123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628 |
- //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "CGCall.h"
- #include "ABIInfo.h"
- #include "CGCXXABI.h"
- #include "CodeGenFunction.h"
- #include "CodeGenModule.h"
- #include "TargetInfo.h"
- #include "clang/AST/Decl.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Frontend/CodeGenOptions.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/MC/SubtargetFeature.h"
- #include "llvm/Support/CallSite.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace clang;
- using namespace CodeGen;
- /***/
- static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
- switch (CC) {
- default: return llvm::CallingConv::C;
- case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
- case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
- case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
- case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
- case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
- // TODO: add support for CC_X86Pascal to llvm
- }
- }
- /// Derives the 'this' type for codegen purposes, i.e. ignoring method
- /// qualification.
- /// FIXME: address space qualification?
- static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
- QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
- return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
- }
- /// Returns the canonical formal type of the given C++ method.
- static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
- return MD->getType()->getCanonicalTypeUnqualified()
- .getAs<FunctionProtoType>();
- }
- /// Returns the "extra-canonicalized" return type, which discards
- /// qualifiers on the return type. Codegen doesn't care about them,
- /// and it makes ABI code a little easier to be able to assume that
- /// all parameter and return types are top-level unqualified.
- static CanQualType GetReturnType(QualType RetTy) {
- return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
- }
- /// Arrange the argument and result information for a value of the given
- /// unprototyped freestanding function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
- // When translating an unprototyped function type, always use a
- // variadic type.
- return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
- None, FTNP->getExtInfo(), RequiredArgs(0));
- }
- /// Arrange the LLVM function layout for a value of the given function
- /// type, on top of any implicit parameters already stored. Use the
- /// given ExtInfo instead of the ExtInfo from the function type.
- static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
- SmallVectorImpl<CanQualType> &prefix,
- CanQual<FunctionProtoType> FTP,
- FunctionType::ExtInfo extInfo) {
- RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
- // FIXME: Kill copy.
- for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
- prefix.push_back(FTP->getArgType(i));
- CanQualType resultType = FTP->getResultType().getUnqualifiedType();
- return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
- }
- /// Arrange the argument and result information for a free function (i.e.
- /// not a C++ or ObjC instance method) of the given type.
- static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
- SmallVectorImpl<CanQualType> &prefix,
- CanQual<FunctionProtoType> FTP) {
- return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
- }
- /// Given the formal ext-info of a C++ instance method, adjust it
- /// according to the C++ ABI in effect.
- static void adjustCXXMethodInfo(CodeGenTypes &CGT,
- FunctionType::ExtInfo &extInfo,
- bool isVariadic) {
- if (extInfo.getCC() == CC_Default) {
- CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
- extInfo = extInfo.withCallingConv(CC);
- }
- }
- /// Arrange the argument and result information for a free function (i.e.
- /// not a C++ or ObjC instance method) of the given type.
- static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
- SmallVectorImpl<CanQualType> &prefix,
- CanQual<FunctionProtoType> FTP) {
- FunctionType::ExtInfo extInfo = FTP->getExtInfo();
- adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
- return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
- }
- /// Arrange the argument and result information for a value of the
- /// given freestanding function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
- SmallVector<CanQualType, 16> argTypes;
- return ::arrangeFreeFunctionType(*this, argTypes, FTP);
- }
- static CallingConv getCallingConventionForDecl(const Decl *D) {
- // Set the appropriate calling convention for the Function.
- if (D->hasAttr<StdCallAttr>())
- return CC_X86StdCall;
- if (D->hasAttr<FastCallAttr>())
- return CC_X86FastCall;
- if (D->hasAttr<ThisCallAttr>())
- return CC_X86ThisCall;
- if (D->hasAttr<PascalAttr>())
- return CC_X86Pascal;
- if (PcsAttr *PCS = D->getAttr<PcsAttr>())
- return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
- if (D->hasAttr<PnaclCallAttr>())
- return CC_PnaclCall;
- if (D->hasAttr<IntelOclBiccAttr>())
- return CC_IntelOclBicc;
- return CC_C;
- }
- /// Arrange the argument and result information for a call to an
- /// unknown C++ non-static member function of the given abstract type.
- /// The member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
- const FunctionProtoType *FTP) {
- SmallVector<CanQualType, 16> argTypes;
- // Add the 'this' pointer.
- argTypes.push_back(GetThisType(Context, RD));
- return ::arrangeCXXMethodType(*this, argTypes,
- FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for a declaration or
- /// definition of the given C++ non-static member function. The
- /// member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
- assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
- assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
- CanQual<FunctionProtoType> prototype = GetFormalType(MD);
- if (MD->isInstance()) {
- // The abstract case is perfectly fine.
- return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
- }
- return arrangeFreeFunctionType(prototype);
- }
- /// Arrange the argument and result information for a declaration
- /// or definition to the given constructor variant.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
- CXXCtorType ctorKind) {
- SmallVector<CanQualType, 16> argTypes;
- argTypes.push_back(GetThisType(Context, D->getParent()));
- GlobalDecl GD(D, ctorKind);
- CanQualType resultType =
- TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
- TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
- CanQual<FunctionProtoType> FTP = GetFormalType(D);
- RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
- // Add the formal parameters.
- for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
- argTypes.push_back(FTP->getArgType(i));
- FunctionType::ExtInfo extInfo = FTP->getExtInfo();
- adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
- return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
- }
- /// Arrange the argument and result information for a declaration,
- /// definition, or call to the given destructor variant. It so
- /// happens that all three cases produce the same information.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
- CXXDtorType dtorKind) {
- SmallVector<CanQualType, 2> argTypes;
- argTypes.push_back(GetThisType(Context, D->getParent()));
- GlobalDecl GD(D, dtorKind);
- CanQualType resultType =
- TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
- TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
- CanQual<FunctionProtoType> FTP = GetFormalType(D);
- assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
- assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
- FunctionType::ExtInfo extInfo = FTP->getExtInfo();
- adjustCXXMethodInfo(*this, extInfo, false);
- return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
- RequiredArgs::All);
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of the given function.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
- if (MD->isInstance())
- return arrangeCXXMethodDeclaration(MD);
- CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
- assert(isa<FunctionType>(FTy));
- // When declaring a function without a prototype, always use a
- // non-variadic type.
- if (isa<FunctionNoProtoType>(FTy)) {
- CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
- return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
- noProto->getExtInfo(), RequiredArgs::All);
- }
- assert(isa<FunctionProtoType>(FTy));
- return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of an Objective-C method.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
- // It happens that this is the same as a call with no optional
- // arguments, except also using the formal 'self' type.
- return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
- }
- /// Arrange the argument and result information for the function type
- /// through which to perform a send to the given Objective-C method,
- /// using the given receiver type. The receiver type is not always
- /// the 'self' type of the method or even an Objective-C pointer type.
- /// This is *not* the right method for actually performing such a
- /// message send, due to the possibility of optional arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
- QualType receiverType) {
- SmallVector<CanQualType, 16> argTys;
- argTys.push_back(Context.getCanonicalParamType(receiverType));
- argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
- // FIXME: Kill copy?
- for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
- e = MD->param_end(); i != e; ++i) {
- argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
- }
- FunctionType::ExtInfo einfo;
- einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
- if (getContext().getLangOpts().ObjCAutoRefCount &&
- MD->hasAttr<NSReturnsRetainedAttr>())
- einfo = einfo.withProducesResult(true);
- RequiredArgs required =
- (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
- return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
- einfo, required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
- // FIXME: Do we need to handle ObjCMethodDecl?
- const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
- if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
- return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
- if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
- return arrangeCXXDestructor(DD, GD.getDtorType());
- return arrangeFunctionDeclaration(FD);
- }
- /// Arrange a call as unto a free function, except possibly with an
- /// additional number of formal parameters considered required.
- static const CGFunctionInfo &
- arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
- const CallArgList &args,
- const FunctionType *fnType,
- unsigned numExtraRequiredArgs) {
- assert(args.size() >= numExtraRequiredArgs);
- // In most cases, there are no optional arguments.
- RequiredArgs required = RequiredArgs::All;
- // If we have a variadic prototype, the required arguments are the
- // extra prefix plus the arguments in the prototype.
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
- if (proto->isVariadic())
- required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
- // If we don't have a prototype at all, but we're supposed to
- // explicitly use the variadic convention for unprototyped calls,
- // treat all of the arguments as required but preserve the nominal
- // possibility of variadics.
- } else if (CGT.CGM.getTargetCodeGenInfo()
- .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
- required = RequiredArgs(args.size());
- }
- return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
- fnType->getExtInfo(), required);
- }
- /// Figure out the rules for calling a function with the given formal
- /// type using the given arguments. The arguments are necessary
- /// because the function might be unprototyped, in which case it's
- /// target-dependent in crazy ways.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
- const FunctionType *fnType) {
- return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
- }
- /// A block function call is essentially a free-function call with an
- /// extra implicit argument.
- const CGFunctionInfo &
- CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
- const FunctionType *fnType) {
- return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
- const CallArgList &args,
- FunctionType::ExtInfo info,
- RequiredArgs required) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (CallArgList::const_iterator i = args.begin(), e = args.end();
- i != e; ++i)
- argTypes.push_back(Context.getCanonicalParamType(i->Ty));
- return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
- required);
- }
- /// Arrange a call to a C++ method, passing the given arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
- const FunctionProtoType *FPT,
- RequiredArgs required) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (CallArgList::const_iterator i = args.begin(), e = args.end();
- i != e; ++i)
- argTypes.push_back(Context.getCanonicalParamType(i->Ty));
- FunctionType::ExtInfo info = FPT->getExtInfo();
- adjustCXXMethodInfo(*this, info, FPT->isVariadic());
- return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
- argTypes, info, required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
- const FunctionArgList &args,
- const FunctionType::ExtInfo &info,
- bool isVariadic) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
- i != e; ++i)
- argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
- RequiredArgs required =
- (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
- return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
- required);
- }
- const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
- return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
- FunctionType::ExtInfo(), RequiredArgs::All);
- }
- /// Arrange the argument and result information for an abstract value
- /// of a given function type. This is the method which all of the
- /// above functions ultimately defer to.
- const CGFunctionInfo &
- CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
- ArrayRef<CanQualType> argTypes,
- FunctionType::ExtInfo info,
- RequiredArgs required) {
- #ifndef NDEBUG
- for (ArrayRef<CanQualType>::const_iterator
- I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
- assert(I->isCanonicalAsParam());
- #endif
- unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
- // Lookup or create unique function info.
- llvm::FoldingSetNodeID ID;
- CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
- void *insertPos = 0;
- CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
- if (FI)
- return *FI;
- // Construct the function info. We co-allocate the ArgInfos.
- FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
- FunctionInfos.InsertNode(FI, insertPos);
- bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
- assert(inserted && "Recursively being processed?");
-
- // Compute ABI information.
- getABIInfo().computeInfo(*FI);
- // Loop over all of the computed argument and return value info. If any of
- // them are direct or extend without a specified coerce type, specify the
- // default now.
- ABIArgInfo &retInfo = FI->getReturnInfo();
- if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
- retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
- for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
- I != E; ++I)
- if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
- I->info.setCoerceToType(ConvertType(I->type));
- bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
- assert(erased && "Not in set?");
-
- return *FI;
- }
- CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
- const FunctionType::ExtInfo &info,
- CanQualType resultType,
- ArrayRef<CanQualType> argTypes,
- RequiredArgs required) {
- void *buffer = operator new(sizeof(CGFunctionInfo) +
- sizeof(ArgInfo) * (argTypes.size() + 1));
- CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
- FI->CallingConvention = llvmCC;
- FI->EffectiveCallingConvention = llvmCC;
- FI->ASTCallingConvention = info.getCC();
- FI->NoReturn = info.getNoReturn();
- FI->ReturnsRetained = info.getProducesResult();
- FI->Required = required;
- FI->HasRegParm = info.getHasRegParm();
- FI->RegParm = info.getRegParm();
- FI->NumArgs = argTypes.size();
- FI->getArgsBuffer()[0].type = resultType;
- for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
- FI->getArgsBuffer()[i + 1].type = argTypes[i];
- return FI;
- }
- /***/
- void CodeGenTypes::GetExpandedTypes(QualType type,
- SmallVectorImpl<llvm::Type*> &expandedTypes) {
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
- uint64_t NumElts = AT->getSize().getZExtValue();
- for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
- GetExpandedTypes(AT->getElementType(), expandedTypes);
- } else if (const RecordType *RT = type->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- assert(!RD->hasFlexibleArrayMember() &&
- "Cannot expand structure with flexible array.");
- if (RD->isUnion()) {
- // Unions can be here only in degenerative cases - all the fields are same
- // after flattening. Thus we have to use the "largest" field.
- const FieldDecl *LargestFD = 0;
- CharUnits UnionSize = CharUnits::Zero();
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
- if (UnionSize < FieldSize) {
- UnionSize = FieldSize;
- LargestFD = FD;
- }
- }
- if (LargestFD)
- GetExpandedTypes(LargestFD->getType(), expandedTypes);
- } else {
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- assert(!i->isBitField() &&
- "Cannot expand structure with bit-field members.");
- GetExpandedTypes(i->getType(), expandedTypes);
- }
- }
- } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
- llvm::Type *EltTy = ConvertType(CT->getElementType());
- expandedTypes.push_back(EltTy);
- expandedTypes.push_back(EltTy);
- } else
- expandedTypes.push_back(ConvertType(type));
- }
- llvm::Function::arg_iterator
- CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
- llvm::Function::arg_iterator AI) {
- assert(LV.isSimple() &&
- "Unexpected non-simple lvalue during struct expansion.");
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- unsigned NumElts = AT->getSize().getZExtValue();
- QualType EltTy = AT->getElementType();
- for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
- llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
- LValue LV = MakeAddrLValue(EltAddr, EltTy);
- AI = ExpandTypeFromArgs(EltTy, LV, AI);
- }
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- RecordDecl *RD = RT->getDecl();
- if (RD->isUnion()) {
- // Unions can be here only in degenerative cases - all the fields are same
- // after flattening. Thus we have to use the "largest" field.
- const FieldDecl *LargestFD = 0;
- CharUnits UnionSize = CharUnits::Zero();
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
- if (UnionSize < FieldSize) {
- UnionSize = FieldSize;
- LargestFD = FD;
- }
- }
- if (LargestFD) {
- // FIXME: What are the right qualifiers here?
- LValue SubLV = EmitLValueForField(LV, LargestFD);
- AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
- }
- } else {
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- FieldDecl *FD = *i;
- QualType FT = FD->getType();
- // FIXME: What are the right qualifiers here?
- LValue SubLV = EmitLValueForField(LV, FD);
- AI = ExpandTypeFromArgs(FT, SubLV, AI);
- }
- }
- } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType EltTy = CT->getElementType();
- llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
- EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
- llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
- EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
- } else {
- EmitStoreThroughLValue(RValue::get(AI), LV);
- ++AI;
- }
- return AI;
- }
- /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
- /// accessing some number of bytes out of it, try to gep into the struct to get
- /// at its inner goodness. Dive as deep as possible without entering an element
- /// with an in-memory size smaller than DstSize.
- static llvm::Value *
- EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
- llvm::StructType *SrcSTy,
- uint64_t DstSize, CodeGenFunction &CGF) {
- // We can't dive into a zero-element struct.
- if (SrcSTy->getNumElements() == 0) return SrcPtr;
- llvm::Type *FirstElt = SrcSTy->getElementType(0);
- // If the first elt is at least as large as what we're looking for, or if the
- // first element is the same size as the whole struct, we can enter it.
- uint64_t FirstEltSize =
- CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
- if (FirstEltSize < DstSize &&
- FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
- return SrcPtr;
- // GEP into the first element.
- SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
- // If the first element is a struct, recurse.
- llvm::Type *SrcTy =
- cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
- return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
- return SrcPtr;
- }
- /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
- /// are either integers or pointers. This does a truncation of the value if it
- /// is too large or a zero extension if it is too small.
- ///
- /// This behaves as if the value were coerced through memory, so on big-endian
- /// targets the high bits are preserved in a truncation, while little-endian
- /// targets preserve the low bits.
- static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
- llvm::Type *Ty,
- CodeGenFunction &CGF) {
- if (Val->getType() == Ty)
- return Val;
- if (isa<llvm::PointerType>(Val->getType())) {
- // If this is Pointer->Pointer avoid conversion to and from int.
- if (isa<llvm::PointerType>(Ty))
- return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
- // Convert the pointer to an integer so we can play with its width.
- Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
- }
- llvm::Type *DestIntTy = Ty;
- if (isa<llvm::PointerType>(DestIntTy))
- DestIntTy = CGF.IntPtrTy;
- if (Val->getType() != DestIntTy) {
- const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
- if (DL.isBigEndian()) {
- // Preserve the high bits on big-endian targets.
- // That is what memory coercion does.
- uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
- uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
- if (SrcSize > DstSize) {
- Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
- Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
- } else {
- Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
- Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
- }
- } else {
- // Little-endian targets preserve the low bits. No shifts required.
- Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
- }
- }
- if (isa<llvm::PointerType>(Ty))
- Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
- return Val;
- }
- /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
- /// a pointer to an object of type \arg Ty.
- ///
- /// This safely handles the case when the src type is smaller than the
- /// destination type; in this situation the values of bits which not
- /// present in the src are undefined.
- static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
- llvm::Type *Ty,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy =
- cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- // If SrcTy and Ty are the same, just do a load.
- if (SrcTy == Ty)
- return CGF.Builder.CreateLoad(SrcPtr);
- uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
- SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
- SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- }
- uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
- (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
- llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
- return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
- }
- // If load is legal, just bitcast the src pointer.
- if (SrcSize >= DstSize) {
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
- llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
- // FIXME: Use better alignment / avoid requiring aligned load.
- Load->setAlignment(1);
- return Load;
- }
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
- llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
- llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
- llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
- // FIXME: Use better alignment.
- CGF.Builder.CreateMemCpy(Casted, SrcCasted,
- llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
- 1, false);
- return CGF.Builder.CreateLoad(Tmp);
- }
- // Function to store a first-class aggregate into memory. We prefer to
- // store the elements rather than the aggregate to be more friendly to
- // fast-isel.
- // FIXME: Do we need to recurse here?
- static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
- llvm::Value *DestPtr, bool DestIsVolatile,
- bool LowAlignment) {
- // Prefer scalar stores to first-class aggregate stores.
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(Val->getType())) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
- llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
- llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
- DestIsVolatile);
- if (LowAlignment)
- SI->setAlignment(1);
- }
- } else {
- llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
- if (LowAlignment)
- SI->setAlignment(1);
- }
- }
- /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
- /// where the source and destination may have different types.
- ///
- /// This safely handles the case when the src type is larger than the
- /// destination type; the upper bits of the src will be lost.
- static void CreateCoercedStore(llvm::Value *Src,
- llvm::Value *DstPtr,
- bool DstIsVolatile,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy =
- cast<llvm::PointerType>(DstPtr->getType())->getElementType();
- if (SrcTy == DstTy) {
- CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
- return;
- }
- uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
- if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
- DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
- DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
- }
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
- (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
- Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
- CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
- return;
- }
- uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
- // If store is legal, just bitcast the src pointer.
- if (SrcSize <= DstSize) {
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
- // FIXME: Use better alignment / avoid requiring aligned store.
- BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
- } else {
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
- CGF.Builder.CreateStore(Src, Tmp);
- llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
- llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
- llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
- // FIXME: Use better alignment.
- CGF.Builder.CreateMemCpy(DstCasted, Casted,
- llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
- 1, false);
- }
- }
- /***/
- bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
- return FI.getReturnInfo().isIndirect();
- }
- bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
- if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
- switch (BT->getKind()) {
- default:
- return false;
- case BuiltinType::Float:
- return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
- case BuiltinType::Double:
- return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
- case BuiltinType::LongDouble:
- return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
- }
- }
- return false;
- }
- bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
- if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
- if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::LongDouble)
- return getTarget().useObjCFP2RetForComplexLongDouble();
- }
- }
- return false;
- }
- llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
- const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
- return GetFunctionType(FI);
- }
- llvm::FunctionType *
- CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
-
- bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
- assert(Inserted && "Recursively being processed?");
-
- SmallVector<llvm::Type*, 8> argTypes;
- llvm::Type *resultType = 0;
- const ABIArgInfo &retAI = FI.getReturnInfo();
- switch (retAI.getKind()) {
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- resultType = retAI.getCoerceToType();
- break;
- case ABIArgInfo::Indirect: {
- assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- QualType ret = FI.getReturnType();
- llvm::Type *ty = ConvertType(ret);
- unsigned addressSpace = Context.getTargetAddressSpace(ret);
- argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
- break;
- }
- case ABIArgInfo::Ignore:
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- break;
- }
- // Add in all of the required arguments.
- CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
- if (FI.isVariadic()) {
- ie = it + FI.getRequiredArgs().getNumRequiredArgs();
- } else {
- ie = FI.arg_end();
- }
- for (; it != ie; ++it) {
- const ABIArgInfo &argAI = it->info;
- // Insert a padding type to ensure proper alignment.
- if (llvm::Type *PaddingType = argAI.getPaddingType())
- argTypes.push_back(PaddingType);
- switch (argAI.getKind()) {
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Indirect: {
- // indirect arguments are always on the stack, which is addr space #0.
- llvm::Type *LTy = ConvertTypeForMem(it->type);
- argTypes.push_back(LTy->getPointerTo());
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // If the coerce-to type is a first class aggregate, flatten it. Either
- // way is semantically identical, but fast-isel and the optimizer
- // generally likes scalar values better than FCAs.
- llvm::Type *argType = argAI.getCoerceToType();
- if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
- for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
- argTypes.push_back(st->getElementType(i));
- } else {
- argTypes.push_back(argType);
- }
- break;
- }
- case ABIArgInfo::Expand:
- GetExpandedTypes(it->type, argTypes);
- break;
- }
- }
- bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
- assert(Erased && "Not in set?");
-
- return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
- }
- llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
- const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
- const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
- if (!isFuncTypeConvertible(FPT))
- return llvm::StructType::get(getLLVMContext());
-
- const CGFunctionInfo *Info;
- if (isa<CXXDestructorDecl>(MD))
- Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
- else
- Info = &arrangeCXXMethodDeclaration(MD);
- return GetFunctionType(*Info);
- }
- void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
- const Decl *TargetDecl,
- AttributeListType &PAL,
- unsigned &CallingConv,
- bool AttrOnCallSite) {
- llvm::AttrBuilder FuncAttrs;
- llvm::AttrBuilder RetAttrs;
- CallingConv = FI.getEffectiveCallingConvention();
- if (FI.isNoReturn())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- // FIXME: handle sseregparm someday...
- if (TargetDecl) {
- if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
- if (TargetDecl->hasAttr<NoThrowAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- if (TargetDecl->hasAttr<NoReturnAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
- const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
- if (FPT && FPT->isNothrow(getContext()))
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
- // These attributes are not inherited by overloads.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
- if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- }
- // 'const' and 'pure' attribute functions are also nounwind.
- if (TargetDecl->hasAttr<ConstAttr>()) {
- FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- } else if (TargetDecl->hasAttr<PureAttr>()) {
- FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- }
- if (TargetDecl->hasAttr<MallocAttr>())
- RetAttrs.addAttribute(llvm::Attribute::NoAlias);
- }
- if (CodeGenOpts.OptimizeSize)
- FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
- if (CodeGenOpts.OptimizeSize == 2)
- FuncAttrs.addAttribute(llvm::Attribute::MinSize);
- if (CodeGenOpts.DisableRedZone)
- FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
- if (CodeGenOpts.NoImplicitFloat)
- FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
- if (AttrOnCallSite) {
- // Attributes that should go on the call site only.
- if (!CodeGenOpts.SimplifyLibCalls)
- FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
- } else {
- // Attributes that should go on the function, but not the call site.
- if (!CodeGenOpts.DisableFPElim) {
- FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
- FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
- } else if (CodeGenOpts.OmitLeafFramePointer) {
- FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
- FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
- } else {
- FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
- FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
- }
- FuncAttrs.addAttribute("less-precise-fpmad",
- llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
- FuncAttrs.addAttribute("no-infs-fp-math",
- llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
- FuncAttrs.addAttribute("no-nans-fp-math",
- llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
- FuncAttrs.addAttribute("unsafe-fp-math",
- llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
- FuncAttrs.addAttribute("use-soft-float",
- llvm::toStringRef(CodeGenOpts.SoftFloat));
- FuncAttrs.addAttribute("stack-protector-buffer-size",
- llvm::utostr(CodeGenOpts.SSPBufferSize));
- bool NoFramePointerElimNonLeaf;
- if (!CodeGenOpts.DisableFPElim) {
- NoFramePointerElimNonLeaf = false;
- } else if (CodeGenOpts.OmitLeafFramePointer) {
- NoFramePointerElimNonLeaf = true;
- } else {
- NoFramePointerElimNonLeaf = true;
- }
- FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf",
- llvm::toStringRef(NoFramePointerElimNonLeaf));
- if (!CodeGenOpts.StackRealignment)
- FuncAttrs.addAttribute("no-realign-stack");
- }
- QualType RetTy = FI.getReturnType();
- unsigned Index = 1;
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::Extend:
- if (RetTy->hasSignedIntegerRepresentation())
- RetAttrs.addAttribute(llvm::Attribute::SExt);
- else if (RetTy->hasUnsignedIntegerRepresentation())
- RetAttrs.addAttribute(llvm::Attribute::ZExt);
- // FALL THROUGH
- case ABIArgInfo::Direct:
- if (RetAI.getInReg())
- RetAttrs.addAttribute(llvm::Attribute::InReg);
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Indirect: {
- llvm::AttrBuilder SRETAttrs;
- SRETAttrs.addAttribute(llvm::Attribute::StructRet);
- if (RetAI.getInReg())
- SRETAttrs.addAttribute(llvm::Attribute::InReg);
- PAL.push_back(llvm::
- AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
- ++Index;
- // sret disables readnone and readonly
- FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
- .removeAttribute(llvm::Attribute::ReadNone);
- break;
- }
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- if (RetAttrs.hasAttributes())
- PAL.push_back(llvm::
- AttributeSet::get(getLLVMContext(),
- llvm::AttributeSet::ReturnIndex,
- RetAttrs));
- for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
- ie = FI.arg_end(); it != ie; ++it) {
- QualType ParamType = it->type;
- const ABIArgInfo &AI = it->info;
- llvm::AttrBuilder Attrs;
- if (AI.getPaddingType()) {
- if (AI.getPaddingInReg())
- PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
- llvm::Attribute::InReg));
- // Increment Index if there is padding.
- ++Index;
- }
- // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
- // have the corresponding parameter variable. It doesn't make
- // sense to do it here because parameters are so messed up.
- switch (AI.getKind()) {
- case ABIArgInfo::Extend:
- if (ParamType->isSignedIntegerOrEnumerationType())
- Attrs.addAttribute(llvm::Attribute::SExt);
- else if (ParamType->isUnsignedIntegerOrEnumerationType())
- Attrs.addAttribute(llvm::Attribute::ZExt);
- // FALL THROUGH
- case ABIArgInfo::Direct:
- if (AI.getInReg())
- Attrs.addAttribute(llvm::Attribute::InReg);
- // FIXME: handle sseregparm someday...
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
- unsigned Extra = STy->getNumElements()-1; // 1 will be added below.
- if (Attrs.hasAttributes())
- for (unsigned I = 0; I < Extra; ++I)
- PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
- Attrs));
- Index += Extra;
- }
- break;
- case ABIArgInfo::Indirect:
- if (AI.getInReg())
- Attrs.addAttribute(llvm::Attribute::InReg);
- if (AI.getIndirectByVal())
- Attrs.addAttribute(llvm::Attribute::ByVal);
- Attrs.addAlignmentAttr(AI.getIndirectAlign());
- // byval disables readnone and readonly.
- FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
- .removeAttribute(llvm::Attribute::ReadNone);
- break;
- case ABIArgInfo::Ignore:
- // Skip increment, no matching LLVM parameter.
- continue;
- case ABIArgInfo::Expand: {
- SmallVector<llvm::Type*, 8> types;
- // FIXME: This is rather inefficient. Do we ever actually need to do
- // anything here? The result should be just reconstructed on the other
- // side, so extension should be a non-issue.
- getTypes().GetExpandedTypes(ParamType, types);
- Index += types.size();
- continue;
- }
- }
- if (Attrs.hasAttributes())
- PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
- ++Index;
- }
- if (FuncAttrs.hasAttributes())
- PAL.push_back(llvm::
- AttributeSet::get(getLLVMContext(),
- llvm::AttributeSet::FunctionIndex,
- FuncAttrs));
- }
- /// An argument came in as a promoted argument; demote it back to its
- /// declared type.
- static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
- const VarDecl *var,
- llvm::Value *value) {
- llvm::Type *varType = CGF.ConvertType(var->getType());
- // This can happen with promotions that actually don't change the
- // underlying type, like the enum promotions.
- if (value->getType() == varType) return value;
- assert((varType->isIntegerTy() || varType->isFloatingPointTy())
- && "unexpected promotion type");
- if (isa<llvm::IntegerType>(varType))
- return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
- return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
- }
- void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
- llvm::Function *Fn,
- const FunctionArgList &Args) {
- // If this is an implicit-return-zero function, go ahead and
- // initialize the return value. TODO: it might be nice to have
- // a more general mechanism for this that didn't require synthesized
- // return statements.
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
- if (FD->hasImplicitReturnZero()) {
- QualType RetTy = FD->getResultType().getUnqualifiedType();
- llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
- llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
- Builder.CreateStore(Zero, ReturnValue);
- }
- }
- // FIXME: We no longer need the types from FunctionArgList; lift up and
- // simplify.
- // Emit allocs for param decls. Give the LLVM Argument nodes names.
- llvm::Function::arg_iterator AI = Fn->arg_begin();
- // Name the struct return argument.
- if (CGM.ReturnTypeUsesSRet(FI)) {
- AI->setName("agg.result");
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1,
- llvm::Attribute::NoAlias));
- ++AI;
- }
- assert(FI.arg_size() == Args.size() &&
- "Mismatch between function signature & arguments.");
- unsigned ArgNo = 1;
- CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
- for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
- i != e; ++i, ++info_it, ++ArgNo) {
- const VarDecl *Arg = *i;
- QualType Ty = info_it->type;
- const ABIArgInfo &ArgI = info_it->info;
- bool isPromoted =
- isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
- // Skip the dummy padding argument.
- if (ArgI.getPaddingType())
- ++AI;
- switch (ArgI.getKind()) {
- case ABIArgInfo::Indirect: {
- llvm::Value *V = AI;
- if (!hasScalarEvaluationKind(Ty)) {
- // Aggregates and complex variables are accessed by reference. All we
- // need to do is realign the value, if requested
- if (ArgI.getIndirectRealign()) {
- llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
- // Copy from the incoming argument pointer to the temporary with the
- // appropriate alignment.
- //
- // FIXME: We should have a common utility for generating an aggregate
- // copy.
- llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
- CharUnits Size = getContext().getTypeSizeInChars(Ty);
- llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
- llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
- Builder.CreateMemCpy(Dst,
- Src,
- llvm::ConstantInt::get(IntPtrTy,
- Size.getQuantity()),
- ArgI.getIndirectAlign(),
- false);
- V = AlignedTemp;
- }
- } else {
- // Load scalar value from indirect argument.
- CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
- V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- }
- EmitParmDecl(*Arg, V, ArgNo);
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // If we have the trivial case, handle it with no muss and fuss.
- if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
- ArgI.getCoerceToType() == ConvertType(Ty) &&
- ArgI.getDirectOffset() == 0) {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- llvm::Value *V = AI;
- if (Arg->getType().isRestrictQualified())
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1,
- llvm::Attribute::NoAlias));
- // Ensure the argument is the correct type.
- if (V->getType() != ArgI.getCoerceToType())
- V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- // Because of merging of function types from multiple decls it is
- // possible for the type of an argument to not match the corresponding
- // type in the function type. Since we are codegening the callee
- // in here, add a cast to the argument type.
- llvm::Type *LTy = ConvertType(Arg->getType());
- if (V->getType() != LTy)
- V = Builder.CreateBitCast(V, LTy);
- EmitParmDecl(*Arg, V, ArgNo);
- break;
- }
- llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
- // The alignment we need to use is the max of the requested alignment for
- // the argument plus the alignment required by our access code below.
- unsigned AlignmentToUse =
- CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
- AlignmentToUse = std::max(AlignmentToUse,
- (unsigned)getContext().getDeclAlign(Arg).getQuantity());
- Alloca->setAlignment(AlignmentToUse);
- llvm::Value *V = Alloca;
- llvm::Value *Ptr = V; // Pointer to store into.
- // If the value is offset in memory, apply the offset now.
- if (unsigned Offs = ArgI.getDirectOffset()) {
- Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
- Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
- Ptr = Builder.CreateBitCast(Ptr,
- llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
- }
- // If the coerce-to type is a first class aggregate, we flatten it and
- // pass the elements. Either way is semantically identical, but fast-isel
- // and the optimizer generally likes scalar values better than FCAs.
- llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
- if (STy && STy->getNumElements() > 1) {
- uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
- llvm::Type *DstTy =
- cast<llvm::PointerType>(Ptr->getType())->getElementType();
- uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
- if (SrcSize <= DstSize) {
- Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- AI->setName(Arg->getName() + ".coerce" + Twine(i));
- llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
- Builder.CreateStore(AI++, EltPtr);
- }
- } else {
- llvm::AllocaInst *TempAlloca =
- CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
- TempAlloca->setAlignment(AlignmentToUse);
- llvm::Value *TempV = TempAlloca;
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- AI->setName(Arg->getName() + ".coerce" + Twine(i));
- llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
- Builder.CreateStore(AI++, EltPtr);
- }
- Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
- }
- } else {
- // Simple case, just do a coerced store of the argument into the alloca.
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- AI->setName(Arg->getName() + ".coerce");
- CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
- }
- // Match to what EmitParmDecl is expecting for this type.
- if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
- V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- }
- EmitParmDecl(*Arg, V, ArgNo);
- continue; // Skip ++AI increment, already done.
- }
- case ABIArgInfo::Expand: {
- // If this structure was expanded into multiple arguments then
- // we need to create a temporary and reconstruct it from the
- // arguments.
- llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
- CharUnits Align = getContext().getDeclAlign(Arg);
- Alloca->setAlignment(Align.getQuantity());
- LValue LV = MakeAddrLValue(Alloca, Ty, Align);
- llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
- EmitParmDecl(*Arg, Alloca, ArgNo);
- // Name the arguments used in expansion and increment AI.
- unsigned Index = 0;
- for (; AI != End; ++AI, ++Index)
- AI->setName(Arg->getName() + "." + Twine(Index));
- continue;
- }
- case ABIArgInfo::Ignore:
- // Initialize the local variable appropriately.
- if (!hasScalarEvaluationKind(Ty))
- EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
- else
- EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
- ArgNo);
- // Skip increment, no matching LLVM parameter.
- continue;
- }
- ++AI;
- }
- assert(AI == Fn->arg_end() && "Argument mismatch!");
- }
- static void eraseUnusedBitCasts(llvm::Instruction *insn) {
- while (insn->use_empty()) {
- llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
- if (!bitcast) return;
- // This is "safe" because we would have used a ConstantExpr otherwise.
- insn = cast<llvm::Instruction>(bitcast->getOperand(0));
- bitcast->eraseFromParent();
- }
- }
- /// Try to emit a fused autorelease of a return result.
- static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // We must be immediately followed the cast.
- llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
- if (BB->empty()) return 0;
- if (&BB->back() != result) return 0;
- llvm::Type *resultType = result->getType();
- // result is in a BasicBlock and is therefore an Instruction.
- llvm::Instruction *generator = cast<llvm::Instruction>(result);
- SmallVector<llvm::Instruction*,4> insnsToKill;
- // Look for:
- // %generator = bitcast %type1* %generator2 to %type2*
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
- // We would have emitted this as a constant if the operand weren't
- // an Instruction.
- generator = cast<llvm::Instruction>(bitcast->getOperand(0));
- // Require the generator to be immediately followed by the cast.
- if (generator->getNextNode() != bitcast)
- return 0;
- insnsToKill.push_back(bitcast);
- }
- // Look for:
- // %generator = call i8* @objc_retain(i8* %originalResult)
- // or
- // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
- llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
- if (!call) return 0;
- bool doRetainAutorelease;
- if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
- doRetainAutorelease = true;
- } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
- .objc_retainAutoreleasedReturnValue) {
- doRetainAutorelease = false;
- // If we emitted an assembly marker for this call (and the
- // ARCEntrypoints field should have been set if so), go looking
- // for that call. If we can't find it, we can't do this
- // optimization. But it should always be the immediately previous
- // instruction, unless we needed bitcasts around the call.
- if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
- llvm::Instruction *prev = call->getPrevNode();
- assert(prev);
- if (isa<llvm::BitCastInst>(prev)) {
- prev = prev->getPrevNode();
- assert(prev);
- }
- assert(isa<llvm::CallInst>(prev));
- assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
- CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
- insnsToKill.push_back(prev);
- }
- } else {
- return 0;
- }
- result = call->getArgOperand(0);
- insnsToKill.push_back(call);
- // Keep killing bitcasts, for sanity. Note that we no longer care
- // about precise ordering as long as there's exactly one use.
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
- if (!bitcast->hasOneUse()) break;
- insnsToKill.push_back(bitcast);
- result = bitcast->getOperand(0);
- }
- // Delete all the unnecessary instructions, from latest to earliest.
- for (SmallVectorImpl<llvm::Instruction*>::iterator
- i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
- (*i)->eraseFromParent();
- // Do the fused retain/autorelease if we were asked to.
- if (doRetainAutorelease)
- result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
- // Cast back to the result type.
- return CGF.Builder.CreateBitCast(result, resultType);
- }
- /// If this is a +1 of the value of an immutable 'self', remove it.
- static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
- llvm::Value *result) {
- // This is only applicable to a method with an immutable 'self'.
- const ObjCMethodDecl *method =
- dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
- if (!method) return 0;
- const VarDecl *self = method->getSelfDecl();
- if (!self->getType().isConstQualified()) return 0;
- // Look for a retain call.
- llvm::CallInst *retainCall =
- dyn_cast<llvm::CallInst>(result->stripPointerCasts());
- if (!retainCall ||
- retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
- return 0;
- // Look for an ordinary load of 'self'.
- llvm::Value *retainedValue = retainCall->getArgOperand(0);
- llvm::LoadInst *load =
- dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
- if (!load || load->isAtomic() || load->isVolatile() ||
- load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
- return 0;
- // Okay! Burn it all down. This relies for correctness on the
- // assumption that the retain is emitted as part of the return and
- // that thereafter everything is used "linearly".
- llvm::Type *resultType = result->getType();
- eraseUnusedBitCasts(cast<llvm::Instruction>(result));
- assert(retainCall->use_empty());
- retainCall->eraseFromParent();
- eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
- return CGF.Builder.CreateBitCast(load, resultType);
- }
- /// Emit an ARC autorelease of the result of a function.
- ///
- /// \return the value to actually return from the function
- static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // If we're returning 'self', kill the initial retain. This is a
- // heuristic attempt to "encourage correctness" in the really unfortunate
- // case where we have a return of self during a dealloc and we desperately
- // need to avoid the possible autorelease.
- if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
- return self;
- // At -O0, try to emit a fused retain/autorelease.
- if (CGF.shouldUseFusedARCCalls())
- if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
- return fused;
- return CGF.EmitARCAutoreleaseReturnValue(result);
- }
- /// Heuristically search for a dominating store to the return-value slot.
- static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
- // If there are multiple uses of the return-value slot, just check
- // for something immediately preceding the IP. Sometimes this can
- // happen with how we generate implicit-returns; it can also happen
- // with noreturn cleanups.
- if (!CGF.ReturnValue->hasOneUse()) {
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- if (IP->empty()) return 0;
- llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
- if (!store) return 0;
- if (store->getPointerOperand() != CGF.ReturnValue) return 0;
- assert(!store->isAtomic() && !store->isVolatile()); // see below
- return store;
- }
- llvm::StoreInst *store =
- dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
- if (!store) return 0;
- // These aren't actually possible for non-coerced returns, and we
- // only care about non-coerced returns on this code path.
- assert(!store->isAtomic() && !store->isVolatile());
- // Now do a first-and-dirty dominance check: just walk up the
- // single-predecessors chain from the current insertion point.
- llvm::BasicBlock *StoreBB = store->getParent();
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- while (IP != StoreBB) {
- if (!(IP = IP->getSinglePredecessor()))
- return 0;
- }
- // Okay, the store's basic block dominates the insertion point; we
- // can do our thing.
- return store;
- }
- void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
- bool EmitRetDbgLoc) {
- // Functions with no result always return void.
- if (ReturnValue == 0) {
- Builder.CreateRetVoid();
- return;
- }
- llvm::DebugLoc RetDbgLoc;
- llvm::Value *RV = 0;
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::Indirect: {
- switch (getEvaluationKind(RetTy)) {
- case TEK_Complex: {
- ComplexPairTy RT =
- EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
- EmitStoreOfComplex(RT,
- MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
- /*isInit*/ true);
- break;
- }
- case TEK_Aggregate:
- // Do nothing; aggregrates get evaluated directly into the destination.
- break;
- case TEK_Scalar:
- EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
- MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
- /*isInit*/ true);
- break;
- }
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
- RetAI.getDirectOffset() == 0) {
- // The internal return value temp always will have pointer-to-return-type
- // type, just do a load.
- // If there is a dominating store to ReturnValue, we can elide
- // the load, zap the store, and usually zap the alloca.
- if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
- // Reuse the debug location from the store unless there is
- // cleanup code to be emitted between the store and return
- // instruction.
- if (EmitRetDbgLoc && !AutoreleaseResult)
- RetDbgLoc = SI->getDebugLoc();
- // Get the stored value and nuke the now-dead store.
- RV = SI->getValueOperand();
- SI->eraseFromParent();
- // If that was the only use of the return value, nuke it as well now.
- if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
- cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
- ReturnValue = 0;
- }
- // Otherwise, we have to do a simple load.
- } else {
- RV = Builder.CreateLoad(ReturnValue);
- }
- } else {
- llvm::Value *V = ReturnValue;
- // If the value is offset in memory, apply the offset now.
- if (unsigned Offs = RetAI.getDirectOffset()) {
- V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
- V = Builder.CreateConstGEP1_32(V, Offs);
- V = Builder.CreateBitCast(V,
- llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
- }
- RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
- }
- // In ARC, end functions that return a retainable type with a call
- // to objc_autoreleaseReturnValue.
- if (AutoreleaseResult) {
- assert(getLangOpts().ObjCAutoRefCount &&
- !FI.isReturnsRetained() &&
- RetTy->isObjCRetainableType());
- RV = emitAutoreleaseOfResult(*this, RV);
- }
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
- if (!RetDbgLoc.isUnknown())
- Ret->setDebugLoc(RetDbgLoc);
- }
- void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
- const VarDecl *param) {
- // StartFunction converted the ABI-lowered parameter(s) into a
- // local alloca. We need to turn that into an r-value suitable
- // for EmitCall.
- llvm::Value *local = GetAddrOfLocalVar(param);
- QualType type = param->getType();
- // For the most part, we just need to load the alloca, except:
- // 1) aggregate r-values are actually pointers to temporaries, and
- // 2) references to non-scalars are pointers directly to the aggregate.
- // I don't know why references to scalars are different here.
- if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
- if (!hasScalarEvaluationKind(ref->getPointeeType()))
- return args.add(RValue::getAggregate(local), type);
- // Locals which are references to scalars are represented
- // with allocas holding the pointer.
- return args.add(RValue::get(Builder.CreateLoad(local)), type);
- }
- args.add(convertTempToRValue(local, type), type);
- }
- static bool isProvablyNull(llvm::Value *addr) {
- return isa<llvm::ConstantPointerNull>(addr);
- }
- static bool isProvablyNonNull(llvm::Value *addr) {
- return isa<llvm::AllocaInst>(addr);
- }
- /// Emit the actual writing-back of a writeback.
- static void emitWriteback(CodeGenFunction &CGF,
- const CallArgList::Writeback &writeback) {
- const LValue &srcLV = writeback.Source;
- llvm::Value *srcAddr = srcLV.getAddress();
- assert(!isProvablyNull(srcAddr) &&
- "shouldn't have writeback for provably null argument");
- llvm::BasicBlock *contBB = 0;
- // If the argument wasn't provably non-null, we need to null check
- // before doing the store.
- bool provablyNonNull = isProvablyNonNull(srcAddr);
- if (!provablyNonNull) {
- llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
- contBB = CGF.createBasicBlock("icr.done");
- llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
- CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
- CGF.EmitBlock(writebackBB);
- }
- // Load the value to writeback.
- llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
- // Cast it back, in case we're writing an id to a Foo* or something.
- value = CGF.Builder.CreateBitCast(value,
- cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
- "icr.writeback-cast");
-
- // Perform the writeback.
- // If we have a "to use" value, it's something we need to emit a use
- // of. This has to be carefully threaded in: if it's done after the
- // release it's potentially undefined behavior (and the optimizer
- // will ignore it), and if it happens before the retain then the
- // optimizer could move the release there.
- if (writeback.ToUse) {
- assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
- // Retain the new value. No need to block-copy here: the block's
- // being passed up the stack.
- value = CGF.EmitARCRetainNonBlock(value);
- // Emit the intrinsic use here.
- CGF.EmitARCIntrinsicUse(writeback.ToUse);
- // Load the old value (primitively).
- llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
- // Put the new value in place (primitively).
- CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
- // Release the old value.
- CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
- // Otherwise, we can just do a normal lvalue store.
- } else {
- CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
- }
- // Jump to the continuation block.
- if (!provablyNonNull)
- CGF.EmitBlock(contBB);
- }
- static void emitWritebacks(CodeGenFunction &CGF,
- const CallArgList &args) {
- for (CallArgList::writeback_iterator
- i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
- emitWriteback(CGF, *i);
- }
- static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
- const CallArgList &CallArgs) {
- assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
- ArrayRef<CallArgList::CallArgCleanup> Cleanups =
- CallArgs.getCleanupsToDeactivate();
- // Iterate in reverse to increase the likelihood of popping the cleanup.
- for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
- I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
- CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
- I->IsActiveIP->eraseFromParent();
- }
- }
- static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
- if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
- if (uop->getOpcode() == UO_AddrOf)
- return uop->getSubExpr();
- return 0;
- }
- /// Emit an argument that's being passed call-by-writeback. That is,
- /// we are passing the address of
- static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
- const ObjCIndirectCopyRestoreExpr *CRE) {
- LValue srcLV;
- // Make an optimistic effort to emit the address as an l-value.
- // This can fail if the the argument expression is more complicated.
- if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
- srcLV = CGF.EmitLValue(lvExpr);
- // Otherwise, just emit it as a scalar.
- } else {
- llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
- QualType srcAddrType =
- CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
- srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
- }
- llvm::Value *srcAddr = srcLV.getAddress();
- // The dest and src types don't necessarily match in LLVM terms
- // because of the crazy ObjC compatibility rules.
- llvm::PointerType *destType =
- cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
- // If the address is a constant null, just pass the appropriate null.
- if (isProvablyNull(srcAddr)) {
- args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
- CRE->getType());
- return;
- }
- // Create the temporary.
- llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
- "icr.temp");
- // Loading an l-value can introduce a cleanup if the l-value is __weak,
- // and that cleanup will be conditional if we can't prove that the l-value
- // isn't null, so we need to register a dominating point so that the cleanups
- // system will make valid IR.
- CodeGenFunction::ConditionalEvaluation condEval(CGF);
-
- // Zero-initialize it if we're not doing a copy-initialization.
- bool shouldCopy = CRE->shouldCopy();
- if (!shouldCopy) {
- llvm::Value *null =
- llvm::ConstantPointerNull::get(
- cast<llvm::PointerType>(destType->getElementType()));
- CGF.Builder.CreateStore(null, temp);
- }
-
- llvm::BasicBlock *contBB = 0;
- llvm::BasicBlock *originBB = 0;
- // If the address is *not* known to be non-null, we need to switch.
- llvm::Value *finalArgument;
- bool provablyNonNull = isProvablyNonNull(srcAddr);
- if (provablyNonNull) {
- finalArgument = temp;
- } else {
- llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
- finalArgument = CGF.Builder.CreateSelect(isNull,
- llvm::ConstantPointerNull::get(destType),
- temp, "icr.argument");
- // If we need to copy, then the load has to be conditional, which
- // means we need control flow.
- if (shouldCopy) {
- originBB = CGF.Builder.GetInsertBlock();
- contBB = CGF.createBasicBlock("icr.cont");
- llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
- CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
- CGF.EmitBlock(copyBB);
- condEval.begin(CGF);
- }
- }
- llvm::Value *valueToUse = 0;
- // Perform a copy if necessary.
- if (shouldCopy) {
- RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
- assert(srcRV.isScalar());
- llvm::Value *src = srcRV.getScalarVal();
- src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
- "icr.cast");
- // Use an ordinary store, not a store-to-lvalue.
- CGF.Builder.CreateStore(src, temp);
- // If optimization is enabled, and the value was held in a
- // __strong variable, we need to tell the optimizer that this
- // value has to stay alive until we're doing the store back.
- // This is because the temporary is effectively unretained,
- // and so otherwise we can violate the high-level semantics.
- if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
- valueToUse = src;
- }
- }
-
- // Finish the control flow if we needed it.
- if (shouldCopy && !provablyNonNull) {
- llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
- CGF.EmitBlock(contBB);
- // Make a phi for the value to intrinsically use.
- if (valueToUse) {
- llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
- "icr.to-use");
- phiToUse->addIncoming(valueToUse, copyBB);
- phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
- originBB);
- valueToUse = phiToUse;
- }
- condEval.end(CGF);
- }
- args.addWriteback(srcLV, temp, valueToUse);
- args.add(RValue::get(finalArgument), CRE->getType());
- }
- void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
- QualType type) {
- if (const ObjCIndirectCopyRestoreExpr *CRE
- = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
- assert(getLangOpts().ObjCAutoRefCount);
- assert(getContext().hasSameType(E->getType(), type));
- return emitWritebackArg(*this, args, CRE);
- }
- assert(type->isReferenceType() == E->isGLValue() &&
- "reference binding to unmaterialized r-value!");
- if (E->isGLValue()) {
- assert(E->getObjectKind() == OK_Ordinary);
- return args.add(EmitReferenceBindingToExpr(E), type);
- }
- bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
- // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
- // However, we still have to push an EH-only cleanup in case we unwind before
- // we make it to the call.
- if (HasAggregateEvalKind &&
- CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
- const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
- if (RD && RD->hasNonTrivialDestructor()) {
- AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
- Slot.setExternallyDestructed();
- EmitAggExpr(E, Slot);
- RValue RV = Slot.asRValue();
- args.add(RV, type);
- pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
- /*useEHCleanupForArray*/ true);
- // This unreachable is a temporary marker which will be removed later.
- llvm::Instruction *IsActive = Builder.CreateUnreachable();
- args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
- return;
- }
- }
- if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
- cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
- LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
- assert(L.isSimple());
- if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
- args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
- } else {
- // We can't represent a misaligned lvalue in the CallArgList, so copy
- // to an aligned temporary now.
- llvm::Value *tmp = CreateMemTemp(type);
- EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
- L.getAlignment());
- args.add(RValue::getAggregate(tmp), type);
- }
- return;
- }
- args.add(EmitAnyExprToTemp(E), type);
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- void
- CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
- if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
- Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
- CGM.getNoObjCARCExceptionsMetadata());
- }
- /// Emits a call to the given no-arguments nounwind runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
- const llvm::Twine &name) {
- return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
- }
- /// Emits a call to the given nounwind runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
- ArrayRef<llvm::Value*> args,
- const llvm::Twine &name) {
- llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
- call->setDoesNotThrow();
- return call;
- }
- /// Emits a simple call (never an invoke) to the given no-arguments
- /// runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
- const llvm::Twine &name) {
- return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
- }
- /// Emits a simple call (never an invoke) to the given runtime
- /// function.
- llvm::CallInst *
- CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
- ArrayRef<llvm::Value*> args,
- const llvm::Twine &name) {
- llvm::CallInst *call = Builder.CreateCall(callee, args, name);
- call->setCallingConv(getRuntimeCC());
- return call;
- }
- /// Emits a call or invoke to the given noreturn runtime function.
- void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
- ArrayRef<llvm::Value*> args) {
- if (getInvokeDest()) {
- llvm::InvokeInst *invoke =
- Builder.CreateInvoke(callee,
- getUnreachableBlock(),
- getInvokeDest(),
- args);
- invoke->setDoesNotReturn();
- invoke->setCallingConv(getRuntimeCC());
- } else {
- llvm::CallInst *call = Builder.CreateCall(callee, args);
- call->setDoesNotReturn();
- call->setCallingConv(getRuntimeCC());
- Builder.CreateUnreachable();
- }
- }
- /// Emits a call or invoke instruction to the given nullary runtime
- /// function.
- llvm::CallSite
- CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
- const Twine &name) {
- return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
- }
- /// Emits a call or invoke instruction to the given runtime function.
- llvm::CallSite
- CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
- ArrayRef<llvm::Value*> args,
- const Twine &name) {
- llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
- callSite.setCallingConv(getRuntimeCC());
- return callSite;
- }
- llvm::CallSite
- CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
- const Twine &Name) {
- return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
- }
- /// Emits a call or invoke instruction to the given function, depending
- /// on the current state of the EH stack.
- llvm::CallSite
- CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
- ArrayRef<llvm::Value *> Args,
- const Twine &Name) {
- llvm::BasicBlock *InvokeDest = getInvokeDest();
- llvm::Instruction *Inst;
- if (!InvokeDest)
- Inst = Builder.CreateCall(Callee, Args, Name);
- else {
- llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
- Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
- EmitBlock(ContBB);
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(Inst);
- return Inst;
- }
- static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
- llvm::FunctionType *FTy) {
- if (ArgNo < FTy->getNumParams())
- assert(Elt->getType() == FTy->getParamType(ArgNo));
- else
- assert(FTy->isVarArg());
- ++ArgNo;
- }
- void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
- SmallVectorImpl<llvm::Value *> &Args,
- llvm::FunctionType *IRFuncTy) {
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- unsigned NumElts = AT->getSize().getZExtValue();
- QualType EltTy = AT->getElementType();
- llvm::Value *Addr = RV.getAggregateAddr();
- for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
- llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
- RValue EltRV = convertTempToRValue(EltAddr, EltTy);
- ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
- }
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- RecordDecl *RD = RT->getDecl();
- assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
- LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
- if (RD->isUnion()) {
- const FieldDecl *LargestFD = 0;
- CharUnits UnionSize = CharUnits::Zero();
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
- if (UnionSize < FieldSize) {
- UnionSize = FieldSize;
- LargestFD = FD;
- }
- }
- if (LargestFD) {
- RValue FldRV = EmitRValueForField(LV, LargestFD);
- ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
- }
- } else {
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- FieldDecl *FD = *i;
- RValue FldRV = EmitRValueForField(LV, FD);
- ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
- }
- }
- } else if (Ty->isAnyComplexType()) {
- ComplexPairTy CV = RV.getComplexVal();
- Args.push_back(CV.first);
- Args.push_back(CV.second);
- } else {
- assert(RV.isScalar() &&
- "Unexpected non-scalar rvalue during struct expansion.");
- // Insert a bitcast as needed.
- llvm::Value *V = RV.getScalarVal();
- if (Args.size() < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(Args.size()))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
- Args.push_back(V);
- }
- }
- RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
- llvm::Value *Callee,
- ReturnValueSlot ReturnValue,
- const CallArgList &CallArgs,
- const Decl *TargetDecl,
- llvm::Instruction **callOrInvoke) {
- // FIXME: We no longer need the types from CallArgs; lift up and simplify.
- SmallVector<llvm::Value*, 16> Args;
- // Handle struct-return functions by passing a pointer to the
- // location that we would like to return into.
- QualType RetTy = CallInfo.getReturnType();
- const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
- // IRArgNo - Keep track of the argument number in the callee we're looking at.
- unsigned IRArgNo = 0;
- llvm::FunctionType *IRFuncTy =
- cast<llvm::FunctionType>(
- cast<llvm::PointerType>(Callee->getType())->getElementType());
- // If the call returns a temporary with struct return, create a temporary
- // alloca to hold the result, unless one is given to us.
- if (CGM.ReturnTypeUsesSRet(CallInfo)) {
- llvm::Value *Value = ReturnValue.getValue();
- if (!Value)
- Value = CreateMemTemp(RetTy);
- Args.push_back(Value);
- checkArgMatches(Value, IRArgNo, IRFuncTy);
- }
- assert(CallInfo.arg_size() == CallArgs.size() &&
- "Mismatch between function signature & arguments.");
- CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
- for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
- I != E; ++I, ++info_it) {
- const ABIArgInfo &ArgInfo = info_it->info;
- RValue RV = I->RV;
- CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
- // Insert a padding argument to ensure proper alignment.
- if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
- Args.push_back(llvm::UndefValue::get(PaddingType));
- ++IRArgNo;
- }
- switch (ArgInfo.getKind()) {
- case ABIArgInfo::Indirect: {
- if (RV.isScalar() || RV.isComplex()) {
- // Make a temporary alloca to pass the argument.
- llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
- if (ArgInfo.getIndirectAlign() > AI->getAlignment())
- AI->setAlignment(ArgInfo.getIndirectAlign());
- Args.push_back(AI);
- LValue argLV =
- MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
-
- if (RV.isScalar())
- EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
- else
- EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
-
- // Validate argument match.
- checkArgMatches(AI, IRArgNo, IRFuncTy);
- } else {
- // We want to avoid creating an unnecessary temporary+copy here;
- // however, we need one in three cases:
- // 1. If the argument is not byval, and we are required to copy the
- // source. (This case doesn't occur on any common architecture.)
- // 2. If the argument is byval, RV is not sufficiently aligned, and
- // we cannot force it to be sufficiently aligned.
- // 3. If the argument is byval, but RV is located in an address space
- // different than that of the argument (0).
- llvm::Value *Addr = RV.getAggregateAddr();
- unsigned Align = ArgInfo.getIndirectAlign();
- const llvm::DataLayout *TD = &CGM.getDataLayout();
- const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
- const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
- IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
- if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
- (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
- llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
- (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
- // Create an aligned temporary, and copy to it.
- llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
- if (Align > AI->getAlignment())
- AI->setAlignment(Align);
- Args.push_back(AI);
- EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
-
- // Validate argument match.
- checkArgMatches(AI, IRArgNo, IRFuncTy);
- } else {
- // Skip the extra memcpy call.
- Args.push_back(Addr);
-
- // Validate argument match.
- checkArgMatches(Addr, IRArgNo, IRFuncTy);
- }
- }
- break;
- }
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
- ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
- ArgInfo.getDirectOffset() == 0) {
- llvm::Value *V;
- if (RV.isScalar())
- V = RV.getScalarVal();
- else
- V = Builder.CreateLoad(RV.getAggregateAddr());
-
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- if (IRArgNo < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(IRArgNo))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
- Args.push_back(V);
-
- checkArgMatches(V, IRArgNo, IRFuncTy);
- break;
- }
- // FIXME: Avoid the conversion through memory if possible.
- llvm::Value *SrcPtr;
- if (RV.isScalar() || RV.isComplex()) {
- SrcPtr = CreateMemTemp(I->Ty, "coerce");
- LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
- if (RV.isScalar()) {
- EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
- } else {
- EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
- }
- } else
- SrcPtr = RV.getAggregateAddr();
- // If the value is offset in memory, apply the offset now.
- if (unsigned Offs = ArgInfo.getDirectOffset()) {
- SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
- SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
- SrcPtr = Builder.CreateBitCast(SrcPtr,
- llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
- }
- // If the coerce-to type is a first class aggregate, we flatten it and
- // pass the elements. Either way is semantically identical, but fast-isel
- // and the optimizer generally likes scalar values better than FCAs.
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
- llvm::Type *SrcTy =
- cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
- uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
- // If the source type is smaller than the destination type of the
- // coerce-to logic, copy the source value into a temp alloca the size
- // of the destination type to allow loading all of it. The bits past
- // the source value are left undef.
- if (SrcSize < DstSize) {
- llvm::AllocaInst *TempAlloca
- = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
- Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
- SrcPtr = TempAlloca;
- } else {
- SrcPtr = Builder.CreateBitCast(SrcPtr,
- llvm::PointerType::getUnqual(STy));
- }
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
- llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
- // We don't know what we're loading from.
- LI->setAlignment(1);
- Args.push_back(LI);
-
- // Validate argument match.
- checkArgMatches(LI, IRArgNo, IRFuncTy);
- }
- } else {
- // In the simple case, just pass the coerced loaded value.
- Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
- *this));
-
- // Validate argument match.
- checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
- }
- break;
- }
- case ABIArgInfo::Expand:
- ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
- IRArgNo = Args.size();
- break;
- }
- }
- if (!CallArgs.getCleanupsToDeactivate().empty())
- deactivateArgCleanupsBeforeCall(*this, CallArgs);
- // If the callee is a bitcast of a function to a varargs pointer to function
- // type, check to see if we can remove the bitcast. This handles some cases
- // with unprototyped functions.
- if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
- if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
- llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
- llvm::FunctionType *CurFT =
- cast<llvm::FunctionType>(CurPT->getElementType());
- llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
- if (CE->getOpcode() == llvm::Instruction::BitCast &&
- ActualFT->getReturnType() == CurFT->getReturnType() &&
- ActualFT->getNumParams() == CurFT->getNumParams() &&
- ActualFT->getNumParams() == Args.size() &&
- (CurFT->isVarArg() || !ActualFT->isVarArg())) {
- bool ArgsMatch = true;
- for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
- if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
- ArgsMatch = false;
- break;
- }
- // Strip the cast if we can get away with it. This is a nice cleanup,
- // but also allows us to inline the function at -O0 if it is marked
- // always_inline.
- if (ArgsMatch)
- Callee = CalleeF;
- }
- }
- unsigned CallingConv;
- CodeGen::AttributeListType AttributeList;
- CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
- CallingConv, true);
- llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
- AttributeList);
- llvm::BasicBlock *InvokeDest = 0;
- if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
- llvm::Attribute::NoUnwind))
- InvokeDest = getInvokeDest();
- llvm::CallSite CS;
- if (!InvokeDest) {
- CS = Builder.CreateCall(Callee, Args);
- } else {
- llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
- CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
- EmitBlock(Cont);
- }
- if (callOrInvoke)
- *callOrInvoke = CS.getInstruction();
- CS.setAttributes(Attrs);
- CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(CS.getInstruction());
- // If the call doesn't return, finish the basic block and clear the
- // insertion point; this allows the rest of IRgen to discard
- // unreachable code.
- if (CS.doesNotReturn()) {
- Builder.CreateUnreachable();
- Builder.ClearInsertionPoint();
- // FIXME: For now, emit a dummy basic block because expr emitters in
- // generally are not ready to handle emitting expressions at unreachable
- // points.
- EnsureInsertPoint();
- // Return a reasonable RValue.
- return GetUndefRValue(RetTy);
- }
- llvm::Instruction *CI = CS.getInstruction();
- if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
- CI->setName("call");
- // Emit any writebacks immediately. Arguably this should happen
- // after any return-value munging.
- if (CallArgs.hasWritebacks())
- emitWritebacks(*this, CallArgs);
- switch (RetAI.getKind()) {
- case ABIArgInfo::Indirect:
- return convertTempToRValue(Args[0], RetTy);
- case ABIArgInfo::Ignore:
- // If we are ignoring an argument that had a result, make sure to
- // construct the appropriate return value for our caller.
- return GetUndefRValue(RetTy);
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- llvm::Type *RetIRTy = ConvertType(RetTy);
- if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
- switch (getEvaluationKind(RetTy)) {
- case TEK_Complex: {
- llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
- llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
- return RValue::getComplex(std::make_pair(Real, Imag));
- }
- case TEK_Aggregate: {
- llvm::Value *DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr) {
- DestPtr = CreateMemTemp(RetTy, "agg.tmp");
- DestIsVolatile = false;
- }
- BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
- return RValue::getAggregate(DestPtr);
- }
- case TEK_Scalar: {
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- llvm::Value *V = CI;
- if (V->getType() != RetIRTy)
- V = Builder.CreateBitCast(V, RetIRTy);
- return RValue::get(V);
- }
- }
- llvm_unreachable("bad evaluation kind");
- }
- llvm::Value *DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr) {
- DestPtr = CreateMemTemp(RetTy, "coerce");
- DestIsVolatile = false;
- }
- // If the value is offset in memory, apply the offset now.
- llvm::Value *StorePtr = DestPtr;
- if (unsigned Offs = RetAI.getDirectOffset()) {
- StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
- StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
- StorePtr = Builder.CreateBitCast(StorePtr,
- llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
- }
- CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
- return convertTempToRValue(DestPtr, RetTy);
- }
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm_unreachable("Unhandled ABIArgInfo::Kind");
- }
- /* VarArg handling */
- llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
- return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
- }
|