAT).NumElts;
  836. // Ignore pass_object_size here. It's not applicable on decayed pointers.
  837. }
  838. }
  839. QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
  840. if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
  841. IndexedType = Base->getType();
  842. return POS;
  843. }
  844. return nullptr;
  845. }
  846. void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
  847. llvm::Value *Index, QualType IndexType,
  848. bool Accessed) {
  849. assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
  850. "should not be called unless adding bounds checks");
  851. SanitizerScope SanScope(this);
  852. QualType IndexedType;
  853. llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
  854. if (!Bound)
  855. return;
  856. bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
  857. llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
  858. llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
  859. llvm::Constant *StaticData[] = {
  860. EmitCheckSourceLocation(E->getExprLoc()),
  861. EmitCheckTypeDescriptor(IndexedType),
  862. EmitCheckTypeDescriptor(IndexType)
  863. };
  864. llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
  865. : Builder.CreateICmpULE(IndexVal, BoundVal);
  866. EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
  867. SanitizerHandler::OutOfBounds, StaticData, Index);
  868. }
  869. CodeGenFunction::ComplexPairTy CodeGenFunction::
  870. EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
  871. bool isInc, bool isPre) {
  872. ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
  873. llvm::Value *NextVal;
  874. if (isa<llvm::IntegerType>(InVal.first->getType())) {
  875. uint64_t AmountVal = isInc ? 1 : -1;
  876. NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
  877. // Add the inc/dec to the real part.
  878. NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
  879. } else {
  880. QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
  881. llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
  882. if (!isInc)
  883. FVal.changeSign();
  884. NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
  885. // Add the inc/dec to the real part.
  886. NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
  887. }
  888. ComplexPairTy IncVal(NextVal, InVal.second);
  889. // Store the updated result through the lvalue.
  890. EmitStoreOfComplex(IncVal, LV, /*init*/ false);
  891. // If this is a postinc, return the value read from memory, otherwise use the
  892. // updated value.
  893. return isPre ? IncVal : InVal;
  894. }
  895. void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
  896. CodeGenFunction *CGF) {
  897. // Bind VLAs in the cast type.
  898. if (CGF && E->getType()->isVariablyModifiedType())
  899. CGF->EmitVariablyModifiedType(E->getType());
  900. if (CGDebugInfo *DI = getModuleDebugInfo())
  901. DI->EmitExplicitCastType(E->getType());
  902. }
  903. //===----------------------------------------------------------------------===//
  904. // LValue Expression Emission
  905. //===----------------------------------------------------------------------===//
  906. /// EmitPointerWithAlignment - Given an expression of pointer type, try to
  907. /// derive a more accurate bound on the alignment of the pointer.
  908. Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
  909. LValueBaseInfo *BaseInfo,
  910. TBAAAccessInfo *TBAAInfo) {
  911. // We allow this with ObjC object pointers because of fragile ABIs.
  912. assert(E->getType()->isPointerType() ||
  913. E->getType()->isObjCObjectPointerType());
  914. E = E->IgnoreParens();
  915. // Casts:
  916. if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
  917. if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
  918. CGM.EmitExplicitCastExprType(ECE, this);
  919. switch (CE->getCastKind()) {
  920. // Non-converting casts (but not C's implicit conversion from void*).
  921. case CK_BitCast:
  922. case CK_NoOp:
  923. case CK_AddressSpaceConversion:
  924. if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
  925. if (PtrTy->getPointeeType()->isVoidType())
  926. break;
  927. LValueBaseInfo InnerBaseInfo;
  928. TBAAAccessInfo InnerTBAAInfo;
  929. Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
  930. &InnerBaseInfo,
  931. &InnerTBAAInfo);
  932. if (BaseInfo) *BaseInfo = InnerBaseInfo;
  933. if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
  934. if (isa<ExplicitCastExpr>(CE)) {
  935. LValueBaseInfo TargetTypeBaseInfo;
  936. TBAAAccessInfo TargetTypeTBAAInfo;
  937. CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
  938. &TargetTypeBaseInfo,
  939. &TargetTypeTBAAInfo);
  940. if (TBAAInfo)
  941. *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
  942. TargetTypeTBAAInfo);
  943. // If the source l-value is opaque, honor the alignment of the
  944. // casted-to type.
  945. if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
  946. if (BaseInfo)
  947. BaseInfo->mergeForCast(TargetTypeBaseInfo);
  948. Addr = Address(Addr.getPointer(), Align);
  949. }
  950. }
  951. if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
  952. CE->getCastKind() == CK_BitCast) {
  953. if (auto PT = E->getType()->getAs<PointerType>())
  954. EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
  955. /*MayBeNull=*/true,
  956. CodeGenFunction::CFITCK_UnrelatedCast,
  957. CE->getBeginLoc());
  958. }
  959. return CE->getCastKind() != CK_AddressSpaceConversion
  960. ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
  961. : Builder.CreateAddrSpaceCast(Addr,
  962. ConvertType(E->getType()));
  963. }
  964. break;
  965. // Array-to-pointer decay.
  966. case CK_ArrayToPointerDecay:
  967. return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
  968. // Derived-to-base conversions.
  969. case CK_UncheckedDerivedToBase:
  970. case CK_DerivedToBase: {
  971. // TODO: Support accesses to members of base classes in TBAA. For now, we
  972. // conservatively pretend that the complete object is of the base class
  973. // type.
  974. if (TBAAInfo)
  975. *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
  976. Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
  977. auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
  978. return GetAddressOfBaseClass(Addr, Derived,
  979. CE->path_begin(), CE->path_end(),
  980. ShouldNullCheckClassCastValue(CE),
  981. CE->getExprLoc());
  982. }
  983. // TODO: Is there any reason to treat base-to-derived conversions
  984. // specially?
  985. default:
  986. break;
  987. }
  988. }
  989. // Unary &.
  990. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
  991. if (UO->getOpcode() == UO_AddrOf) {
  992. LValue LV = EmitLValue(UO->getSubExpr());
  993. if (BaseInfo) *BaseInfo = LV.getBaseInfo();
  994. if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
  995. return LV.getAddress();
  996. }
  997. }
  998. // TODO: conditional operators, comma.
  999. // Otherwise, use the alignment of the type.
  1000. CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
  1001. TBAAInfo);
  1002. return Address(EmitScalarExpr(E), Align);
  1003. }
  1004. RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
  1005. if (Ty->isVoidType())
  1006. return RValue::get(nullptr);
  1007. switch (getEvaluationKind(Ty)) {
  1008. case TEK_Complex: {
  1009. llvm::Type *EltTy =
  1010. ConvertType(Ty->castAs<ComplexType>()->getElementType());
  1011. llvm::Value *U = llvm::UndefValue::get(EltTy);
  1012. return RValue::getComplex(std::make_pair(U, U));
  1013. }
  1014. // If this is a use of an undefined aggregate type, the aggregate must have an
  1015. // identifiable address. Just because the contents of the value are undefined
  1016. // doesn't mean that the address can't be taken and compared.
  1017. case TEK_Aggregate: {
  1018. Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
  1019. return RValue::getAggregate(DestPtr);
  1020. }
  1021. case TEK_Scalar:
  1022. return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
  1023. }
  1024. llvm_unreachable("bad evaluation kind");
  1025. }
  1026. RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
  1027. const char *Name) {
  1028. ErrorUnsupported(E, Name);
  1029. return GetUndefRValue(E->getType());
  1030. }
  1031. LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
  1032. const char *Name) {
  1033. ErrorUnsupported(E, Name);
  1034. llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
  1035. return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
  1036. E->getType());
  1037. }
  1038. bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
  1039. const Expr *Base = Obj;
  1040. while (!isa<CXXThisExpr>(Base)) {
  1041. // The result of a dynamic_cast can be null.
  1042. if (isa<CXXDynamicCastExpr>(Base))
  1043. return false;
  1044. if (const auto *CE = dyn_cast<CastExpr>(Base)) {
  1045. Base = CE->getSubExpr();
  1046. } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
  1047. Base = PE->getSubExpr();
  1048. } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
  1049. if (UO->getOpcode() == UO_Extension)
  1050. Base = UO->getSubExpr();
  1051. else
  1052. return false;
  1053. } else {
  1054. return false;
  1055. }
  1056. }
  1057. return true;
  1058. }
  1059. LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
  1060. LValue LV;
  1061. if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
  1062. LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
  1063. else
  1064. LV = EmitLValue(E);
  1065. if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
  1066. SanitizerSet SkippedChecks;
  1067. if (const auto *ME = dyn_cast<MemberExpr>(E)) {
  1068. bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
  1069. if (IsBaseCXXThis)
  1070. SkippedChecks.set(SanitizerKind::Alignment, true);
  1071. if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
  1072. SkippedChecks.set(SanitizerKind::Null, true);
  1073. }
  1074. EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
  1075. E->getType(), LV.getAlignment(), SkippedChecks);
  1076. }
  1077. return LV;
  1078. }
  1079. /// EmitLValue - Emit code to compute a designator that specifies the location
  1080. /// of the expression.
  1081. ///
  1082. /// This can return one of two things: a simple address or a bitfield reference.
  1083. /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
  1084. /// an LLVM pointer type.
  1085. ///
  1086. /// If this returns a bitfield reference, nothing about the pointee type of the
  1087. /// LLVM value is known: For example, it may not be a pointer to an integer.
  1088. ///
  1089. /// If this returns a normal address, and if the lvalue's C type is fixed size,
  1090. /// this method guarantees that the returned pointer type will point to an LLVM
  1091. /// type of the same size of the lvalue's type. If the lvalue has a variable
  1092. /// length type, this is not possible.
  1093. ///
  1094. LValue CodeGenFunction::EmitLValue(const Expr *E) {
  1095. ApplyDebugLocation DL(*this, E);
  1096. switch (E->getStmtClass()) {
  1097. default: return EmitUnsupportedLValue(E, "l-value expression");
  1098. case Expr::ObjCPropertyRefExprClass:
  1099. llvm_unreachable("cannot emit a property reference directly");
  1100. case Expr::ObjCSelectorExprClass:
  1101. return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
  1102. case Expr::ObjCIsaExprClass:
  1103. return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
  1104. case Expr::BinaryOperatorClass:
  1105. return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
  1106. case Expr::CompoundAssignOperatorClass: {
  1107. QualType Ty = E->getType();
  1108. if (const AtomicType *AT = Ty->getAs<AtomicType>())
  1109. Ty = AT->getValueType();
  1110. if (!Ty->isAnyComplexType())
  1111. return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
  1112. return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
  1113. }
  1114. case Expr::CallExprClass:
  1115. case Expr::CXXMemberCallExprClass:
  1116. case Expr::CXXOperatorCallExprClass:
  1117. case Expr::UserDefinedLiteralClass:
  1118. return EmitCallExprLValue(cast<CallExpr>(E));
  1119. case Expr::VAArgExprClass:
  1120. return EmitVAArgExprLValue(cast<VAArgExpr>(E));
  1121. case Expr::DeclRefExprClass:
  1122. return EmitDeclRefLValue(cast<DeclRefExpr>(E));
  1123. case Expr::ConstantExprClass:
  1124. return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
  1125. case Expr::ParenExprClass:
  1126. return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
  1127. case Expr::GenericSelectionExprClass:
  1128. return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
  1129. case Expr::PredefinedExprClass:
  1130. return EmitPredefinedLValue(cast<PredefinedExpr>(E));
  1131. case Expr::StringLiteralClass:
  1132. return EmitStringLiteralLValue(cast<StringLiteral>(E));
  1133. case Expr::ObjCEncodeExprClass:
  1134. return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
  1135. case Expr::PseudoObjectExprClass:
  1136. return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
  1137. case Expr::InitListExprClass:
  1138. return EmitInitListLValue(cast<InitListExpr>(E));
  1139. case Expr::CXXTemporaryObjectExprClass:
  1140. case Expr::CXXConstructExprClass:
  1141. return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
  1142. case Expr::CXXBindTemporaryExprClass:
  1143. return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
  1144. case Expr::CXXUuidofExprClass:
  1145. return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
  1146. case Expr::ExprWithCleanupsClass: {
  1147. const auto *cleanups = cast<ExprWithCleanups>(E);
  1148. enterFullExpression(cleanups);
  1149. RunCleanupsScope Scope(*this);
  1150. LValue LV = EmitLValue(cleanups->getSubExpr());
  1151. if (LV.isSimple()) {
  1152. // Defend against branches out of gnu statement expressions surrounded by
  1153. // cleanups.
  1154. llvm::Value *V = LV.getPointer();
  1155. Scope.ForceCleanup({&V});
  1156. return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
  1157. getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
  1158. }
  1159. // FIXME: Is it possible to create an ExprWithCleanups that produces a
  1160. // bitfield lvalue or some other non-simple lvalue?
  1161. return LV;
  1162. }
  1163. case Expr::CXXDefaultArgExprClass:
  1164. return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
  1165. case Expr::CXXDefaultInitExprClass: {
  1166. CXXDefaultInitExprScope Scope(*this);
  1167. return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
  1168. }
  1169. case Expr::CXXTypeidExprClass:
  1170. return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
  1171. case Expr::ObjCMessageExprClass:
  1172. return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
  1173. case Expr::ObjCIvarRefExprClass:
  1174. return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
  1175. case Expr::StmtExprClass:
  1176. return EmitStmtExprLValue(cast<StmtExpr>(E));
  1177. case Expr::UnaryOperatorClass:
  1178. return EmitUnaryOpLValue(cast<UnaryOperator>(E));
  1179. case Expr::ArraySubscriptExprClass:
  1180. return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
  1181. case Expr::OMPArraySectionExprClass:
  1182. return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
  1183. case Expr::ExtVectorElementExprClass:
  1184. return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
  1185. case Expr::MemberExprClass:
  1186. return EmitMemberExpr(cast<MemberExpr>(E));
  1187. case Expr::CompoundLiteralExprClass:
  1188. return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
  1189. case Expr::ConditionalOperatorClass:
  1190. return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
  1191. case Expr::BinaryConditionalOperatorClass:
  1192. return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
  1193. case Expr::ChooseExprClass:
  1194. return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
  1195. case Expr::OpaqueValueExprClass:
  1196. return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
  1197. case Expr::SubstNonTypeTemplateParmExprClass:
  1198. return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
  1199. case Expr::ImplicitCastExprClass:
  1200. case Expr::CStyleCastExprClass:
  1201. case Expr::CXXFunctionalCastExprClass:
  1202. case Expr::CXXStaticCastExprClass:
  1203. case Expr::CXXDynamicCastExprClass:
  1204. case Expr::CXXReinterpretCastExprClass:
  1205. case Expr::CXXConstCastExprClass:
  1206. case Expr::ObjCBridgedCastExprClass:
  1207. return EmitCastLValue(cast<CastExpr>(E));
  1208. case Expr::MaterializeTemporaryExprClass:
  1209. return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
  1210. case Expr::CoawaitExprClass:
  1211. return EmitCoawaitLValue(cast<CoawaitExpr>(E));
  1212. case Expr::CoyieldExprClass:
  1213. return EmitCoyieldLValue(cast<CoyieldExpr>(E));
  1214. }
  1215. }
  1216. /// Given an object of the given canonical type, can we safely copy a
  1217. /// value out of it based on its initializer?
  1218. static bool isConstantEmittableObjectType(QualType type) {
  1219. assert(type.isCanonical());
  1220. assert(!type->isReferenceType());
  1221. // Must be const-qualified but non-volatile.
  1222. Qualifiers qs = type.getLocalQualifiers();
  1223. if (!qs.hasConst() || qs.hasVolatile()) return false;
  1224. // Otherwise, all object types satisfy this except C++ classes with
  1225. // mutable subobjects or non-trivial copy/destroy behavior.
  1226. if (const auto *RT = dyn_cast<RecordType>(type))
  1227. if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
  1228. if (RD->hasMutableFields() || !RD->isTrivial())
  1229. return false;
  1230. return true;
  1231. }
  1232. /// Can we constant-emit a load of a reference to a variable of the
  1233. /// given type? This is different from predicates like
  1234. /// Decl::isUsableInConstantExpressions because we do want it to apply
  1235. /// in situations that don't necessarily satisfy the language's rules
  1236. /// for this (e.g. C++'s ODR-use rules). For example, we want to able
  1237. /// to do this with const float variables even if those variables
  1238. /// aren't marked 'constexpr'.
  1239. enum ConstantEmissionKind {
  1240. CEK_None,
  1241. CEK_AsReferenceOnly,
  1242. CEK_AsValueOrReference,
  1243. CEK_AsValueOnly
  1244. };
  1245. static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
  1246. type = type.getCanonicalType();
  1247. if (const auto *ref = dyn_cast<ReferenceType>(type)) {
  1248. if (isConstantEmittableObjectType(ref->getPointeeType()))
  1249. return CEK_AsValueOrReference;
  1250. return CEK_AsReferenceOnly;
  1251. }
  1252. if (isConstantEmittableObjectType(type))
  1253. return CEK_AsValueOnly;
  1254. return CEK_None;
  1255. }
  1256. /// Try to emit a reference to the given value without producing it as
  1257. /// an l-value. This is actually more than an optimization: we can't
  1258. /// produce an l-value for variables that we never actually captured
  1259. /// in a block or lambda, which means const int variables or constexpr
  1260. /// literals or similar.
  1261. CodeGenFunction::ConstantEmission
  1262. CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
  1263. ValueDecl *value = refExpr->getDecl();
  1264. // The value needs to be an enum constant or a constant variable.
  1265. ConstantEmissionKind CEK;
  1266. if (isa<ParmVarDecl>(value)) {
  1267. CEK = CEK_None;
  1268. } else if (auto *var = dyn_cast<VarDecl>(value)) {
  1269. CEK = checkVarTypeForConstantEmission(var->getType());
  1270. } else if (isa<EnumConstantDecl>(value)) {
  1271. CEK = CEK_AsValueOnly;
  1272. } else {
  1273. CEK = CEK_None;
  1274. }
  1275. if (CEK == CEK_None) return ConstantEmission();
  1276. Expr::EvalResult result;
  1277. bool resultIsReference;
  1278. QualType resultType;
  1279. // It's best to evaluate all the way as an r-value if that's permitted.
  1280. if (CEK != CEK_AsReferenceOnly &&
  1281. refExpr->EvaluateAsRValue(result, getContext())) {
  1282. resultIsReference = false;
  1283. resultType = refExpr->getType();
  1284. // Otherwise, try to evaluate as an l-value.
  1285. } else if (CEK != CEK_AsValueOnly &&
  1286. refExpr->EvaluateAsLValue(result, getContext())) {
  1287. resultIsReference = true;
  1288. resultType = value->getType();
  1289. // Failure.
  1290. } else {
  1291. return ConstantEmission();
  1292. }
  1293. // In any case, if the initializer has side-effects, abandon ship.
  1294. if (result.HasSideEffects)
  1295. return ConstantEmission();
  1296. // Emit as a constant.
  1297. auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
  1298. result.Val, resultType);
  1299. // Make sure we emit a debug reference to the global variable.
  1300. // This should probably fire even for
  1301. if (isa<VarDecl>(value)) {
  1302. if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
  1303. EmitDeclRefExprDbgValue(refExpr, result.Val);
  1304. } else {
  1305. assert(isa<EnumConstantDecl>(value));
  1306. EmitDeclRefExprDbgValue(refExpr, result.Val);
  1307. }
  1308. // If we emitted a reference constant, we need to dereference that.
  1309. if (resultIsReference)
  1310. return ConstantEmission::forReference(C);
  1311. return ConstantEmission::forValue(C);
  1312. }
  1313. static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
  1314. const MemberExpr *ME) {
  1315. if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
  1316. // Try to emit static variable member expressions as DREs.
  1317. return DeclRefExpr::Create(
  1318. CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
  1319. /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
  1320. ME->getType(), ME->getValueKind());
  1321. }
  1322. return nullptr;
  1323. }
  1324. CodeGenFunction::ConstantEmission
  1325. CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
  1326. if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
  1327. return tryEmitAsConstant(DRE);
  1328. return ConstantEmission();
  1329. }
  1330. llvm::Value *CodeGenFunction::emitScalarConstant(
  1331. const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
  1332. assert(Constant && "not a constant");
  1333. if (Constant.isReference())
  1334. return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
  1335. E->getExprLoc())
  1336. .getScalarVal();
  1337. return Constant.getValue();
  1338. }
  1339. llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
  1340. SourceLocation Loc) {
  1341. return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
  1342. lvalue.getType(), Loc, lvalue.getBaseInfo(),
  1343. lvalue.getTBAAInfo(), lvalue.isNontemporal());
  1344. }
  1345. static bool hasBooleanRepresentation(QualType Ty) {
  1346. if (Ty->isBooleanType())
  1347. return true;
  1348. if (const EnumType *ET = Ty->getAs<EnumType>())
  1349. return ET->getDecl()->getIntegerType()->isBooleanType();
  1350. if (const AtomicType *AT = Ty->getAs<AtomicType>())
  1351. return hasBooleanRepresentation(AT->getValueType());
  1352. return false;
  1353. }
  1354. static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
  1355. llvm::APInt &Min, llvm::APInt &End,
  1356. bool StrictEnums, bool IsBool) {
  1357. const EnumType *ET = Ty->getAs<EnumType>();
  1358. bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
  1359. ET && !ET->getDecl()->isFixed();
  1360. if (!IsBool && !IsRegularCPlusPlusEnum)
  1361. return false;
  1362. if (IsBool) {
  1363. Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
  1364. End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
  1365. } else {
  1366. const EnumDecl *ED = ET->getDecl();
  1367. llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
  1368. unsigned Bitwidth = LTy->getScalarSizeInBits();
  1369. unsigned NumNegativeBits = ED->getNumNegativeBits();
  1370. unsigned NumPositiveBits = ED->getNumPositiveBits();
  1371. if (NumNegativeBits) {
  1372. unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
  1373. assert(NumBits <= Bitwidth);
  1374. End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
  1375. Min = -End;
  1376. } else {
  1377. assert(NumPositiveBits <= Bitwidth);
  1378. End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
  1379. Min = llvm::APInt(Bitwidth, 0);
  1380. }
  1381. }
  1382. return true;
  1383. }
  1384. llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
  1385. llvm::APInt Min, End;
  1386. if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
  1387. hasBooleanRepresentation(Ty)))
  1388. return nullptr;
  1389. llvm::MDBuilder MDHelper(getLLVMContext());
  1390. return MDHelper.createRange(Min, End);
  1391. }
  1392. bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
  1393. SourceLocation Loc) {
  1394. bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
  1395. bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
  1396. if (!HasBoolCheck && !HasEnumCheck)
  1397. return false;
  1398. bool IsBool = hasBooleanRepresentation(Ty) ||
  1399. NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
  1400. bool NeedsBoolCheck = HasBoolCheck && IsBool;
  1401. bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
  1402. if (!NeedsBoolCheck && !NeedsEnumCheck)
  1403. return false;
  1404. // Single-bit booleans don't need to be checked. Special-case this to avoid
  1405. // a bit width mismatch when handling bitfield values. This is handled by
  1406. // EmitFromMemory for the non-bitfield case.
  1407. if (IsBool &&
  1408. cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
  1409. return false;
  1410. llvm::APInt Min, End;
  1411. if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
  1412. return true;
  1413. auto &Ctx = getLLVMContext();
  1414. SanitizerScope SanScope(this);
  1415. llvm::Value *Check;
  1416. --End;
  1417. if (!Min) {
  1418. Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
  1419. } else {
  1420. llvm::Value *Upper =
  1421. Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
  1422. llvm::Value *Lower =
  1423. Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
  1424. Check = Builder.CreateAnd(Upper, Lower);
  1425. }
  1426. llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
  1427. EmitCheckTypeDescriptor(Ty)};
  1428. SanitizerMask Kind =
  1429. NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
  1430. EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
  1431. StaticArgs, EmitCheckValue(Value));
  1432. return true;
  1433. }
  1434. llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
  1435. QualType Ty,
  1436. SourceLocation Loc,
  1437. LValueBaseInfo BaseInfo,
  1438. TBAAAccessInfo TBAAInfo,
  1439. bool isNontemporal) {
  1440. if (!CGM.getCodeGenOpts().PreserveVec3Type) {
  1441. // For better performance, handle vector loads differently.
  1442. if (Ty->isVectorType()) {
  1443. const llvm::Type *EltTy = Addr.getElementType();
  1444. const auto *VTy = cast<llvm::VectorType>(EltTy);
  1445. // Handle vectors of size 3 like size 4 for better performance.
  1446. if (VTy->getNumElements() == 3) {
  1447. // Bitcast to vec4 type.
  1448. llvm::VectorType *vec4Ty =
  1449. llvm::VectorType::get(VTy->getElementType(), 4);
  1450. Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
  1451. // Now load value.
  1452. llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
  1453. // Shuffle vector to get vec3.
  1454. V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
  1455. {0, 1, 2}, "extractVec");
  1456. return EmitFromMemory(V, Ty);
  1457. }
  1458. }
  1459. }
  1460. // Atomic operations have to be done on integral types.
  1461. LValue AtomicLValue =
  1462. LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
  1463. if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
  1464. return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
  1465. }
  1466. llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
  1467. if (isNontemporal) {
  1468. llvm::MDNode *Node = llvm::MDNode::get(
  1469. Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
  1470. Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  1471. }
  1472. CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
  1473. if (EmitScalarRangeCheck(Load, Ty, Loc)) {
  1474. // In order to prevent the optimizer from throwing away the check, don't
  1475. // attach range metadata to the load.
  1476. } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
  1477. if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
  1478. Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
  1479. return EmitFromMemory(Load, Ty);
  1480. }
  1481. llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
  1482. // Bool has a different representation in memory than in registers.
  1483. if (hasBooleanRepresentation(Ty)) {
  1484. // This should really always be an i1, but sometimes it's already
  1485. // an i8, and it's awkward to track those cases down.
  1486. if (Value->getType()->isIntegerTy(1))
  1487. return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
  1488. assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
  1489. "wrong value rep of bool");
  1490. }
  1491. return Value;
  1492. }
  1493. llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
  1494. // Bool has a different representation in memory than in registers.
  1495. if (hasBooleanRepresentation(Ty)) {
  1496. assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
  1497. "wrong value rep of bool");
  1498. return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
  1499. }
  1500. return Value;
  1501. }
  1502. void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
  1503. bool Volatile, QualType Ty,
  1504. LValueBaseInfo BaseInfo,
  1505. TBAAAccessInfo TBAAInfo,
  1506. bool isInit, bool isNontemporal) {
  1507. if (!CGM.getCodeGenOpts().PreserveVec3Type) {
  1508. // Handle vectors differently to get better performance.
  1509. if (Ty->isVectorType()) {
  1510. llvm::Type *SrcTy = Value->getType();
  1511. auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
  1512. // Handle vec3 special.
  1513. if (VecTy && VecTy->getNumElements() == 3) {
  1514. // Our source is a vec3, do a shuffle vector to make it a vec4.
  1515. llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
  1516. Builder.getInt32(2),
  1517. llvm::UndefValue::get(Builder.getInt32Ty())};
  1518. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1519. Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
  1520. MaskV, "extractVec");
  1521. SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
  1522. }
  1523. if (Addr.getElementType() != SrcTy) {
  1524. Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
  1525. }
  1526. }
  1527. }
  1528. Value = EmitToMemory(Value, Ty);
  1529. LValue AtomicLValue =
  1530. LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
  1531. if (Ty->isAtomicType() ||
  1532. (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
  1533. EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
  1534. return;
  1535. }
  1536. llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
  1537. if (isNontemporal) {
  1538. llvm::MDNode *Node =
  1539. llvm::MDNode::get(Store->getContext(),
  1540. llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
  1541. Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  1542. }
  1543. CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
  1544. }
  1545. void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
  1546. bool isInit) {
  1547. EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
  1548. lvalue.getType(), lvalue.getBaseInfo(),
  1549. lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
  1550. }
  1551. /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
  1552. /// method emits the address of the lvalue, then loads the result as an rvalue,
  1553. /// returning the rvalue.
  1554. RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
  1555. if (LV.isObjCWeak()) {
  1556. // load of a __weak object.
  1557. Address AddrWeakObj = LV.getAddress();
  1558. return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
  1559. AddrWeakObj));
  1560. }
  1561. if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
  1562. // In MRC mode, we do a load+autorelease.
  1563. if (!getLangOpts().ObjCAutoRefCount) {
  1564. return RValue::get(EmitARCLoadWeak(LV.getAddress()));
  1565. }
  1566. // In ARC mode, we load retained and then consume the value.
  1567. llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
  1568. Object = EmitObjCConsumeObject(LV.getType(), Object);
  1569. return RValue::get(Object);
  1570. }
  1571. if (LV.isSimple()) {
  1572. assert(!LV.getType()->isFunctionType());
  1573. // Everything needs a load.
  1574. return RValue::get(EmitLoadOfScalar(LV, Loc));
  1575. }
  1576. if (LV.isVectorElt()) {
  1577. llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
  1578. LV.isVolatileQualified());
  1579. return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
  1580. "vecext"));
  1581. }
  1582. // If this is a reference to a subset of the elements of a vector, either
  1583. // shuffle the input or extract/insert them as appropriate.
  1584. if (LV.isExtVectorElt())
  1585. return EmitLoadOfExtVectorElementLValue(LV);
  1586. // Global Register variables always invoke intrinsics
  1587. if (LV.isGlobalReg())
  1588. return EmitLoadOfGlobalRegLValue(LV);
  1589. assert(LV.isBitField() && "Unknown LValue type!");
  1590. return EmitLoadOfBitfieldLValue(LV, Loc);
  1591. }
  1592. RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
  1593. SourceLocation Loc) {
  1594. const CGBitFieldInfo &Info = LV.getBitFieldInfo();
  1595. // Get the output type.
  1596. llvm::Type *ResLTy = ConvertType(LV.getType());
  1597. Address Ptr = LV.getBitFieldAddress();
  1598. llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
  1599. if (Info.IsSigned) {
  1600. assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
  1601. unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
  1602. if (HighBits)
  1603. Val = Builder.CreateShl(Val, HighBits, "bf.shl");
  1604. if (Info.Offset + HighBits)
  1605. Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
  1606. } else {
  1607. if (Info.Offset)
  1608. Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
  1609. if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
  1610. Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
  1611. Info.Size),
  1612. "bf.clear");
  1613. }
  1614. Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
  1615. EmitScalarRangeCheck(Val, LV.getType(), Loc);
  1616. return RValue::get(Val);
  1617. }
  1618. // If this is a reference to a subset of the elements of a vector, create an
  1619. // appropriate shufflevector.
  1620. RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
  1621. llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
  1622. LV.isVolatileQualified());
  1623. const llvm::Constant *Elts = LV.getExtVectorElts();
  1624. // If the result of the expression is a non-vector type, we must be extracting
  1625. // a single element. Just codegen as an extractelement.
  1626. const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
  1627. if (!ExprVT) {
  1628. unsigned InIdx = getAccessedFieldNo(0, Elts);
  1629. llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
  1630. return RValue::get(Builder.CreateExtractElement(Vec, Elt));
  1631. }
  1632. // Always use shuffle vector to try to retain the original program structure
  1633. unsigned NumResultElts = ExprVT->getNumElements();
  1634. SmallVector<llvm::Constant*, 4> Mask;
  1635. for (unsigned i = 0; i != NumResultElts; ++i)
  1636. Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
  1637. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1638. Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
  1639. MaskV);
  1640. return RValue::get(Vec);
  1641. }
  1642. /// Generates lvalue for partial ext_vector access.
  1643. Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
  1644. Address VectorAddress = LV.getExtVectorAddress();
  1645. const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
  1646. QualType EQT = ExprVT->getElementType();
  1647. llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
  1648. Address CastToPointerElement =
  1649. Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
  1650. "conv.ptr.element");
  1651. const llvm::Constant *Elts = LV.getExtVectorElts();
  1652. unsigned ix = getAccessedFieldNo(0, Elts);
  1653. Address VectorBasePtrPlusIx =
  1654. Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
  1655. "vector.elt");
  1656. return VectorBasePtrPlusIx;
  1657. }
  1658. /// Load of global gamed gegisters are always calls to intrinsics.
  1659. RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
  1660. assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
  1661. "Bad type for register variable");
  1662. llvm::MDNode *RegName = cast<llvm::MDNode>(
  1663. cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
  1664. // We accept integer and pointer types only
  1665. llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
  1666. llvm::Type *Ty = OrigTy;
  1667. if (OrigTy->isPointerTy())
  1668. Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
  1669. llvm::Type *Types[] = { Ty };
  1670. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  1671. llvm::Value *Call = Builder.CreateCall(
  1672. F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
  1673. if (OrigTy->isPointerTy())
  1674. Call = Builder.CreateIntToPtr(Call, OrigTy);
  1675. return RValue::get(Call);
  1676. }
  1677. /// EmitStoreThroughLValue - Store the specified rvalue into the specified
  1678. /// lvalue, where both are guaranteed to the have the same type, and that type
  1679. /// is 'Ty'.
  1680. void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
  1681. bool isInit) {
  1682. if (!Dst.isSimple()) {
  1683. if (Dst.isVectorElt()) {
  1684. // Read/modify/write the vector, inserting the new element.
  1685. llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
  1686. Dst.isVolatileQualified());
  1687. Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
  1688. Dst.getVectorIdx(), "vecins");
  1689. Builder.CreateStore(Vec, Dst.getVectorAddress(),
  1690. Dst.isVolatileQualified());
  1691. return;
  1692. }
  1693. // If this is an update of extended vector elements, insert them as
  1694. // appropriate.
  1695. if (Dst.isExtVectorElt())
  1696. return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
  1697. if (Dst.isGlobalReg())
  1698. return EmitStoreThroughGlobalRegLValue(Src, Dst);
  1699. assert(Dst.isBitField() && "Unknown LValue type");
  1700. return EmitStoreThroughBitfieldLValue(Src, Dst);
  1701. }
  1702. // There's special magic for assigning into an ARC-qualified l-value.
  1703. if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
  1704. switch (Lifetime) {
  1705. case Qualifiers::OCL_None:
  1706. llvm_unreachable("present but none");
  1707. case Qualifiers::OCL_ExplicitNone:
  1708. // nothing special
  1709. break;
  1710. case Qualifiers::OCL_Strong:
  1711. if (isInit) {
  1712. Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
  1713. break;
  1714. }
  1715. EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
  1716. return;
  1717. case Qualifiers::OCL_Weak:
  1718. if (isInit)
  1719. // Initialize and then skip the primitive store.
  1720. EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
  1721. else
  1722. EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
  1723. return;
  1724. case Qualifiers::OCL_Autoreleasing:
  1725. Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
  1726. Src.getScalarVal()));
  1727. // fall into the normal path
  1728. break;
  1729. }
  1730. }
  1731. if (Dst.isObjCWeak() && !Dst.isNonGC()) {
  1732. // load of a __weak object.
  1733. Address LvalueDst = Dst.getAddress();
  1734. llvm::Value *src = Src.getScalarVal();
  1735. CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
  1736. return;
  1737. }
  1738. if (Dst.isObjCStrong() && !Dst.isNonGC()) {
  1739. // load of a __strong object.
  1740. Address LvalueDst = Dst.getAddress();
  1741. llvm::Value *src = Src.getScalarVal();
  1742. if (Dst.isObjCIvar()) {
  1743. assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
  1744. llvm::Type *ResultType = IntPtrTy;
  1745. Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
  1746. llvm::Value *RHS = dst.getPointer();
  1747. RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
  1748. llvm::Value *LHS =
  1749. Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
  1750. "sub.ptr.lhs.cast");
  1751. llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
  1752. CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
  1753. BytesBetween);
  1754. } else if (Dst.isGlobalObjCRef()) {
  1755. CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
  1756. Dst.isThreadLocalRef());
  1757. }
  1758. else
  1759. CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
  1760. return;
  1761. }
  1762. assert(Src.isScalar() && "Can't emit an agg store with this method");
  1763. EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
  1764. }
  1765. void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
  1766. llvm::Value **Result) {
  1767. const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
  1768. llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
  1769. Address Ptr = Dst.getBitFieldAddress();
  1770. // Get the source value, truncated to the width of the bit-field.
  1771. llvm::Value *SrcVal = Src.getScalarVal();
  1772. // Cast the source to the storage type and shift it into place.
  1773. SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
  1774. /*IsSigned=*/false);
  1775. llvm::Value *MaskedVal = SrcVal;
  1776. // See if there are other bits in the bitfield's storage we'll need to load
  1777. // and mask together with source before storing.
  1778. if (Info.StorageSize != Info.Size) {
  1779. assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
  1780. llvm::Value *Val =
  1781. Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
  1782. // Mask the source value as needed.
  1783. if (!hasBooleanRepresentation(Dst.getType()))
  1784. SrcVal = Builder.CreateAnd(SrcVal,
  1785. llvm::APInt::getLowBitsSet(Info.StorageSize,
  1786. Info.Size),
  1787. "bf.value");
  1788. MaskedVal = SrcVal;
  1789. if (Info.Offset)
  1790. SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
  1791. // Mask out the original value.
  1792. Val = Builder.CreateAnd(Val,
  1793. ~llvm::APInt::getBitsSet(Info.StorageSize,
  1794. Info.Offset,
  1795. Info.Offset + Info.Size),
  1796. "bf.clear");
  1797. // Or together the unchanged values and the source value.
  1798. SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
  1799. } else {
  1800. assert(Info.Offset == 0);
  1801. }
  1802. // Write the new value back out.
  1803. Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
  1804. // Return the new value of the bit-field, if requested.
  1805. if (Result) {
  1806. llvm::Value *ResultVal = MaskedVal;
  1807. // Sign extend the value if needed.
  1808. if (Info.IsSigned) {
  1809. assert(Info.Size <= Info.StorageSize);
  1810. unsigned HighBits = Info.StorageSize - Info.Size;
  1811. if (HighBits) {
  1812. ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
  1813. ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
  1814. }
  1815. }
  1816. ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
  1817. "bf.result.cast");
  1818. *Result = EmitFromMemory(ResultVal, Dst.getType());
  1819. }
  1820. }
  1821. void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
  1822. LValue Dst) {
  1823. // This access turns into a read/modify/write of the vector. Load the input
  1824. // value now.
  1825. llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
  1826. Dst.isVolatileQualified());
  1827. const llvm::Constant *Elts = Dst.getExtVectorElts();
  1828. llvm::Value *SrcVal = Src.getScalarVal();
  1829. if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
  1830. unsigned NumSrcElts = VTy->getNumElements();
  1831. unsigned NumDstElts = Vec->getType()->getVectorNumElements();
  1832. if (NumDstElts == NumSrcElts) {
  1833. // Use shuffle vector is the src and destination are the same number of
  1834. // elements and restore the vector mask since it is on the side it will be
  1835. // stored.
  1836. SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
  1837. for (unsigned i = 0; i != NumSrcElts; ++i)
  1838. Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
  1839. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1840. Vec = Builder.CreateShuffleVector(SrcVal,
  1841. llvm::UndefValue::get(Vec->getType()),
  1842. MaskV);
  1843. } else if (NumDstElts > NumSrcElts) {
  1844. // Extended the source vector to the same length and then shuffle it
  1845. // into the destination.
  1846. // FIXME: since we're shuffling with undef, can we just use the indices
  1847. // into that? This could be simpler.
  1848. SmallVector<llvm::Constant*, 4> ExtMask;
  1849. for (unsigned i = 0; i != NumSrcElts; ++i)
  1850. ExtMask.push_back(Builder.getInt32(i));
  1851. ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
  1852. llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
  1853. llvm::Value *ExtSrcVal =
  1854. Builder.CreateShuffleVector(SrcVal,
  1855. llvm::UndefValue::get(SrcVal->getType()),
  1856. ExtMaskV);
  1857. // build identity
  1858. SmallVector<llvm::Constant*, 4> Mask;
  1859. for (unsigned i = 0; i != NumDstElts; ++i)
  1860. Mask.push_back(Builder.getInt32(i));
  1861. // When the vector size is odd and .odd or .hi is used, the last element
  1862. // of the Elts constant array will be one past the size of the vector.
  1863. // Ignore the last element here, if it is greater than the mask size.
  1864. if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
  1865. NumSrcElts--;
  1866. // modify when what gets shuffled in
  1867. for (unsigned i = 0; i != NumSrcElts; ++i)
  1868. Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
  1869. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1870. Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
  1871. } else {
  1872. // We should never shorten the vector
  1873. llvm_unreachable("unexpected shorten vector length");
  1874. }
  1875. } else {
  1876. // If the Src is a scalar (not a vector) it must be updating one element.
  1877. unsigned InIdx = getAccessedFieldNo(0, Elts);
  1878. llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
  1879. Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
  1880. }
  1881. Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
  1882. Dst.isVolatileQualified());
  1883. }
  1884. /// Store of global named registers are always calls to intrinsics.
  1885. void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
  1886. assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
  1887. "Bad type for register variable");
  1888. llvm::MDNode *RegName = cast<llvm::MDNode>(
  1889. cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
  1890. assert(RegName && "Register LValue is not metadata");
  1891. // We accept integer and pointer types only
  1892. llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
  1893. llvm::Type *Ty = OrigTy;
  1894. if (OrigTy->isPointerTy())
  1895. Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
  1896. llvm::Type *Types[] = { Ty };
  1897. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  1898. llvm::Value *Value = Src.getScalarVal();
  1899. if (OrigTy->isPointerTy())
  1900. Value = Builder.CreatePtrToInt(Value, Ty);
  1901. Builder.CreateCall(
  1902. F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
  1903. }
  1904. // setObjCGCLValueClass - sets class of the lvalue for the purpose of
  1905. // generating write-barries API. It is currently a global, ivar,
  1906. // or neither.
  1907. static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
  1908. LValue &LV,
  1909. bool IsMemberAccess=false) {
  1910. if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
  1911. return;
  1912. if (isa<ObjCIvarRefExpr>(E)) {
  1913. QualType ExpTy = E->getType();
  1914. if (IsMemberAccess && ExpTy->isPointerType()) {
  1915. // If ivar is a structure pointer, assigning to field of
  1916. // this struct follows gcc's behavior and makes it a non-ivar
  1917. // writer-barrier conservatively.
  1918. ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
  1919. if (ExpTy->isRecordType()) {
  1920. LV.setObjCIvar(false);
  1921. return;
  1922. }
  1923. }
  1924. LV.setObjCIvar(true);
  1925. auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
  1926. LV.setBaseIvarExp(Exp->getBase());
  1927. LV.setObjCArray(E->getType()->isArrayType());
  1928. return;
  1929. }
  1930. if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
  1931. if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
  1932. if (VD->hasGlobalStorage()) {
  1933. LV.setGlobalObjCRef(true);
  1934. LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
  1935. }
  1936. }
  1937. LV.setObjCArray(E->getType()->isArrayType());
  1938. return;
  1939. }
  1940. if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
  1941. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1942. return;
  1943. }
  1944. if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
  1945. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1946. if (LV.isObjCIvar()) {
  1947. // If cast is to a structure pointer, follow gcc's behavior and make it
  1948. // a non-ivar write-barrier.
  1949. QualType ExpTy = E->getType();
  1950. if (ExpTy->isPointerType())
  1951. ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
  1952. if (ExpTy->isRecordType())
  1953. LV.setObjCIvar(false);
  1954. }
  1955. return;
  1956. }
  1957. if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
  1958. setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
  1959. return;
  1960. }
  1961. if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
  1962. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1963. return;
  1964. }
  1965. if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
  1966. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1967. return;
  1968. }
  1969. if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
  1970. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1971. return;
  1972. }
  1973. if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
  1974. setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
  1975. if (LV.isObjCIvar() && !LV.isObjCArray())
  1976. // Using array syntax to assigning to what an ivar points to is not
  1977. // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
  1978. LV.setObjCIvar(false);
  1979. else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
  1980. // Using array syntax to assigning to what global points to is not
  1981. // same as assigning to the global itself. {id *G;} G[i] = 0;
  1982. LV.setGlobalObjCRef(false);
  1983. return;
  1984. }
  1985. if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
  1986. setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
  1987. // We don't know if member is an 'ivar', but this flag is looked at
  1988. // only in the context of LV.isObjCIvar().
  1989. LV.setObjCArray(E->getType()->isArrayType());
  1990. return;
  1991. }
  1992. }
  1993. static llvm::Value *
  1994. EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
  1995. llvm::Value *V, llvm::Type *IRType,
  1996. StringRef Name = StringRef()) {
  1997. unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
  1998. return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
  1999. }
  2000. static LValue EmitThreadPrivateVarDeclLValue(
  2001. CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
  2002. llvm::Type *RealVarTy, SourceLocation Loc) {
  2003. Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
  2004. Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
  2005. return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  2006. }
  2007. static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
  2008. const VarDecl *VD, QualType T) {
  2009. llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
  2010. OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
  2011. if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
  2012. return Address::invalid();
  2013. assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
  2014. QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
  2015. Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
  2016. return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
  2017. }
  2018. Address
  2019. CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
  2020. LValueBaseInfo *PointeeBaseInfo,
  2021. TBAAAccessInfo *PointeeTBAAInfo) {
  2022. llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
  2023. RefLVal.isVolatile());
  2024. CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
  2025. CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
  2026. PointeeBaseInfo, PointeeTBAAInfo,
  2027. /* forPointeeType= */ true);
  2028. return Address(Load, Align);
  2029. }
  2030. LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
  2031. LValueBaseInfo PointeeBaseInfo;
  2032. TBAAAccessInfo PointeeTBAAInfo;
  2033. Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
  2034. &PointeeTBAAInfo);
  2035. return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
  2036. PointeeBaseInfo, PointeeTBAAInfo);
  2037. }
  2038. Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
  2039. const PointerType *PtrTy,
  2040. LValueBaseInfo *BaseInfo,
  2041. TBAAAccessInfo *TBAAInfo) {
  2042. llvm::Value *Addr = Builder.CreateLoad(Ptr);
  2043. return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
  2044. BaseInfo, TBAAInfo,
  2045. /*forPointeeType=*/true));
  2046. }
  2047. LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
  2048. const PointerType *PtrTy) {
  2049. LValueBaseInfo BaseInfo;
  2050. TBAAAccessInfo TBAAInfo;
  2051. Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
  2052. return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
  2053. }
  2054. static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
  2055. const Expr *E, const VarDecl *VD) {
  2056. QualType T = E->getType();
  2057. // If it's thread_local, emit a call to its wrapper function instead.
  2058. if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
  2059. CGF.CGM.getCXXABI().usesThreadWrapperFunction())
  2060. return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
  2061. // Check if the variable is marked as declare target with link clause in
  2062. // device codegen.
  2063. if (CGF.getLangOpts().OpenMPIsDevice) {
  2064. Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
  2065. if (Addr.isValid())
  2066. return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  2067. }
  2068. llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
  2069. llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
  2070. V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
  2071. CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
  2072. Address Addr(V, Alignment);
  2073. // Emit reference to the private copy of the variable if it is an OpenMP
  2074. // threadprivate variable.
  2075. if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
  2076. VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
  2077. return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
  2078. E->getExprLoc());
  2079. }
  2080. LValue LV = VD->getType()->isReferenceType() ?
  2081. CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
  2082. AlignmentSource::Decl) :
  2083. CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  2084. setObjCGCLValueClass(CGF.getContext(), E, LV);
  2085. return LV;
  2086. }
  2087. static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
  2088. const FunctionDecl *FD) {
  2089. if (FD->hasAttr<WeakRefAttr>()) {
  2090. ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
  2091. return aliasee.getPointer();
  2092. }
  2093. llvm::Constant *V = CGM.GetAddrOfFunction(FD);
  2094. if (!FD->hasPrototype()) {
  2095. if (const FunctionProtoType *Proto =
  2096. FD->getType()->getAs<FunctionProtoType>()) {
  2097. // Ugly case: for a K&R-style definition, the type of the definition
  2098. // isn't the same as the type of a use. Correct for this with a
  2099. // bitcast.
  2100. QualType NoProtoType =
  2101. CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
  2102. NoProtoType = CGM.getContext().getPointerType(NoProtoType);
  2103. V = llvm::ConstantExpr::getBitCast(V,
  2104. CGM.getTypes().ConvertType(NoProtoType));
  2105. }
  2106. }
  2107. return V;
  2108. }
  2109. static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
  2110. const Expr *E, const FunctionDecl *FD) {
  2111. llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
  2112. CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
  2113. return CGF.MakeAddrLValue(V, E->getType(), Alignment,
  2114. AlignmentSource::Decl);
  2115. }
  2116. static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
  2117. llvm::Value *ThisValue) {
  2118. QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
  2119. LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
  2120. return CGF.EmitLValueForField(LV, FD);
  2121. }
  2122. /// Named Registers are named metadata pointing to the register name
  2123. /// which will be read from/written to as an argument to the intrinsic
  2124. /// @llvm.read/write_register.
  2125. /// So far, only the name is being passed down, but other options such as
  2126. /// register type, allocation type or even optimization options could be
  2127. /// passed down via the metadata node.
  2128. static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
  2129. SmallString<64> Name("llvm.named.register.");
  2130. AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
  2131. assert(Asm->getLabel().size() < 64-Name.size() &&
  2132. "Register name too big");
  2133. Name.append(Asm->getLabel());
  2134. llvm::NamedMDNode *M =
  2135. CGM.getModule().getOrInsertNamedMetadata(Name);
  2136. if (M->getNumOperands() == 0) {
  2137. llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
  2138. Asm->getLabel());
  2139. llvm::Metadata *Ops[] = {Str};
  2140. M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
  2141. }
  2142. CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
  2143. llvm::Value *Ptr =
  2144. llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
  2145. return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
  2146. }
  2147. LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
  2148. const NamedDecl *ND = E->getDecl();
  2149. QualType T = E->getType();
  2150. if (const auto *VD = dyn_cast<VarDecl>(ND)) {
  2151. // Global Named registers access via intrinsics only
  2152. if (VD->getStorageClass() == SC_Register &&
  2153. VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
  2154. return EmitGlobalNamedRegister(VD, CGM);
  2155. // A DeclRefExpr for a reference initialized by a constant expression can
  2156. // appear without being odr-used. Directly emit the constant initializer.
  2157. const Expr *Init = VD->getAnyInitializer(VD);
  2158. const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
  2159. if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
  2160. VD->isUsableInConstantExpressions(getContext()) &&
  2161. VD->checkInitIsICE() &&
  2162. // Do not emit if it is private OpenMP variable.
  2163. !(E->refersToEnclosingVariableOrCapture() &&
  2164. ((CapturedStmtInfo &&
  2165. (LocalDeclMap.count(VD->getCanonicalDecl()) ||
  2166. CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
  2167. LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
  2168. (BD && BD->capturesVariable(VD))))) {
  2169. llvm::Constant *Val =
  2170. ConstantEmitter(*this).emitAbstract(E->getLocation(),
  2171. *VD->evaluateValue(),
  2172. VD->getType());
  2173. assert(Val && "failed to emit reference constant expression");
  2174. // FIXME: Eventually we will want to emit vector element references.
  2175. // Should we be using the alignment of the constant pointer we emitted?
  2176. CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
  2177. /* BaseInfo= */ nullptr,
  2178. /* TBAAInfo= */ nullptr,
  2179. /* forPointeeType= */ true);
  2180. return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
  2181. }
  2182. // Check for captured variables.
  2183. if (E->refersToEnclosingVariableOrCapture()) {
  2184. VD = VD->getCanonicalDecl();
  2185. if (auto *FD = LambdaCaptureFields.lookup(VD))
  2186. return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
  2187. else if (CapturedStmtInfo) {
  2188. auto I = LocalDeclMap.find(VD);
  2189. if (I != LocalDeclMap.end()) {
  2190. if (VD->getType()->isReferenceType())
  2191. return EmitLoadOfReferenceLValue(I->second, VD->getType(),
  2192. AlignmentSource::Decl);
  2193. return MakeAddrLValue(I->second, T);
  2194. }
  2195. LValue CapLVal =
  2196. EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
  2197. CapturedStmtInfo->getContextValue());
  2198. return MakeAddrLValue(
  2199. Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
  2200. CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
  2201. CapLVal.getTBAAInfo());
  2202. }
  2203. assert(isa<BlockDecl>(CurCodeDecl));
  2204. Address addr = GetAddrOfBlockDecl(VD);
  2205. return MakeAddrLValue(addr, T, AlignmentSource::Decl);
  2206. }
  2207. }
  2208. // FIXME: We should be able to assert this for FunctionDecls as well!
  2209. // FIXME: We should be able to assert this for all DeclRefExprs, not just
  2210. // those with a valid source location.
  2211. assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
  2212. !E->getLocation().isValid()) &&
  2213. "Should not use decl without marking it used!");
  2214. if (ND->hasAttr<WeakRefAttr>()) {
  2215. const auto *VD = cast<ValueDecl>(ND);
  2216. ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
  2217. return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
  2218. }
  2219. if (const auto *VD = dyn_cast<VarDecl>(ND)) {
  2220. // Check if this is a global variable.
  2221. if (VD->hasLinkage() || VD->isStaticDataMember())
  2222. return EmitGlobalVarDeclLValue(*this, E, VD);
  2223. Address addr = Address::invalid();
  2224. // The variable should generally be present in the local decl map.
  2225. auto iter = LocalDeclMap.find(VD);
  2226. if (iter != LocalDeclMap.end()) {
  2227. addr = iter->second;
  2228. // Otherwise, it might be static local we haven't emitted yet for
  2229. // some reason; most likely, because it's in an outer function.
  2230. } else if (VD->isStaticLocal()) {
  2231. addr = Address(CGM.getOrCreateStaticVarDecl(
  2232. *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
  2233. getContext().getDeclAlign(VD));
  2234. // No other cases for now.
  2235. } else {
  2236. llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
  2237. }
  2238. // Check for OpenMP threadprivate variables.
  2239. if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
  2240. VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
  2241. return EmitThreadPrivateVarDeclLValue(
  2242. *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
  2243. E->getExprLoc());
  2244. }
  2245. // Drill into block byref variables.
  2246. bool isBlockByref = VD->isEscapingByref();
  2247. if (isBlockByref) {
  2248. addr = emitBlockByrefAddress(addr, VD);
  2249. }
  2250. // Drill into reference types.
  2251. LValue LV = VD->getType()->isReferenceType() ?
  2252. EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
  2253. MakeAddrLValue(addr, T, AlignmentSource::Decl);
  2254. bool isLocalStorage = VD->hasLocalStorage();
  2255. bool NonGCable = isLocalStorage &&
  2256. !VD->getType()->isReferenceType() &&
  2257. !isBlockByref;
  2258. if (NonGCable) {
  2259. LV.getQuals().removeObjCGCAttr();
  2260. LV.setNonGC(true);
  2261. }
  2262. bool isImpreciseLifetime =
  2263. (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
  2264. if (isImpreciseLifetime)
  2265. LV.setARCPreciseLifetime(ARCImpreciseLifetime);
  2266. setObjCGCLValueClass(getContext(), E, LV);
  2267. return LV;
  2268. }
  2269. if (const auto *FD = dyn_cast<FunctionDecl>(ND))
  2270. return EmitFunctionDeclLValue(*this, E, FD);
  2271. // FIXME: While we're emitting a binding from an enclosing scope, all other
  2272. // DeclRefExprs we see should be implicitly treated as if they also refer to
  2273. // an enclosing scope.
  2274. if (const auto *BD = dyn_cast<BindingDecl>(ND))
  2275. return EmitLValue(BD->getBinding());
  2276. llvm_unreachable("Unhandled DeclRefExpr");
  2277. }
  2278. LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
  2279. // __extension__ doesn't affect lvalue-ness.
  2280. if (E->getOpcode() == UO_Extension)
  2281. return EmitLValue(E->getSubExpr());
  2282. QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
  2283. switch (E->getOpcode()) {
  2284. default: llvm_unreachable("Unknown unary operator lvalue!");
  2285. case UO_Deref: {
  2286. QualType T = E->getSubExpr()->getType()->getPointeeType();
  2287. assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
  2288. LValueBaseInfo BaseInfo;
  2289. TBAAAccessInfo TBAAInfo;
  2290. Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
  2291. &TBAAInfo);
  2292. LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
  2293. LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
  2294. // We should not generate __weak write barrier on indirect reference
  2295. // of a pointer to object; as in void foo (__weak id *param); *param = 0;
  2296. // But, we continue to generate __strong write barrier on indirect write
  2297. // into a pointer to object.
  2298. if (getLangOpts().ObjC &&
  2299. getLangOpts().getGC() != LangOptions::NonGC &&
  2300. LV.isObjCWeak())
  2301. LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
  2302. return LV;
  2303. }
  2304. case UO_Real:
  2305. case UO_Imag: {
  2306. LValue LV = EmitLValue(E->getSubExpr());
  2307. assert(LV.isSimple() && "real/imag on non-ordinary l-value");
  2308. // __real is valid on scalars. This is a faster way of testing that.
  2309. // __imag can only produce an rvalue on scalars.
  2310. if (E->getOpcode() == UO_Real &&
  2311. !LV.getAddress().getElementType()->isStructTy()) {
  2312. assert(E->getSubExpr()->getType()->isArithmeticType());
  2313. return LV;
  2314. }
  2315. QualType T = ExprTy->castAs<ComplexType>()->getElementType();
  2316. Address Component =
  2317. (E->getOpcode() == UO_Real
  2318. ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
  2319. : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
  2320. LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
  2321. CGM.getTBAAInfoForSubobject(LV, T));
  2322. ElemLV.getQuals().addQualifiers(LV.getQuals());
  2323. return ElemLV;
  2324. }
  2325. case UO_PreInc:
  2326. case UO_PreDec: {
  2327. LValue LV = EmitLValue(E->getSubExpr());
  2328. bool isInc = E->getOpcode() == UO_PreInc;
  2329. if (E->getType()->isAnyComplexType())
  2330. EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
  2331. else
  2332. EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
  2333. return LV;
  2334. }
  2335. }
  2336. }
  2337. LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
  2338. return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
  2339. E->getType(), AlignmentSource::Decl);
  2340. }
  2341. LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
  2342. return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
  2343. E->getType(), AlignmentSource::Decl);
  2344. }
  2345. LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
  2346. auto SL = E->getFunctionName();
  2347. assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
  2348. StringRef FnName = CurFn->getName();
  2349. if (FnName.startswith("\01"))
  2350. FnName = FnName.substr(1);
  2351. StringRef NameItems[] = {
  2352. PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
  2353. std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
  2354. if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
  2355. std::string Name = SL->getString();
  2356. if (!Name.empty()) {
  2357. unsigned Discriminator =
  2358. CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
  2359. if (Discriminator)
  2360. Name += "_" + Twine(Discriminator + 1).str();
  2361. auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
  2362. return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
  2363. } else {
  2364. auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
  2365. return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
  2366. }
  2367. }
  2368. auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
  2369. return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
  2370. }
  2371. /// Emit a type description suitable for use by a runtime sanitizer library. The
  2372. /// format of a type descriptor is
  2373. ///
  2374. /// \code
  2375. /// { i16 TypeKind, i16 TypeInfo }
  2376. /// \endcode
  2377. ///
  2378. /// followed by an array of i8 containing the type name. TypeKind is 0 for an
  2379. /// integer, 1 for a floating point value, and -1 for anything else.
  2380. llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
  2381. // Only emit each type's descriptor once.
  2382. if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
  2383. return C;
  2384. uint16_t TypeKind = -1;
  2385. uint16_t TypeInfo = 0;
  2386. if (T->isIntegerType()) {
  2387. TypeKind = 0;
  2388. TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
  2389. (T->isSignedIntegerType() ? 1 : 0);
  2390. } else if (T->isFloatingType()) {
  2391. TypeKind = 1;
  2392. TypeInfo = getContext().getTypeSize(T);
  2393. }
  2394. // Format the type name as if for a diagnostic, including quotes and
  2395. // optionally an 'aka'.
  2396. SmallString<32> Buffer;
  2397. CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
  2398. (intptr_t)T.getAsOpaquePtr(),
  2399. StringRef(), StringRef(), None, Buffer,
  2400. None);
  2401. llvm::Constant *Components[] = {
  2402. Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
  2403. llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
  2404. };
  2405. llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
  2406. auto *GV = new llvm::GlobalVariable(
  2407. CGM.getModule(), Descriptor->getType(),
  2408. /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
  2409. GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  2410. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
  2411. // Remember the descriptor for this type.
  2412. CGM.setTypeDescriptorInMap(T, GV);
  2413. return GV;
  2414. }
  2415. llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
  2416. llvm::Type *TargetTy = IntPtrTy;
  2417. if (V->getType() == TargetTy)
  2418. return V;
  2419. // Floating-point types which fit into intptr_t are bitcast to integers
  2420. // and then passed directly (after zero-extension, if necessary).
  2421. if (V->getType()->isFloatingPointTy()) {
  2422. unsigned Bits = V->getType()->getPrimitiveSizeInBits();
  2423. if (Bits <= TargetTy->getIntegerBitWidth())
  2424. V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
  2425. Bits));
  2426. }
  2427. // Integers which fit in intptr_t are zero-extended and passed directly.
  2428. if (V->getType()->isIntegerTy() &&
  2429. V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
  2430. return Builder.CreateZExt(V, TargetTy);
  2431. // Pointers are passed directly, everything else is passed by address.
  2432. if (!V->getType()->isPointerTy()) {
  2433. Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
  2434. Builder.CreateStore(V, Ptr);
  2435. V = Ptr.getPointer();
  2436. }
  2437. return Builder.CreatePtrToInt(V, TargetTy);
  2438. }
  2439. /// Emit a representation of a SourceLocation for passing to a handler
  2440. /// in a sanitizer runtime library. The format for this data is:
  2441. /// \code
  2442. /// struct SourceLocation {
  2443. /// const char *Filename;
  2444. /// int32_t Line, Column;
  2445. /// };
  2446. /// \endcode
  2447. /// For an invalid SourceLocation, the Filename pointer is null.
  2448. llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
  2449. llvm::Constant *Filename;
  2450. int Line, Column;
  2451. PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
  2452. if (PLoc.isValid()) {
  2453. StringRef FilenameString = PLoc.getFilename();
  2454. int PathComponentsToStrip =
  2455. CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
  2456. if (PathComponentsToStrip < 0) {
  2457. assert(PathComponentsToStrip != INT_MIN);
  2458. int PathComponentsToKeep = -PathComponentsToStrip;
  2459. auto I = llvm::sys::path::rbegin(FilenameString);
  2460. auto E = llvm::sys::path::rend(FilenameString);
  2461. while (I != E && --PathComponentsToKeep)
  2462. ++I;
  2463. FilenameString = FilenameString.substr(I - E);
  2464. } else if (PathComponentsToStrip > 0) {
  2465. auto I = llvm::sys::path::begin(FilenameString);
  2466. auto E = llvm::sys::path::end(FilenameString);
  2467. while (I != E && PathComponentsToStrip--)
  2468. ++I;
  2469. if (I != E)
  2470. FilenameString =
  2471. FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
  2472. else
  2473. FilenameString = llvm::sys::path::filename(FilenameString);
  2474. }
  2475. auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
  2476. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
  2477. cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
  2478. Filename = FilenameGV.getPointer();
  2479. Line = PLoc.getLine();
  2480. Column = PLoc.getColumn();
  2481. } else {
  2482. Filename = llvm::Constant::getNullValue(Int8PtrTy);
  2483. Line = Column = 0;
  2484. }
  2485. llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
  2486. Builder.getInt32(Column)};
  2487. return llvm::ConstantStruct::getAnon(Data);
  2488. }
  2489. namespace {
  2490. /// Specify under what conditions this check can be recovered
  2491. enum class CheckRecoverableKind {
  2492. /// Always terminate program execution if this check fails.
  2493. Unrecoverable,
  2494. /// Check supports recovering, runtime has both fatal (noreturn) and
  2495. /// non-fatal handlers for this check.
  2496. Recoverable,
  2497. /// Runtime conditionally aborts, always need to support recovery.
  2498. AlwaysRecoverable
  2499. };
  2500. }
  2501. static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
  2502. assert(Kind.countPopulation() == 1);
  2503. if (Kind == SanitizerKind::Vptr)
  2504. return CheckRecoverableKind::AlwaysRecoverable;
  2505. else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
  2506. return CheckRecoverableKind::Unrecoverable;
  2507. else
  2508. return CheckRecoverableKind::Recoverable;
  2509. }
  2510. namespace {
  2511. struct SanitizerHandlerInfo {
  2512. char const *const Name;
  2513. unsigned Version;
  2514. };
  2515. }
  2516. const SanitizerHandlerInfo SanitizerHandlers[] = {
  2517. #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
  2518. LIST_SANITIZER_CHECKS
  2519. #undef SANITIZER_CHECK
  2520. };
  2521. static void emitCheckHandlerCall(CodeGenFunction &CGF,
  2522. llvm::FunctionType *FnType,
  2523. ArrayRef<llvm::Value *> FnArgs,
  2524. SanitizerHandler CheckHandler,
  2525. CheckRecoverableKind RecoverKind, bool IsFatal,
  2526. llvm::BasicBlock *ContBB) {
  2527. assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
  2528. Optional<ApplyDebugLocation> DL;
  2529. if (!CGF.Builder.getCurrentDebugLocation()) {
  2530. // Ensure that the call has at least an artificial debug location.
  2531. DL.emplace(CGF, SourceLocation());
  2532. }
  2533. bool NeedsAbortSuffix =
  2534. IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
  2535. bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
  2536. const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
  2537. const StringRef CheckName = CheckInfo.Name;
  2538. std::string FnName = "__ubsan_handle_" + CheckName.str();
  2539. if (CheckInfo.Version && !MinimalRuntime)
  2540. FnName += "_v" + llvm::utostr(CheckInfo.Version);
  2541. if (MinimalRuntime)
  2542. FnName += "_minimal";
  2543. if (NeedsAbortSuffix)
  2544. FnName += "_abort";
  2545. bool MayReturn =
  2546. !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
  2547. llvm::AttrBuilder B;
  2548. if (!MayReturn) {
  2549. B.addAttribute(llvm::Attribute::NoReturn)
  2550. .addAttribute(llvm::Attribute::NoUnwind);
  2551. }
  2552. B.addAttribute(llvm::Attribute::UWTable);
  2553. llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
  2554. FnType, FnName,
  2555. llvm::AttributeList::get(CGF.getLLVMContext(),
  2556. llvm::AttributeList::FunctionIndex, B),
  2557. /*Local=*/true);
  2558. llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
  2559. if (!MayReturn) {
  2560. HandlerCall->setDoesNotReturn();
  2561. CGF.Builder.CreateUnreachable();
  2562. } else {
  2563. CGF.Builder.CreateBr(ContBB);
  2564. }
  2565. }
  2566. void CodeGenFunction::EmitCheck(
  2567. ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
  2568. SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
  2569. ArrayRef<llvm::Value *> DynamicArgs) {
  2570. assert(IsSanitizerScope);
  2571. assert(Checked.size() > 0);
  2572. assert(CheckHandler >= 0 &&
  2573. size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
  2574. const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
  2575. llvm::Value *FatalCond = nullptr;
  2576. llvm::Value *RecoverableCond = nullptr;
  2577. llvm::Value *TrapCond = nullptr;
  2578. for (int i = 0, n = Checked.size(); i < n; ++i) {
  2579. llvm::Value *Check = Checked[i].first;
  2580. // -fsanitize-trap= overrides -fsanitize-recover=.
  2581. llvm::Value *&Cond =
  2582. CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
  2583. ? TrapCond
  2584. : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
  2585. ? RecoverableCond
  2586. : FatalCond;
  2587. Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
  2588. }
  2589. if (TrapCond)
  2590. EmitTrapCheck(TrapCond);
  2591. if (!FatalCond && !RecoverableCond)
  2592. return;
  2593. llvm::Value *JointCond;
  2594. if (FatalCond && RecoverableCond)
  2595. JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
  2596. else
  2597. JointCond = FatalCond ? FatalCond : RecoverableCond;
  2598. assert(JointCond);
  2599. CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
  2600. assert(SanOpts.has(Checked[0].second));
  2601. #ifndef NDEBUG
  2602. for (int i = 1, n = Checked.size(); i < n; ++i) {
  2603. assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
  2604. "All recoverable kinds in a single check must be same!");
  2605. assert(SanOpts.has(Checked[i].second));
  2606. }
  2607. #endif
  2608. llvm::BasicBlock *Cont = createBasicBlock("cont");
  2609. llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
  2610. llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
  2611. // Give hint that we very much don't expect to execute the handler
  2612. // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
  2613. llvm::MDBuilder MDHelper(getLLVMContext());
  2614. llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
  2615. Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
  2616. EmitBlock(Handlers);
  2617. // Handler functions take an i8* pointing to the (handler-specific) static
  2618. // information block, followed by a sequence of intptr_t arguments
  2619. // representing operand values.
  2620. SmallVector<llvm::Value *, 4> Args;
  2621. SmallVector<llvm::Type *, 4> ArgTypes;
  2622. if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
  2623. Args.reserve(DynamicArgs.size() + 1);
  2624. ArgTypes.reserve(DynamicArgs.size() + 1);
  2625. // Emit handler arguments and create handler function type.
  2626. if (!StaticArgs.empty()) {
  2627. llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
  2628. auto *InfoPtr =
  2629. new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
  2630. llvm::GlobalVariable::PrivateLinkage, Info);
  2631. InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  2632. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
  2633. Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
  2634. ArgTypes.push_back(Int8PtrTy);
  2635. }
  2636. for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
  2637. Args.push_back(EmitCheckValue(DynamicArgs[i]));
  2638. ArgTypes.push_back(IntPtrTy);
  2639. }
  2640. }
  2641. llvm::FunctionType *FnType =
  2642. llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
  2643. if (!FatalCond || !RecoverableCond) {
  2644. // Simple case: we need to generate a single handler call, either
  2645. // fatal, or non-fatal.
  2646. emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
  2647. (FatalCond != nullptr), Cont);
  2648. } else {
  2649. // Emit two handler calls: first one for set of unrecoverable checks,
  2650. // another one for recoverable.
  2651. llvm::BasicBlock *NonFatalHandlerBB =
  2652. createBasicBlock("non_fatal." + CheckName);
  2653. llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
  2654. Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
  2655. EmitBlock(FatalHandlerBB);
  2656. emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
  2657. NonFatalHandlerBB);
  2658. EmitBlock(NonFatalHandlerBB);
  2659. emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
  2660. Cont);
  2661. }
  2662. EmitBlock(Cont);
  2663. }
  2664. void CodeGenFunction::EmitCfiSlowPathCheck(
  2665. SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
  2666. llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
  2667. llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
  2668. llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
  2669. llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
  2670. llvm::MDBuilder MDHelper(getLLVMContext());
  2671. llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
  2672. BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
  2673. EmitBlock(CheckBB);
  2674. bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
  2675. llvm::CallInst *CheckCall;
  2676. llvm::FunctionCallee SlowPathFn;
  2677. if (WithDiag) {
  2678. llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
  2679. auto *InfoPtr =
  2680. new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
  2681. llvm::GlobalVariable::PrivateLinkage, Info);
  2682. InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  2683. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
  2684. SlowPathFn = CGM.getModule().getOrInsertFunction(
  2685. "__cfi_slowpath_diag",
  2686. llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
  2687. false));
  2688. CheckCall = Builder.CreateCall(
  2689. SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
  2690. } else {
  2691. SlowPathFn = CGM.getModule().getOrInsertFunction(
  2692. "__cfi_slowpath",
  2693. llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
  2694. CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
  2695. }
  2696. CGM.setDSOLocal(
  2697. cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
  2698. CheckCall->setDoesNotThrow();
  2699. EmitBlock(Cont);
  2700. }
  2701. // Emit a stub for __cfi_check function so that the linker knows about this
  2702. // symbol in LTO mode.
  2703. void CodeGenFunction::EmitCfiCheckStub() {
  2704. llvm::Module *M = &CGM.getModule();
  2705. auto &Ctx = M->getContext();
  2706. llvm::Function *F = llvm::Function::Create(
  2707. llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
  2708. llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
  2709. CGM.setDSOLocal(F);
  2710. llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
  2711. // FIXME: consider emitting an intrinsic call like
  2712. // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
  2713. // which can be lowered in CrossDSOCFI pass to the actual contents of
  2714. // __cfi_check. This would allow inlining of __cfi_check calls.
  2715. llvm::CallInst::Create(
  2716. llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
  2717. llvm::ReturnInst::Create(Ctx, nullptr, BB);
  2718. }
  2719. // This function is basically a switch over the CFI failure kind, which is
  2720. // extracted from CFICheckFailData (1st function argument). Each case is either
  2721. // llvm.trap or a call to one of the two runtime handlers, based on
  2722. // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
  2723. // failure kind) traps, but this should really never happen. CFICheckFailData
  2724. // can be nullptr if the calling module has -fsanitize-trap behavior for this
  2725. // check kind; in this case __cfi_check_fail traps as well.
  2726. void CodeGenFunction::EmitCfiCheckFail() {
  2727. SanitizerScope SanScope(this);
  2728. FunctionArgList Args;
  2729. ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
  2730. ImplicitParamDecl::Other);
  2731. ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
  2732. ImplicitParamDecl::Other);
  2733. Args.push_back(&ArgData);
  2734. Args.push_back(&ArgAddr);
  2735. const CGFunctionInfo &FI =
  2736. CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
  2737. llvm::Function *F = llvm::Function::Create(
  2738. llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
  2739. llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
  2740. F->setVisibility(llvm::GlobalValue::HiddenVisibility);
  2741. StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
  2742. SourceLocation());
  2743. // This function should not be affected by blacklist. This function does
  2744. // not have a source location, but "src:*" would still apply. Revert any
  2745. // changes to SanOpts made in StartFunction.
  2746. SanOpts = CGM.getLangOpts().Sanitize;
  2747. llvm::Value *Data =
  2748. EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
  2749. CGM.getContext().VoidPtrTy, ArgData.getLocation());
  2750. llvm::Value *Addr =
  2751. EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
  2752. CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
  2753. // Data == nullptr means the calling module has trap behaviour for this check.
  2754. llvm::Value *DataIsNotNullPtr =
  2755. Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
  2756. EmitTrapCheck(DataIsNotNullPtr);
  2757. llvm::StructType *SourceLocationTy =
  2758. llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
  2759. llvm::StructType *CfiCheckFailDataTy =
  2760. llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
  2761. llvm::Value *V = Builder.CreateConstGEP2_32(
  2762. CfiCheckFailDataTy,
  2763. Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
  2764. 0);
  2765. Address CheckKindAddr(V, getIntAlign());
  2766. llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
  2767. llvm::Value *AllVtables = llvm::MetadataAsValue::get(
  2768. CGM.getLLVMContext(),
  2769. llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
  2770. llvm::Value *ValidVtable = Builder.CreateZExt(
  2771. Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
  2772. {Addr, AllVtables}),
  2773. IntPtrTy);
  2774. const std::pair<int, SanitizerMask> CheckKinds[] = {
  2775. {CFITCK_VCall, SanitizerKind::CFIVCall},
  2776. {CFITCK_NVCall, SanitizerKind::CFINVCall},
  2777. {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
  2778. {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
  2779. {CFITCK_ICall, SanitizerKind::CFIICall}};
  2780. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
  2781. for (auto CheckKindMaskPair : CheckKinds) {
  2782. int Kind = CheckKindMaskPair.first;
  2783. SanitizerMask Mask = CheckKindMaskPair.second;
  2784. llvm::Value *Cond =
  2785. Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
  2786. if (CGM.getLangOpts().Sanitize.has(Mask))
  2787. EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
  2788. {Data, Addr, ValidVtable});
  2789. else
  2790. EmitTrapCheck(Cond);
  2791. }
  2792. FinishFunction();
  2793. // The only reference to this function will be created during LTO link.
  2794. // Make sure it survives until then.
  2795. CGM.addUsedGlobal(F);
  2796. }
  2797. void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
  2798. if (SanOpts.has(SanitizerKind::Unreachable)) {
  2799. SanitizerScope SanScope(this);
  2800. EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
  2801. SanitizerKind::Unreachable),
  2802. SanitizerHandler::BuiltinUnreachable,
  2803. EmitCheckSourceLocation(Loc), None);
  2804. }
  2805. Builder.CreateUnreachable();
  2806. }
  2807. void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
  2808. llvm::BasicBlock *Cont = createBasicBlock("cont");
  2809. // If we're optimizing, collapse all calls to trap down to just one per
  2810. // function to save on code size.
  2811. if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
  2812. TrapBB = createBasicBlock("trap");
  2813. Builder.CreateCondBr(Checked, Cont, TrapBB);
  2814. EmitBlock(TrapBB);
  2815. llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
  2816. TrapCall->setDoesNotReturn();
  2817. TrapCall->setDoesNotThrow();
  2818. Builder.CreateUnreachable();
  2819. } else {
  2820. Builder.CreateCondBr(Checked, Cont, TrapBB);
  2821. }
  2822. EmitBlock(Cont);
  2823. }
  2824. llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
  2825. llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
  2826. if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
  2827. auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
  2828. CGM.getCodeGenOpts().TrapFuncName);
  2829. TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
  2830. }
  2831. return TrapCall;
  2832. }
  2833. Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
  2834. LValueBaseInfo *BaseInfo,
  2835. TBAAAccessInfo *TBAAInfo) {
  2836. assert(E->getType()->isArrayType() &&
  2837. "Array to pointer decay must have array source type!");
  2838. // Expressions of array type can't be bitfields or vector elements.
  2839. LValue LV = EmitLValue(E);
  2840. Address Addr = LV.getAddress();
  2841. // If the array type was an incomplete type, we need to make sure
  2842. // the decay ends up being the right type.
  2843. llvm::Type *NewTy = ConvertType(E->getType());
  2844. Addr = Builder.CreateElementBitCast(Addr, NewTy);
  2845. // Note that VLA pointers are always decayed, so we don't need to do
  2846. // anything here.
  2847. if (!E->getType()->isVariableArrayType()) {
  2848. assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
  2849. "Expected pointer to array");
  2850. Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
  2851. }
  2852. // The result of this decay conversion points to an array element within the
  2853. // base lvalue. However, since TBAA currently does not support representing
  2854. // accesses to elements of member arrays, we conservatively represent accesses
  2855. // to the pointee object as if it had no any base lvalue specified.
  2856. // TODO: Support TBAA for member arrays.
  2857. QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
  2858. if (BaseInfo) *BaseInfo = LV.getBaseInfo();
  2859. if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
  2860. return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
  2861. }
  2862. /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
  2863. /// array to pointer, return the array subexpression.
  2864. static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
  2865. // If this isn't just an array->pointer decay, bail out.
  2866. const auto *CE = dyn_cast<CastExpr>(E);
  2867. if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
  2868. return nullptr;
  2869. // If this is a decay from variable width array, bail out.
  2870. const Expr *SubExpr = CE->getSubExpr();
  2871. if (SubExpr->getType()->isVariableArrayType())
  2872. return nullptr;
  2873. return SubExpr;
  2874. }
  2875. static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
  2876. llvm::Value *ptr,
  2877. ArrayRef<llvm::Value*> indices,
  2878. bool inbounds,
  2879. bool signedIndices,
  2880. SourceLocation loc,
  2881. const llvm::Twine &name = "arrayidx") {
  2882. if (inbounds) {
  2883. return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
  2884. CodeGenFunction::NotSubtraction, loc,
  2885. name);
  2886. } else {
  2887. return CGF.Builder.CreateGEP(ptr, indices, name);
  2888. }
  2889. }
  2890. static CharUnits getArrayElementAlign(CharUnits arrayAlign,
  2891. llvm::Value *idx,
  2892. CharUnits eltSize) {
  2893. // If we have a constant index, we can use the exact offset of the
  2894. // element we're accessing.
  2895. if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
  2896. CharUnits offset = constantIdx->getZExtValue() * eltSize;
  2897. return arrayAlign.alignmentAtOffset(offset);
  2898. // Otherwise, use the worst-case alignment for any element.
  2899. } else {
  2900. return arrayAlign.alignmentOfArrayElement(eltSize);
  2901. }
  2902. }
  2903. static QualType getFixedSizeElementType(const ASTContext &ctx,
  2904. const VariableArrayType *vla) {
  2905. QualType eltType;
  2906. do {
  2907. eltType = vla->getElementType();
  2908. } while ((vla = ctx.getAsVariableArrayType(eltType)));
  2909. return eltType;
  2910. }
  2911. static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
  2912. ArrayRef<llvm::Value *> indices,
  2913. QualType eltType, bool inbounds,
  2914. bool signedIndices, SourceLocation loc,
  2915. const llvm::Twine &name = "arrayidx") {
  2916. // All the indices except that last must be zero.
  2917. #ifndef NDEBUG
  2918. for (auto idx : indices.drop_back())
  2919. assert(isa<llvm::ConstantInt>(idx) &&
  2920. cast<llvm::ConstantInt>(idx)->isZero());
  2921. #endif
  2922. // Determine the element size of the statically-sized base. This is
  2923. // the thing that the indices are expressed in terms of.
  2924. if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
  2925. eltType = getFixedSizeElementType(CGF.getContext(), vla);
  2926. }
  2927. // We can use that to compute the best alignment of the element.
  2928. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
  2929. CharUnits eltAlign =
  2930. getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
  2931. llvm::Value *eltPtr = emitArraySubscriptGEP(
  2932. CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
  2933. return Address(eltPtr, eltAlign);
  2934. }
  2935. LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
  2936. bool Accessed) {
  2937. // The index must always be an integer, which is not an aggregate. Emit it
  2938. // in lexical order (this complexity is, sadly, required by C++17).
  2939. llvm::Value *IdxPre =
  2940. (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
  2941. bool SignedIndices = false;
  2942. auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
  2943. auto *Idx = IdxPre;
  2944. if (E->getLHS() != E->getIdx()) {
  2945. assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
  2946. Idx = EmitScalarExpr(E->getIdx());
  2947. }
  2948. QualType IdxTy = E->getIdx()->getType();
  2949. bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
  2950. SignedIndices |= IdxSigned;
  2951. if (SanOpts.has(SanitizerKind::ArrayBounds))
  2952. EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
  2953. // Extend or truncate the index type to 32 or 64-bits.
  2954. if (Promote && Idx->getType() != IntPtrTy)
  2955. Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
  2956. return Idx;
  2957. };
  2958. IdxPre = nullptr;
  2959. // If the base is a vector type, then we are forming a vector element lvalue
  2960. // with this subscript.
  2961. if (E->getBase()->getType()->isVectorType() &&
  2962. !isa<ExtVectorElementExpr>(E->getBase())) {
  2963. // Emit the vector as an lvalue to get its address.
  2964. LValue LHS = EmitLValue(E->getBase());
  2965. auto *Idx = EmitIdxAfterBase(/*Promote*/false);
  2966. assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
  2967. return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
  2968. LHS.getBaseInfo(), TBAAAccessInfo());
  2969. }
  2970. // All the other cases basically behave like simple offsetting.
  2971. // Handle the extvector case we ignored above.
  2972. if (isa<ExtVectorElementExpr>(E->getBase())) {
  2973. LValue LV = EmitLValue(E->getBase());
  2974. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  2975. Address Addr = EmitExtVectorElementLValue(LV);
  2976. QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
  2977. Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
  2978. SignedIndices, E->getExprLoc());
  2979. return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
  2980. CGM.getTBAAInfoForSubobject(LV, EltType));
  2981. }
  2982. LValueBaseInfo EltBaseInfo;
  2983. TBAAAccessInfo EltTBAAInfo;
  2984. Address Addr = Address::invalid();
  2985. if (const VariableArrayType *vla =
  2986. getContext().getAsVariableArrayType(E->getType())) {
  2987. // The base must be a pointer, which is not an aggregate. Emit
  2988. // it. It needs to be emitted first in case it's what captures
  2989. // the VLA bounds.
  2990. Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
  2991. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  2992. // The element count here is the total number of non-VLA elements.
  2993. llvm::Value *numElements = getVLASize(vla).NumElts;
  2994. // Effectively, the multiply by the VLA size is part of the GEP.
  2995. // GEP indexes are signed, and scaling an index isn't permitted to
  2996. // signed-overflow, so we use the same semantics for our explicit
  2997. // multiply. We suppress this if overflow is not undefined behavior.
  2998. if (getLangOpts().isSignedOverflowDefined()) {
  2999. Idx = Builder.CreateMul(Idx, numElements);
  3000. } else {
  3001. Idx = Builder.CreateNSWMul(Idx, numElements);
  3002. }
  3003. Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
  3004. !getLangOpts().isSignedOverflowDefined(),
  3005. SignedIndices, E->getExprLoc());
  3006. } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
  3007. // Indexing over an interface, as in "NSString *P; P[4];"
  3008. // Emit the base pointer.
  3009. Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
  3010. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  3011. CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
  3012. llvm::Value *InterfaceSizeVal =
  3013. llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
  3014. llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
  3015. // We don't necessarily build correct LLVM struct types for ObjC
  3016. // interfaces, so we can't rely on GEP to do this scaling
  3017. // correctly, so we need to cast to i8*. FIXME: is this actually
  3018. // true? A lot of other things in the fragile ABI would break...
  3019. llvm::Type *OrigBaseTy = Addr.getType();
  3020. Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
  3021. // Do the GEP.
  3022. CharUnits EltAlign =
  3023. getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
  3024. llvm::Value *EltPtr =
  3025. emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
  3026. SignedIndices, E->getExprLoc());
  3027. Addr = Address(EltPtr, EltAlign);
  3028. // Cast back.
  3029. Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
  3030. } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
  3031. // If this is A[i] where A is an array, the frontend will have decayed the
  3032. // base to be a ArrayToPointerDecay implicit cast. While correct, it is
  3033. // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
  3034. // "gep x, i" here. Emit one "gep A, 0, i".
  3035. assert(Array->getType()->isArrayType() &&
  3036. "Array to pointer decay must have array source type!");
  3037. LValue ArrayLV;
  3038. // For simple multidimensional array indexing, set the 'accessed' flag for
  3039. // better bounds-checking of the base expression.
  3040. if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
  3041. ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
  3042. else
  3043. ArrayLV = EmitLValue(Array);
  3044. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  3045. // Propagate the alignment from the array itself to the result.
  3046. Addr = emitArraySubscriptGEP(
  3047. *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
  3048. E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
  3049. E->getExprLoc());
  3050. EltBaseInfo = ArrayLV.getBaseInfo();
  3051. EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
  3052. } else {
  3053. // The base must be a pointer; emit it with an estimate of its alignment.
  3054. Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
  3055. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  3056. Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
  3057. !getLangOpts().isSignedOverflowDefined(),
  3058. SignedIndices, E->getExprLoc());
  3059. }
  3060. LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
  3061. if (getLangOpts().ObjC &&
  3062. getLangOpts().getGC() != LangOptions::NonGC) {
  3063. LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
  3064. setObjCGCLValueClass(getContext(), E, LV);
  3065. }
  3066. return LV;
  3067. }
  3068. static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
  3069. LValueBaseInfo &BaseInfo,
  3070. TBAAAccessInfo &TBAAInfo,
  3071. QualType BaseTy, QualType ElTy,
  3072. bool IsLowerBound) {
  3073. LValue BaseLVal;
  3074. if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
  3075. BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
  3076. if (BaseTy->isArrayType()) {
  3077. Address Addr = BaseLVal.getAddress();
  3078. BaseInfo = BaseLVal.getBaseInfo();
  3079. // If the array type was an incomplete type, we need to make sure
  3080. // the decay ends up being the right type.
  3081. llvm::Type *NewTy = CGF.ConvertType(BaseTy);
  3082. Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
  3083. // Note that VLA pointers are always decayed, so we don't need to do
  3084. // anything here.
  3085. if (!BaseTy->isVariableArrayType()) {
  3086. assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
  3087. "Expected pointer to array");
  3088. Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
  3089. }
  3090. return CGF.Builder.CreateElementBitCast(Addr,
  3091. CGF.ConvertTypeForMem(ElTy));
  3092. }
  3093. LValueBaseInfo TypeBaseInfo;
  3094. TBAAAccessInfo TypeTBAAInfo;
  3095. CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
  3096. &TypeTBAAInfo);
  3097. BaseInfo.mergeForCast(TypeBaseInfo);
  3098. TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
  3099. return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
  3100. }
  3101. return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
  3102. }
  3103. LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
  3104. bool IsLowerBound) {
  3105. QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
  3106. QualType ResultExprTy;
  3107. if (auto *AT = getContext().getAsArrayType(BaseTy))
  3108. ResultExprTy = AT->getElementType();
  3109. else
  3110. ResultExprTy = BaseTy->getPointeeType();
  3111. llvm::Value *Idx = nullptr;
  3112. if (IsLowerBound || E->getColonLoc().isInvalid()) {
  3113. // Requesting lower bound or upper bound, but without provided length and
  3114. // without ':' symbol for the default length -> length = 1.
  3115. // Idx = LowerBound ?: 0;
  3116. if (auto *LowerBound = E->getLowerBound()) {
  3117. Idx = Builder.CreateIntCast(
  3118. EmitScalarExpr(LowerBound), IntPtrTy,
  3119. LowerBound->getType()->hasSignedIntegerRepresentation());
  3120. } else
  3121. Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
  3122. } else {
  3123. // Try to emit length or lower bound as constant. If this is possible, 1
  3124. // is subtracted from constant length or lower bound. Otherwise, emit LLVM
  3125. // IR (LB + Len) - 1.
  3126. auto &C = CGM.getContext();
  3127. auto *Length = E->getLength();
  3128. llvm::APSInt ConstLength;
  3129. if (Length) {
  3130. // Idx = LowerBound + Length - 1;
  3131. if (Length->isIntegerConstantExpr(ConstLength, C)) {
  3132. ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
  3133. Length = nullptr;
  3134. }
  3135. auto *LowerBound = E->getLowerBound();
  3136. llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
  3137. if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
  3138. ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
  3139. LowerBound = nullptr;
  3140. }
  3141. if (!Length)
  3142. --ConstLength;
  3143. else if (!LowerBound)
  3144. --ConstLowerBound;
  3145. if (Length || LowerBound) {
  3146. auto *LowerBoundVal =
  3147. LowerBound
  3148. ? Builder.CreateIntCast(
  3149. EmitScalarExpr(LowerBound), IntPtrTy,
  3150. LowerBound->getType()->hasSignedIntegerRepresentation())
  3151. : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
  3152. auto *LengthVal =
  3153. Length
  3154. ? Builder.CreateIntCast(
  3155. EmitScalarExpr(Length), IntPtrTy,
  3156. Length->getType()->hasSignedIntegerRepresentation())
  3157. : llvm::ConstantInt::get(IntPtrTy, ConstLength);
  3158. Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
  3159. /*HasNUW=*/false,
  3160. !getLangOpts().isSignedOverflowDefined());
  3161. if (Length && LowerBound) {
  3162. Idx = Builder.CreateSub(
  3163. Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
  3164. /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
  3165. }
  3166. } else
  3167. Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
  3168. } else {
  3169. // Idx = ArraySize - 1;
  3170. QualType ArrayTy = BaseTy->isPointerType()
  3171. ? E->getBase()->IgnoreParenImpCasts()->getType()
  3172. : BaseTy;
  3173. if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
  3174. Length = VAT->getSizeExpr();
  3175. if (Length->isIntegerConstantExpr(ConstLength, C))
  3176. Length = nullptr;
  3177. } else {
  3178. auto *CAT = C.getAsConstantArrayType(ArrayTy);
  3179. ConstLength = CAT->getSize();
  3180. }
  3181. if (Length) {
  3182. auto *LengthVal = Builder.CreateIntCast(
  3183. EmitScalarExpr(Length), IntPtrTy,
  3184. Length->getType()->hasSignedIntegerRepresentation());
  3185. Idx = Builder.CreateSub(
  3186. LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
  3187. /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
  3188. } else {
  3189. ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
  3190. --ConstLength;
  3191. Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
  3192. }
  3193. }
  3194. }
  3195. assert(Idx);
  3196. Address EltPtr = Address::invalid();
  3197. LValueBaseInfo BaseInfo;
  3198. TBAAAccessInfo TBAAInfo;
  3199. if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
  3200. // The base must be a pointer, which is not an aggregate. Emit
  3201. // it. It needs to be emitted first in case it's what captures
  3202. // the VLA bounds.
  3203. Address Base =
  3204. emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
  3205. BaseTy, VLA->getElementType(), IsLowerBound);
  3206. // The element count here is the total number of non-VLA elements.
  3207. llvm::Value *NumElements = getVLASize(VLA).NumElts;
  3208. // Effectively, the multiply by the VLA size is part of the GEP.
  3209. // GEP indexes are signed, and scaling an index isn't permitted to
  3210. // signed-overflow, so we use the same semantics for our explicit
  3211. // multiply. We suppress this if overflow is not undefined behavior.
  3212. if (getLangOpts().isSignedOverflowDefined())
  3213. Idx = Builder.CreateMul(Idx, NumElements);
  3214. else
  3215. Idx = Builder.CreateNSWMul(Idx, NumElements);
  3216. EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
  3217. !getLangOpts().isSignedOverflowDefined(),
  3218. /*SignedIndices=*/false, E->getExprLoc());
  3219. } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
  3220. // If this is A[i] where A is an array, the frontend will have decayed the
  3221. // base to be a ArrayToPointerDecay implicit cast. While correct, it is
  3222. // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
  3223. // "gep x, i" here. Emit one "gep A, 0, i".
  3224. assert(Array->getType()->isArrayType() &&
  3225. "Array to pointer decay must have array source type!");
  3226. LValue ArrayLV;
  3227. // For simple multidimensional array indexing, set the 'accessed' flag for
  3228. // better bounds-checking of the base expression.
  3229. if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
  3230. ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
  3231. else
  3232. ArrayLV = EmitLValue(Array);
  3233. // Propagate the alignment from the array itself to the result.
  3234. EltPtr = emitArraySubscriptGEP(
  3235. *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
  3236. ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
  3237. /*SignedIndices=*/false, E->getExprLoc());
  3238. BaseInfo = ArrayLV.getBaseInfo();
  3239. TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
  3240. } else {
  3241. Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
  3242. TBAAInfo, BaseTy, ResultExprTy,
  3243. IsLowerBound);
  3244. EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
  3245. !getLangOpts().isSignedOverflowDefined(),
  3246. /*SignedIndices=*/false, E->getExprLoc());
  3247. }
  3248. return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
  3249. }
  3250. LValue CodeGenFunction::
  3251. EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
  3252. // Emit the base vector as an l-value.
  3253. LValue Base;
  3254. // ExtVectorElementExpr's base can either be a vector or pointer to vector.
  3255. if (E->isArrow()) {
  3256. // If it is a pointer to a vector, emit the address and form an lvalue with
  3257. // it.
  3258. LValueBaseInfo BaseInfo;
  3259. TBAAAccessInfo TBAAInfo;
  3260. Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
  3261. const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
  3262. Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
  3263. Base.getQuals().removeObjCGCAttr();
  3264. } else if (E->getBase()->isGLValue()) {
  3265. // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
  3266. // emit the base as an lvalue.
  3267. assert(E->getBase()->getType()->isVectorType());
  3268. Base = EmitLValue(E->getBase());
  3269. } else {
  3270. // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
  3271. assert(E->getBase()->getType()->isVectorType() &&
  3272. "Result must be a vector");
  3273. llvm::Value *Vec = EmitScalarExpr(E->getBase());
  3274. // Store the vector to memory (because LValue wants an address).
  3275. Address VecMem = CreateMemTemp(E->getBase()->getType());
  3276. Builder.CreateStore(Vec, VecMem);
  3277. Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
  3278. AlignmentSource::Decl);
  3279. }
  3280. QualType type =
  3281. E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
  3282. // Encode the element access list into a vector of unsigned indices.
  3283. SmallVector<uint32_t, 4> Indices;
  3284. E->getEncodedElementAccess(Indices);
  3285. if (Base.isSimple()) {
  3286. llvm::Constant *CV =
  3287. llvm::ConstantDataVector::get(getLLVMContext(), Indices);
  3288. return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
  3289. Base.getBaseInfo(), TBAAAccessInfo());
  3290. }
  3291. assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
  3292. llvm::Constant *BaseElts = Base.getExtVectorElts();
  3293. SmallVector<llvm::Constant *, 4> CElts;
  3294. for (unsigned i = 0, e = Indices.size(); i != e; ++i)
  3295. CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
  3296. llvm::Constant *CV = llvm::ConstantVector::get(CElts);
  3297. return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
  3298. Base.getBaseInfo(), TBAAAccessInfo());
  3299. }
  3300. LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
  3301. if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
  3302. EmitIgnoredExpr(E->getBase());
  3303. return EmitDeclRefLValue(DRE);
  3304. }
  3305. Expr *BaseExpr = E->getBase();
  3306. // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
  3307. LValue BaseLV;
  3308. if (E->isArrow()) {
  3309. LValueBaseInfo BaseInfo;
  3310. TBAAAccessInfo TBAAInfo;
  3311. Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
  3312. QualType PtrTy = BaseExpr->getType()->getPointeeType();
  3313. SanitizerSet SkippedChecks;
  3314. bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
  3315. if (IsBaseCXXThis)
  3316. SkippedChecks.set(SanitizerKind::Alignment, true);
  3317. if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
  3318. SkippedChecks.set(SanitizerKind::Null, true);
  3319. EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
  3320. /*Alignment=*/CharUnits::Zero(), SkippedChecks);
  3321. BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
  3322. } else
  3323. BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
  3324. NamedDecl *ND = E->getMemberDecl();
  3325. if (auto *Field = dyn_cast<FieldDecl>(ND)) {
  3326. LValue LV = EmitLValueForField(BaseLV, Field);
  3327. setObjCGCLValueClass(getContext(), E, LV);
  3328. return LV;
  3329. }
  3330. if (const auto *FD = dyn_cast<FunctionDecl>(ND))
  3331. return EmitFunctionDeclLValue(*this, E, FD);
  3332. llvm_unreachable("Unhandled member declaration!");
  3333. }
  3334. /// Given that we are currently emitting a lambda, emit an l-value for
  3335. /// one of its members.
  3336. LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
  3337. assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
  3338. assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
  3339. QualType LambdaTagType =
  3340. getContext().getTagDeclType(Field->getParent());
  3341. LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
  3342. return EmitLValueForField(LambdaLV, Field);
  3343. }
  3344. /// Drill down to the storage of a field without walking into
  3345. /// reference types.
  3346. ///
  3347. /// The resulting address doesn't necessarily have the right type.
  3348. static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
  3349. const FieldDecl *field) {
  3350. const RecordDecl *rec = field->getParent();
  3351. unsigned idx =
  3352. CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
  3353. return CGF.Builder.CreateStructGEP(base, idx, field->getName());
  3354. }
  3355. static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
  3356. const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
  3357. if (!RD)
  3358. return false;
  3359. if (RD->isDynamicClass())
  3360. return true;
  3361. for (const auto &Base : RD->bases())
  3362. if (hasAnyVptr(Base.getType(), Context))
  3363. return true;
  3364. for (const FieldDecl *Field : RD->fields())
  3365. if (hasAnyVptr(Field->getType(), Context))
  3366. return true;
  3367. return false;
  3368. }
  3369. LValue CodeGenFunction::EmitLValueForField(LValue base,
  3370. const FieldDecl *field) {
  3371. LValueBaseInfo BaseInfo = base.getBaseInfo();
  3372. if (field->isBitField()) {
  3373. const CGRecordLayout &RL =
  3374. CGM.getTypes().getCGRecordLayout(field->getParent());
  3375. const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
  3376. Address Addr = base.getAddress();
  3377. unsigned Idx = RL.getLLVMFieldNo(field);
  3378. if (Idx != 0)
  3379. // For structs, we GEP to the field that the record layout suggests.
  3380. Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
  3381. // Get the access type.
  3382. llvm::Type *FieldIntTy =
  3383. llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
  3384. if (Addr.getElementType() != FieldIntTy)
  3385. Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
  3386. QualType fieldType =
  3387. field->getType().withCVRQualifiers(base.getVRQualifiers());
  3388. // TODO: Support TBAA for bit fields.
  3389. LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
  3390. return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
  3391. TBAAAccessInfo());
  3392. }
  3393. // Fields of may-alias structures are may-alias themselves.
  3394. // FIXME: this should get propagated down through anonymous structs
  3395. // and unions.
  3396. QualType FieldType = field->getType();
  3397. const RecordDecl *rec = field->getParent();
  3398. AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
  3399. LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
  3400. TBAAAccessInfo FieldTBAAInfo;
  3401. if (base.getTBAAInfo().isMayAlias() ||
  3402. rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
  3403. FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
  3404. } else if (rec->isUnion()) {
  3405. // TODO: Support TBAA for unions.
  3406. FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
  3407. } else {
  3408. // If no base type been assigned for the base access, then try to generate
  3409. // one for this base lvalue.
  3410. FieldTBAAInfo = base.getTBAAInfo();
  3411. if (!FieldTBAAInfo.BaseType) {
  3412. FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
  3413. assert(!FieldTBAAInfo.Offset &&
  3414. "Nonzero offset for an access with no base type!");
  3415. }
  3416. // Adjust offset to be relative to the base type.
  3417. const ASTRecordLayout &Layout =
  3418. getContext().getASTRecordLayout(field->getParent());
  3419. unsigned CharWidth = getContext().getCharWidth();
  3420. if (FieldTBAAInfo.BaseType)
  3421. FieldTBAAInfo.Offset +=
  3422. Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
  3423. // Update the final access type and size.
  3424. FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
  3425. FieldTBAAInfo.Size =
  3426. getContext().getTypeSizeInChars(FieldType).getQuantity();
  3427. }
  3428. Address addr = base.getAddress();
  3429. if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
  3430. if (CGM.getCodeGenOpts().StrictVTablePointers &&
  3431. ClassDef->isDynamicClass()) {
  3432. // Getting to any field of dynamic object requires stripping dynamic
  3433. // information provided by invariant.group. This is because accessing
  3434. // fields may leak the real address of dynamic object, which could result
  3435. // in miscompilation when leaked pointer would be compared.
  3436. auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
  3437. addr = Address(stripped, addr.getAlignment());
  3438. }
  3439. }
  3440. unsigned RecordCVR = base.getVRQualifiers();
  3441. if (rec->isUnion()) {
  3442. // For unions, there is no pointer adjustment.
  3443. assert(!FieldType->isReferenceType() && "union has reference member");
  3444. if (CGM.getCodeGenOpts().StrictVTablePointers &&
  3445. hasAnyVptr(FieldType, getContext()))
  3446. // Because unions can easily skip invariant.barriers, we need to add
  3447. // a barrier every time CXXRecord field with vptr is referenced.
  3448. addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
  3449. addr.getAlignment());
  3450. } else {
  3451. // For structs, we GEP to the field that the record layout suggests.
  3452. addr = emitAddrOfFieldStorage(*this, addr, field);
  3453. // If this is a reference field, load the reference right now.
  3454. if (FieldType->isReferenceType()) {
  3455. LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
  3456. FieldTBAAInfo);
  3457. if (RecordCVR & Qualifiers::Volatile)
  3458. RefLVal.getQuals().addVolatile();
  3459. addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
  3460. // Qualifiers on the struct don't apply to the referencee.
  3461. RecordCVR = 0;
  3462. FieldType = FieldType->getPointeeType();
  3463. }
  3464. }
  3465. // Make sure that the address is pointing to the right type. This is critical
  3466. // for both unions and structs. A union needs a bitcast, a struct element
  3467. // will need a bitcast if the LLVM type laid out doesn't match the desired
  3468. // type.
  3469. addr = Builder.CreateElementBitCast(
  3470. addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
  3471. if (field->hasAttr<AnnotateAttr>())
  3472. addr = EmitFieldAnnotations(field, addr);
  3473. LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
  3474. LV.getQuals().addCVRQualifiers(RecordCVR);
  3475. // __weak attribute on a field is ignored.
  3476. if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
  3477. LV.getQuals().removeObjCGCAttr();
  3478. return LV;
  3479. }
  3480. LValue
  3481. CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
  3482. const FieldDecl *Field) {
  3483. QualType FieldType = Field->getType();
  3484. if (!FieldType->isReferenceType())
  3485. return EmitLValueForField(Base, Field);
  3486. Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
  3487. // Make sure that the address is pointing to the right type.
  3488. llvm::Type *llvmType = ConvertTypeForMem(FieldType);
  3489. V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
  3490. // TODO: Generate TBAA information that describes this access as a structure
  3491. // member access and not just an access to an object of the field's type. This
  3492. // should be similar to what we do in EmitLValueForField().
  3493. LValueBaseInfo BaseInfo = Base.getBaseInfo();
  3494. AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
  3495. LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
  3496. return MakeAddrLValue(V, FieldType, FieldBaseInfo,
  3497. CGM.getTBAAInfoForSubobject(Base, FieldType));
  3498. }
  3499. LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
  3500. if (E->isFileScope()) {
  3501. ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
  3502. return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
  3503. }
  3504. if (E->getType()->isVariablyModifiedType())
  3505. // make sure to emit the VLA size.
  3506. EmitVariablyModifiedType(E->getType());
  3507. Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
  3508. const Expr *InitExpr = E->getInitializer();
  3509. LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
  3510. EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
  3511. /*Init*/ true);
  3512. return Result;
  3513. }
  3514. LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
  3515. if (!E->isGLValue())
  3516. // Initializing an aggregate temporary in C++11: T{...}.
  3517. return EmitAggExprToLValue(E);
  3518. // An lvalue initializer list must be initializing a reference.
  3519. assert(E->isTransparent() && "non-transparent glvalue init list");
  3520. return EmitLValue(E->getInit(0));
  3521. }
  3522. /// Emit the operand of a glvalue conditional operator. This is either a glvalue
  3523. /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
  3524. /// LValue is returned and the current block has been terminated.
  3525. static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
  3526. const Expr *Operand) {
  3527. if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
  3528. CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
  3529. return None;
  3530. }
  3531. return CGF.EmitLValue(Operand);
  3532. }
  3533. LValue CodeGenFunction::
  3534. EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
  3535. if (!expr->isGLValue()) {
  3536. // ?: here should be an aggregate.
  3537. assert(hasAggregateEvaluationKind(expr->getType()) &&
  3538. "Unexpected conditional operator!");
  3539. return EmitAggExprToLValue(expr);
  3540. }
  3541. OpaqueValueMapping binding(*this, expr);
  3542. const Expr *condExpr = expr->getCond();
  3543. bool CondExprBool;
  3544. if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
  3545. const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
  3546. if (!CondExprBool) std::swap(live, dead);
  3547. if (!ContainsLabel(dead)) {
  3548. // If the true case is live, we need to track its region.
  3549. if (CondExprBool)
  3550. incrementProfileCounter(expr);
  3551. return EmitLValue(live);
  3552. }
  3553. }
  3554. llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
  3555. llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
  3556. llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
  3557. ConditionalEvaluation eval(*this);
  3558. EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
  3559. // Any temporaries created here are conditional.
  3560. EmitBlock(lhsBlock);
  3561. incrementProfileCounter(expr);
  3562. eval.begin(*this);
  3563. Optional<LValue> lhs =
  3564. EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
  3565. eval.end(*this);
  3566. if (lhs && !lhs->isSimple())
  3567. return EmitUnsupportedLValue(expr, "conditional operator");
  3568. lhsBlock = Builder.GetInsertBlock();
  3569. if (lhs)
  3570. Builder.CreateBr(contBlock);
  3571. // Any temporaries created here are conditional.
  3572. EmitBlock(rhsBlock);
  3573. eval.begin(*this);
  3574. Optional<LValue> rhs =
  3575. EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
  3576. eval.end(*this);
  3577. if (rhs && !rhs->isSimple())
  3578. return EmitUnsupportedLValue(expr, "conditional operator");
  3579. rhsBlock = Builder.GetInsertBlock();
  3580. EmitBlock(contBlock);
  3581. if (lhs && rhs) {
  3582. llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
  3583. 2, "cond-lvalue");
  3584. phi->addIncoming(lhs->getPointer(), lhsBlock);
  3585. phi->addIncoming(rhs->getPointer(), rhsBlock);
  3586. Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
  3587. AlignmentSource alignSource =
  3588. std::max(lhs->getBaseInfo().getAlignmentSource(),
  3589. rhs->getBaseInfo().getAlignmentSource());
  3590. TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
  3591. lhs->getTBAAInfo(), rhs->getTBAAInfo());
  3592. return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
  3593. TBAAInfo);
  3594. } else {
  3595. assert((lhs || rhs) &&
  3596. "both operands of glvalue conditional are throw-expressions?");
  3597. return lhs ? *lhs : *rhs;
  3598. }
  3599. }
  3600. /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
  3601. /// type. If the cast is to a reference, we can have the usual lvalue result,
  3602. /// otherwise if a cast is needed by the code generator in an lvalue context,
  3603. /// then it must mean that we need the address of an aggregate in order to
  3604. /// access one of its members. This can happen for all the reasons that casts
  3605. /// are permitted with aggregate result, including noop aggregate casts, and
  3606. /// cast from scalar to union.
  3607. LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
  3608. switch (E->getCastKind()) {
  3609. case CK_ToVoid:
  3610. case CK_BitCast:
  3611. case CK_ArrayToPointerDecay:
  3612. case CK_FunctionToPointerDecay:
  3613. case CK_NullToMemberPointer:
  3614. case CK_NullToPointer:
  3615. case CK_IntegralToPointer:
  3616. case CK_PointerToIntegral:
  3617. case CK_PointerToBoolean:
  3618. case CK_VectorSplat:
  3619. case CK_IntegralCast:
  3620. case CK_BooleanToSignedIntegral:
  3621. case CK_IntegralToBoolean:
  3622. case CK_IntegralToFloating:
  3623. case CK_FloatingToIntegral:
  3624. case CK_FloatingToBoolean:
  3625. case CK_FloatingCast:
  3626. case CK_FloatingRealToComplex:
  3627. case CK_FloatingComplexToReal:
  3628. case CK_FloatingComplexToBoolean:
  3629. case CK_FloatingComplexCast:
  3630. case CK_FloatingComplexToIntegralComplex:
  3631. case CK_IntegralRealToComplex:
  3632. case CK_IntegralComplexToReal:
  3633. case CK_IntegralComplexToBoolean:
  3634. case CK_IntegralComplexCast:
  3635. case CK_IntegralComplexToFloatingComplex:
  3636. case CK_DerivedToBaseMemberPointer:
  3637. case CK_BaseToDerivedMemberPointer:
  3638. case CK_MemberPointerToBoolean:
  3639. case CK_ReinterpretMemberPointer:
  3640. case CK_AnyPointerToBlockPointerCast:
  3641. case CK_ARCProduceObject:
  3642. case CK_ARCConsumeObject:
  3643. case CK_ARCReclaimReturnedObject:
  3644. case CK_ARCExtendBlockObject:
  3645. case CK_CopyAndAutoreleaseBlockObject:
  3646. case CK_IntToOCLSampler:
  3647. case CK_FixedPointCast:
  3648. case CK_FixedPointToBoolean:
  3649. return EmitUnsupportedLValue(E, "unexpected cast lvalue");
  3650. case CK_Dependent:
  3651. llvm_unreachable("dependent cast kind in IR gen!");
  3652. case CK_BuiltinFnToFnPtr:
  3653. llvm_unreachable("builtin functions are handled elsewhere");
  3654. // These are never l-values; just use the aggregate emission code.
  3655. case CK_NonAtomicToAtomic:
  3656. case CK_AtomicToNonAtomic:
  3657. return EmitAggExprToLValue(E);
  3658. case CK_Dynamic: {
  3659. LValue LV = EmitLValue(E->getSubExpr());
  3660. Address V = LV.getAddress();
  3661. const auto *DCE = cast<CXXDynamicCastExpr>(E);
  3662. return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
  3663. }
  3664. case CK_ConstructorConversion:
  3665. case CK_UserDefinedConversion:
  3666. case CK_CPointerToObjCPointerCast:
  3667. case CK_BlockPointerToObjCPointerCast:
  3668. case CK_NoOp:
  3669. case CK_LValueToRValue:
  3670. return EmitLValue(E->getSubExpr());
  3671. case CK_UncheckedDerivedToBase:
  3672. case CK_DerivedToBase: {
  3673. const RecordType *DerivedClassTy =
  3674. E->getSubExpr()->getType()->getAs<RecordType>();
  3675. auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
  3676. LValue LV = EmitLValue(E->getSubExpr());
  3677. Address This = LV.getAddress();
  3678. // Perform the derived-to-base conversion
  3679. Address Base = GetAddressOfBaseClass(
  3680. This, DerivedClassDecl, E->path_begin(), E->path_end(),
  3681. /*NullCheckValue=*/false, E->getExprLoc());
  3682. // TODO: Support accesses to members of base classes in TBAA. For now, we
  3683. // conservatively pretend that the complete object is of the base class
  3684. // type.
  3685. return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
  3686. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3687. }
  3688. case CK_ToUnion:
  3689. return EmitAggExprToLValue(E);
  3690. case CK_BaseToDerived: {
  3691. const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
  3692. auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
  3693. LValue LV = EmitLValue(E->getSubExpr());
  3694. // Perform the base-to-derived conversion
  3695. Address Derived =
  3696. GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
  3697. E->path_begin(), E->path_end(),
  3698. /*NullCheckValue=*/false);
  3699. // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
  3700. // performed and the object is not of the derived type.
  3701. if (sanitizePerformTypeCheck())
  3702. EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
  3703. Derived.getPointer(), E->getType());
  3704. if (SanOpts.has(SanitizerKind::CFIDerivedCast))
  3705. EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
  3706. /*MayBeNull=*/false, CFITCK_DerivedCast,
  3707. E->getBeginLoc());
  3708. return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
  3709. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3710. }
  3711. case CK_LValueBitCast: {
  3712. // This must be a reinterpret_cast (or c-style equivalent).
  3713. const auto *CE = cast<ExplicitCastExpr>(E);
  3714. CGM.EmitExplicitCastExprType(CE, this);
  3715. LValue LV = EmitLValue(E->getSubExpr());
  3716. Address V = Builder.CreateBitCast(LV.getAddress(),
  3717. ConvertType(CE->getTypeAsWritten()));
  3718. if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
  3719. EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
  3720. /*MayBeNull=*/false, CFITCK_UnrelatedCast,
  3721. E->getBeginLoc());
  3722. return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
  3723. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3724. }
  3725. case CK_AddressSpaceConversion: {
  3726. LValue LV = EmitLValue(E->getSubExpr());
  3727. QualType DestTy = getContext().getPointerType(E->getType());
  3728. llvm::Value *V = getTargetHooks().performAddrSpaceCast(
  3729. *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
  3730. E->getType().getAddressSpace(), ConvertType(DestTy));
  3731. return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
  3732. E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
  3733. }
  3734. case CK_ObjCObjectLValueCast: {
  3735. LValue LV = EmitLValue(E->getSubExpr());
  3736. Address V = Builder.CreateElementBitCast(LV.getAddress(),
  3737. ConvertType(E->getType()));
  3738. return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
  3739. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3740. }
  3741. case CK_ZeroToOCLOpaqueType:
  3742. llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
  3743. }
  3744. llvm_unreachable("Unhandled lvalue cast kind?");
  3745. }
  3746. LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
  3747. assert(OpaqueValueMappingData::shouldBindAsLValue(e));
  3748. return getOrCreateOpaqueLValueMapping(e);
  3749. }
  3750. LValue
  3751. CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
  3752. assert(OpaqueValueMapping::shouldBindAsLValue(e));
  3753. llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
  3754. it = OpaqueLValues.find(e);
  3755. if (it != OpaqueLValues.end())
  3756. return it->second;
  3757. assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
  3758. return EmitLValue(e->getSourceExpr());
  3759. }
  3760. RValue
  3761. CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
  3762. assert(!OpaqueValueMapping::shouldBindAsLValue(e));
  3763. llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
  3764. it = OpaqueRValues.find(e);
  3765. if (it != OpaqueRValues.end())
  3766. return it->second;
  3767. assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
  3768. return EmitAnyExpr(e->getSourceExpr());
  3769. }
  3770. RValue CodeGenFunction::EmitRValueForField(LValue LV,
  3771. const FieldDecl *FD,
  3772. SourceLocation Loc) {
  3773. QualType FT = FD->getType();
  3774. LValue FieldLV = EmitLValueForField(LV, FD);
  3775. switch (getEvaluationKind(FT)) {
  3776. case TEK_Complex:
  3777. return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
  3778. case TEK_Aggregate:
  3779. return FieldLV.asAggregateRValue();
  3780. case TEK_Scalar:
  3781. // This routine is used to load fields one-by-one to perform a copy, so
  3782. // don't load reference fields.
  3783. if (FD->getType()->isReferenceType())
  3784. return RValue::get(FieldLV.getPointer());
  3785. return EmitLoadOfLValue(FieldLV, Loc);
  3786. }
  3787. llvm_unreachable("bad evaluation kind");
  3788. }
  3789. //===--------------------------------------------------------------------===//
  3790. // Expression Emission
  3791. //===--------------------------------------------------------------------===//
  3792. RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
  3793. ReturnValueSlot ReturnValue) {
  3794. // Builtins never have block type.
  3795. if (E->getCallee()->getType()->isBlockPointerType())
  3796. return EmitBlockCallExpr(E, ReturnValue);
  3797. if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
  3798. return EmitCXXMemberCallExpr(CE, ReturnValue);
  3799. if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
  3800. return EmitCUDAKernelCallExpr(CE, ReturnValue);
  3801. if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
  3802. if (const CXXMethodDecl *MD =
  3803. dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
  3804. return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
  3805. CGCallee callee = EmitCallee(E->getCallee());
  3806. if (callee.isBuiltin()) {
  3807. return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
  3808. E, ReturnValue);
  3809. }
  3810. if (callee.isPseudoDestructor()) {
  3811. return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
  3812. }
  3813. return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
  3814. }
  3815. /// Emit a CallExpr without considering whether it might be a subclass.
  3816. RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
  3817. ReturnValueSlot ReturnValue) {
  3818. CGCallee Callee = EmitCallee(E->getCallee());
  3819. return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
  3820. }
  3821. static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
  3822. if (auto builtinID = FD->getBuiltinID()) {
  3823. return CGCallee::forBuiltin(builtinID, FD);
  3824. }
  3825. llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
  3826. return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
  3827. }
  3828. CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
  3829. E = E->IgnoreParens();
  3830. // Look through function-to-pointer decay.
  3831. if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3832. if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
  3833. ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
  3834. return EmitCallee(ICE->getSubExpr());
  3835. }
  3836. // Resolve direct calls.
  3837. } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
  3838. if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
  3839. return EmitDirectCallee(*this, FD);
  3840. }
  3841. } else if (auto ME = dyn_cast<MemberExpr>(E)) {
  3842. if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
  3843. EmitIgnoredExpr(ME->getBase());
  3844. return EmitDirectCallee(*this, FD);
  3845. }
  3846. // Look through template substitutions.
  3847. } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  3848. return EmitCallee(NTTP->getReplacement());
  3849. // Treat pseudo-destructor calls differently.
  3850. } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
  3851. return CGCallee::forPseudoDestructor(PDE);
  3852. }
  3853. // Otherwise, we have an indirect reference.
  3854. llvm::Value *calleePtr;
  3855. QualType functionType;
  3856. if (auto ptrType = E->getType()->getAs<PointerType>()) {
  3857. calleePtr = EmitScalarExpr(E);
  3858. functionType = ptrType->getPointeeType();
  3859. } else {
  3860. functionType = E->getType();
  3861. calleePtr = EmitLValue(E).getPointer();
  3862. }
  3863. assert(functionType->isFunctionType());
  3864. GlobalDecl GD;
  3865. if (const auto *VD =
  3866. dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
  3867. GD = GlobalDecl(VD);
  3868. CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
  3869. CGCallee callee(calleeInfo, calleePtr);
  3870. return callee;
  3871. }
  3872. LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
  3873. // Comma expressions just emit their LHS then their RHS as an l-value.
  3874. if (E->getOpcode() == BO_Comma) {
  3875. EmitIgnoredExpr(E->getLHS());
  3876. EnsureInsertPoint();
  3877. return EmitLValue(E->getRHS());
  3878. }
  3879. if (E->getOpcode() == BO_PtrMemD ||
  3880. E->getOpcode() == BO_PtrMemI)
  3881. return EmitPointerToDataMemberBinaryExpr(E);
  3882. assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
  3883. // Note that in all of these cases, __block variables need the RHS
  3884. // evaluated first just in case the variable gets moved by the RHS.
  3885. switch (getEvaluationKind(E->getType())) {
  3886. case TEK_Scalar: {
  3887. switch (E->getLHS()->getType().getObjCLifetime()) {
  3888. case Qualifiers::OCL_Strong:
  3889. return EmitARCStoreStrong(E, /*ignored*/ false).first;
  3890. case Qualifiers::OCL_Autoreleasing:
  3891. return EmitARCStoreAutoreleasing(E).first;
  3892. // No reason to do any of these differently.
  3893. case Qualifiers::OCL_None:
  3894. case Qualifiers::OCL_ExplicitNone:
  3895. case Qualifiers::OCL_Weak:
  3896. break;
  3897. }
  3898. RValue RV = EmitAnyExpr(E->getRHS());
  3899. LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
  3900. if (RV.isScalar())
  3901. EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
  3902. EmitStoreThroughLValue(RV, LV);
  3903. return LV;
  3904. }
  3905. case TEK_Complex:
  3906. return EmitComplexAssignmentLValue(E);
  3907. case TEK_Aggregate:
  3908. return EmitAggExprToLValue(E);
  3909. }
  3910. llvm_unreachable("bad evaluation kind");
  3911. }
  3912. LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
  3913. RValue RV = EmitCallExpr(E);
  3914. if (!RV.isScalar())
  3915. return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
  3916. AlignmentSource::Decl);
  3917. assert(E->getCallReturnType(getContext())->isReferenceType() &&
  3918. "Can't have a scalar return unless the return type is a "
  3919. "reference type!");
  3920. return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
  3921. }
  3922. LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
  3923. // FIXME: This shouldn't require another copy.
  3924. return EmitAggExprToLValue(E);
  3925. }
  3926. LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
  3927. assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
  3928. && "binding l-value to type which needs a temporary");
  3929. AggValueSlot Slot = CreateAggTemp(E->getType());
  3930. EmitCXXConstructExpr(E, Slot);
  3931. return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
  3932. }
  3933. LValue
  3934. CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
  3935. return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
  3936. }
  3937. Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
  3938. return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
  3939. ConvertType(E->getType()));
  3940. }
  3941. LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
  3942. return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
  3943. AlignmentSource::Decl);
  3944. }
  3945. LValue
  3946. CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
  3947. AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
  3948. Slot.setExternallyDestructed();
  3949. EmitAggExpr(E->getSubExpr(), Slot);
  3950. EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
  3951. return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
  3952. }
  3953. LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
  3954. RValue RV = EmitObjCMessageExpr(E);
  3955. if (!RV.isScalar())
  3956. return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
  3957. AlignmentSource::Decl);
  3958. assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
  3959. "Can't have a scalar return unless the return type is a "
  3960. "reference type!");
  3961. return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
  3962. }
  3963. LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
  3964. Address V =
  3965. CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
  3966. return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
  3967. }
  3968. llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
  3969. const ObjCIvarDecl *Ivar) {
  3970. return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
  3971. }
  3972. LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
  3973. llvm::Value *BaseValue,
  3974. const ObjCIvarDecl *Ivar,
  3975. unsigned CVRQualifiers) {
  3976. return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
  3977. Ivar, CVRQualifiers);
  3978. }
  3979. LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
  3980. // FIXME: A lot of the code below could be shared with EmitMemberExpr.
  3981. llvm::Value *BaseValue = nullptr;
  3982. const Expr *BaseExpr = E->getBase();
  3983. Qualifiers BaseQuals;
  3984. QualType ObjectTy;
  3985. if (E->isArrow()) {
  3986. BaseValue = EmitScalarExpr(BaseExpr);
  3987. ObjectTy = BaseExpr->getType()->getPointeeType();
  3988. BaseQuals = ObjectTy.getQualifiers();
  3989. } else {
  3990. LValue BaseLV = EmitLValue(BaseExpr);
  3991. BaseValue = BaseLV.getPointer();
  3992. ObjectTy = BaseExpr->getType();
  3993. BaseQuals = ObjectTy.getQualifiers();
  3994. }
  3995. LValue LV =
  3996. EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
  3997. BaseQuals.getCVRQualifiers());
  3998. setObjCGCLValueClass(getContext(), E, LV);
  3999. return LV;
  4000. }
  4001. LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
  4002. // Can only get l-value for message expression returning aggregate type
  4003. RValue RV = EmitAnyExprToTemp(E);
  4004. return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
  4005. AlignmentSource::Decl);
  4006. }
  4007. RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
  4008. const CallExpr *E, ReturnValueSlot ReturnValue,
  4009. llvm::Value *Chain) {
  4010. // Get the actual function type. The callee type will always be a pointer to
  4011. // function type or a block pointer type.
  4012. assert(CalleeType->isFunctionPointerType() &&
  4013. "Call must have function pointer type!");
  4014. const Decl *TargetDecl =
  4015. OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
  4016. if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
  4017. // We can only guarantee that a function is called from the correct
  4018. // context/function based on the appropriate target attributes,
  4019. // so only check in the case where we have both always_inline and target
  4020. // since otherwise we could be making a conditional call after a check for
  4021. // the proper cpu features (and it won't cause code generation issues due to
  4022. // function based code generation).
  4023. if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
  4024. TargetDecl->hasAttr<TargetAttr>())
  4025. checkTargetFeatures(E, FD);
  4026. CalleeType = getContext().getCanonicalType(CalleeType);
  4027. auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
  4028. CGCallee Callee = OrigCallee;
  4029. if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
  4030. (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
  4031. if (llvm::Constant *PrefixSig =
  4032. CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
  4033. SanitizerScope SanScope(this);
  4034. // Remove any (C++17) exception specifications, to allow calling e.g. a
  4035. // noexcept function through a non-noexcept pointer.
  4036. auto ProtoTy =
  4037. getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
  4038. llvm::Constant *FTRTTIConst =
  4039. CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
  4040. llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
  4041. llvm::StructType *PrefixStructTy = llvm::StructType::get(
  4042. CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
  4043. llvm::Value *CalleePtr = Callee.getFunctionPointer();
  4044. llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
  4045. CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
  4046. llvm::Value *CalleeSigPtr =
  4047. Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
  4048. llvm::Value *CalleeSig =
  4049. Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
  4050. llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
  4051. llvm::BasicBlock *Cont = createBasicBlock("cont");
  4052. llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
  4053. Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
  4054. EmitBlock(TypeCheck);
  4055. llvm::Value *CalleeRTTIPtr =
  4056. Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
  4057. llvm::Value *CalleeRTTIEncoded =
  4058. Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
  4059. llvm::Value *CalleeRTTI =
  4060. DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
  4061. llvm::Value *CalleeRTTIMatch =
  4062. Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
  4063. llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
  4064. EmitCheckTypeDescriptor(CalleeType)};
  4065. EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
  4066. SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
  4067. Builder.CreateBr(Cont);
  4068. EmitBlock(Cont);
  4069. }
  4070. }
  4071. const auto *FnType = cast<FunctionType>(PointeeType);
  4072. // If we are checking indirect calls and this call is indirect, check that the
  4073. // function pointer is a member of the bit set for the function type.
  4074. if (SanOpts.has(SanitizerKind::CFIICall) &&
  4075. (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
  4076. SanitizerScope SanScope(this);
  4077. EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
  4078. llvm::Metadata *MD;
  4079. if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
  4080. MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
  4081. else
  4082. MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
  4083. llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
  4084. llvm::Value *CalleePtr = Callee.getFunctionPointer();
  4085. llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
  4086. llvm::Value *TypeTest = Builder.CreateCall(
  4087. CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
  4088. auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
  4089. llvm::Constant *StaticData[] = {
  4090. llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
  4091. EmitCheckSourceLocation(E->getBeginLoc()),
  4092. EmitCheckTypeDescriptor(QualType(FnType, 0)),
  4093. };
  4094. if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
  4095. EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
  4096. CastedCallee, StaticData);
  4097. } else {
  4098. EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
  4099. SanitizerHandler::CFICheckFail, StaticData,
  4100. {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
  4101. }
  4102. }
  4103. CallArgList Args;
  4104. if (Chain)
  4105. Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
  4106. CGM.getContext().VoidPtrTy);
  4107. // C++17 requires that we evaluate arguments to a call using assignment syntax
  4108. // right-to-left, and that we evaluate arguments to certain other operators
  4109. // left-to-right. Note that we allow this to override the order dictated by
  4110. // the calling convention on the MS ABI, which means that parameter
  4111. // destruction order is not necessarily reverse construction order.
  4112. // FIXME: Revisit this based on C++ committee response to unimplementability.
  4113. EvaluationOrder Order = EvaluationOrder::Default;
  4114. if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
  4115. if (OCE->isAssignmentOp())
  4116. Order = EvaluationOrder::ForceRightToLeft;
  4117. else {
  4118. switch (OCE->getOperator()) {
  4119. case OO_LessLess:
  4120. case OO_GreaterGreater:
  4121. case OO_AmpAmp:
  4122. case OO_PipePipe:
  4123. case OO_Comma:
  4124. case OO_ArrowStar:
  4125. Order = EvaluationOrder::ForceLeftToRight;
  4126. break;
  4127. default:
  4128. break;
  4129. }
  4130. }
  4131. }
  4132. EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
  4133. E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
  4134. const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
  4135. Args, FnType, /*isChainCall=*/Chain);
  4136. // C99 6.5.2.2p6:
  4137. // If the expression that denotes the called function has a type
  4138. // that does not include a prototype, [the default argument
  4139. // promotions are performed]. If the number of arguments does not
  4140. // equal the number of parameters, the behavior is undefined. If
  4141. // the function is defined with a type that includes a prototype,
  4142. // and either the prototype ends with an ellipsis (, ...) or the
  4143. // types of the arguments after promotion are not compatible with
  4144. // the types of the parameters, the behavior is undefined. If the
  4145. // function is defined with a type that does not include a
  4146. // prototype, and the types of the arguments after promotion are
  4147. // not compatible with those of the parameters after promotion,
  4148. // the behavior is undefined [except in some trivial cases].
  4149. // That is, in the general case, we should assume that a call
  4150. // through an unprototyped function type works like a *non-variadic*
  4151. // call. The way we make this work is to cast to the exact type
  4152. // of the promoted arguments.
  4153. //
  4154. // Chain calls use this same code path to add the invisible chain parameter
  4155. // to the function type.
  4156. if (isa<FunctionNoProtoType>(FnType) || Chain) {
  4157. llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
  4158. CalleeTy = CalleeTy->getPointerTo();
  4159. llvm::Value *CalleePtr = Callee.getFunctionPointer();
  4160. CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
  4161. Callee.setFunctionPointer(CalleePtr);
  4162. }
  4163. return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
  4164. }
  4165. LValue CodeGenFunction::
  4166. EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
  4167. Address BaseAddr = Address::invalid();
  4168. if (E->getOpcode() == BO_PtrMemI) {
  4169. BaseAddr = EmitPointerWithAlignment(E->getLHS());
  4170. } else {
  4171. BaseAddr = EmitLValue(E->getLHS()).getAddress();
  4172. }
  4173. llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
  4174. const MemberPointerType *MPT
  4175. = E->getRHS()->getType()->getAs<MemberPointerType>();
  4176. LValueBaseInfo BaseInfo;
  4177. TBAAAccessInfo TBAAInfo;
  4178. Address MemberAddr =
  4179. EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
  4180. &TBAAInfo);
  4181. return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
  4182. }
  4183. /// Given the address of a temporary variable, produce an r-value of
  4184. /// its type.
  4185. RValue CodeGenFunction::convertTempToRValue(Address addr,
  4186. QualType type,
  4187. SourceLocation loc) {
  4188. LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
  4189. switch (getEvaluationKind(type)) {
  4190. case TEK_Complex:
  4191. return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
  4192. case TEK_Aggregate:
  4193. return lvalue.asAggregateRValue();
  4194. case TEK_Scalar:
  4195. return RValue::get(EmitLoadOfScalar(lvalue, loc));
  4196. }
  4197. llvm_unreachable("bad evaluation kind");
  4198. }
  4199. void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
  4200. assert(Val->getType()->isFPOrFPVectorTy());
  4201. if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
  4202. return;
  4203. llvm::MDBuilder MDHelper(getLLVMContext());
  4204. llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
  4205. cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
  4206. }
  4207. namespace {
  4208. struct LValueOrRValue {
  4209. LValue LV;
  4210. RValue RV;
  4211. };
  4212. }
  4213. static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
  4214. const PseudoObjectExpr *E,
  4215. bool forLValue,
  4216. AggValueSlot slot) {
  4217. SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
  4218. // Find the result expression, if any.
  4219. const Expr *resultExpr = E->getResultExpr();
  4220. LValueOrRValue result;
  4221. for (PseudoObjectExpr::const_semantics_iterator
  4222. i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
  4223. const Expr *semantic = *i;
  4224. // If this semantic expression is an opaque value, bind it
  4225. // to the result of its source expression.
  4226. if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
  4227. // Skip unique OVEs.
  4228. if (ov->isUnique()) {
  4229. assert(ov != resultExpr &&
  4230. "A unique OVE cannot be used as the result expression");
  4231. continue;
  4232. }
  4233. // If this is the result expression, we may need to evaluate
  4234. // directly into the slot.
  4235. typedef CodeGenFunction::OpaqueValueMappingData OVMA;
  4236. OVMA opaqueData;
  4237. if (ov == resultExpr && ov->isRValue() && !forLValue &&
  4238. CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
  4239. CGF.EmitAggExpr(ov->getSourceExpr(), slot);
  4240. LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
  4241. AlignmentSource::Decl);
  4242. opaqueData = OVMA::bind(CGF, ov, LV);
  4243. result.RV = slot.asRValue();
  4244. // Otherwise, emit as normal.
  4245. } else {
  4246. opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
  4247. // If this is the result, also evaluate the result now.
  4248. if (ov == resultExpr) {
  4249. if (forLValue)
  4250. result.LV = CGF.EmitLValue(ov);
  4251. else
  4252. result.RV = CGF.EmitAnyExpr(ov, slot);
  4253. }
  4254. }
  4255. opaques.push_back(opaqueData);
  4256. // Otherwise, if the expression is the result, evaluate it
  4257. // and remember the result.
  4258. } else if (semantic == resultExpr) {
  4259. if (forLValue)
  4260. result.LV = CGF.EmitLValue(semantic);
  4261. else
  4262. result.RV = CGF.EmitAnyExpr(semantic, slot);
  4263. // Otherwise, evaluate the expression in an ignored context.
  4264. } else {
  4265. CGF.EmitIgnoredExpr(semantic);
  4266. }
  4267. }
  4268. // Unbind all the opaques now.
  4269. for (unsigned i = 0, e = opaques.size(); i != e; ++i)
  4270. opaques[i].unbind(CGF);
  4271. return result;
  4272. }
  4273. RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
  4274. AggValueSlot slot) {
  4275. return emitPseudoObjectExpr(*this, E, false, slot).RV;
  4276. }
  4277. LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
  4278. return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
  4279. }