123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines RangeConstraintManager, a class that tracks simple
- // equality and inequality constraints on symbolic values of ProgramState.
- //
- //===----------------------------------------------------------------------===//
- #include "SimpleConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/ImmutableSet.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace clang;
- using namespace ento;
- namespace { class ConstraintRange {}; }
- static int ConstraintRangeIndex = 0;
- /// A Range represents the closed range [from, to]. The caller must
- /// guarantee that from <= to. Note that Range is immutable, so as not
- /// to subvert RangeSet's immutability.
- namespace {
- class Range : public std::pair<const llvm::APSInt*,
- const llvm::APSInt*> {
- public:
- Range(const llvm::APSInt &from, const llvm::APSInt &to)
- : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
- assert(from <= to);
- }
- bool Includes(const llvm::APSInt &v) const {
- return *first <= v && v <= *second;
- }
- const llvm::APSInt &From() const {
- return *first;
- }
- const llvm::APSInt &To() const {
- return *second;
- }
- const llvm::APSInt *getConcreteValue() const {
- return &From() == &To() ? &From() : NULL;
- }
- void Profile(llvm::FoldingSetNodeID &ID) const {
- ID.AddPointer(&From());
- ID.AddPointer(&To());
- }
- };
- class RangeTrait : public llvm::ImutContainerInfo<Range> {
- public:
- // When comparing if one Range is less than another, we should compare
- // the actual APSInt values instead of their pointers. This keeps the order
- // consistent (instead of comparing by pointer values) and can potentially
- // be used to speed up some of the operations in RangeSet.
- static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
- return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
- *lhs.second < *rhs.second);
- }
- };
- /// RangeSet contains a set of ranges. If the set is empty, then
- /// there the value of a symbol is overly constrained and there are no
- /// possible values for that symbol.
- class RangeSet {
- typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
- PrimRangeSet ranges; // no need to make const, since it is an
- // ImmutableSet - this allows default operator=
- // to work.
- public:
- typedef PrimRangeSet::Factory Factory;
- typedef PrimRangeSet::iterator iterator;
- RangeSet(PrimRangeSet RS) : ranges(RS) {}
- iterator begin() const { return ranges.begin(); }
- iterator end() const { return ranges.end(); }
- bool isEmpty() const { return ranges.isEmpty(); }
- /// Construct a new RangeSet representing '{ [from, to] }'.
- RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
- : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
- /// Profile - Generates a hash profile of this RangeSet for use
- /// by FoldingSet.
- void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
- /// getConcreteValue - If a symbol is contrained to equal a specific integer
- /// constant then this method returns that value. Otherwise, it returns
- /// NULL.
- const llvm::APSInt* getConcreteValue() const {
- return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
- }
- private:
- void IntersectInRange(BasicValueFactory &BV, Factory &F,
- const llvm::APSInt &Lower,
- const llvm::APSInt &Upper,
- PrimRangeSet &newRanges,
- PrimRangeSet::iterator &i,
- PrimRangeSet::iterator &e) const {
- // There are six cases for each range R in the set:
- // 1. R is entirely before the intersection range.
- // 2. R is entirely after the intersection range.
- // 3. R contains the entire intersection range.
- // 4. R starts before the intersection range and ends in the middle.
- // 5. R starts in the middle of the intersection range and ends after it.
- // 6. R is entirely contained in the intersection range.
- // These correspond to each of the conditions below.
- for (/* i = begin(), e = end() */; i != e; ++i) {
- if (i->To() < Lower) {
- continue;
- }
- if (i->From() > Upper) {
- break;
- }
- if (i->Includes(Lower)) {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(BV.getValue(Lower),
- BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
- } else {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, *i);
- }
- }
- }
- public:
- // Returns a set containing the values in the receiving set, intersected with
- // the closed range [Lower, Upper]. Unlike the Range type, this range uses
- // modular arithmetic, corresponding to the common treatment of C integer
- // overflow. Thus, if the Lower bound is greater than the Upper bound, the
- // range is taken to wrap around. This is equivalent to taking the
- // intersection with the two ranges [Min, Upper] and [Lower, Max],
- // or, alternatively, /removing/ all integers between Upper and Lower.
- RangeSet Intersect(BasicValueFactory &BV, Factory &F,
- const llvm::APSInt &Lower,
- const llvm::APSInt &Upper) const {
- PrimRangeSet newRanges = F.getEmptySet();
- PrimRangeSet::iterator i = begin(), e = end();
- if (Lower <= Upper)
- IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
- else {
- // The order of the next two statements is important!
- // IntersectInRange() does not reset the iteration state for i and e.
- // Therefore, the lower range most be handled first.
- IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
- IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
- }
- return newRanges;
- }
- void print(raw_ostream &os) const {
- bool isFirst = true;
- os << "{ ";
- for (iterator i = begin(), e = end(); i != e; ++i) {
- if (isFirst)
- isFirst = false;
- else
- os << ", ";
- os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
- << ']';
- }
- os << " }";
- }
- bool operator==(const RangeSet &other) const {
- return ranges == other.ranges;
- }
- };
- } // end anonymous namespace
- typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
- namespace clang {
- namespace ento {
- template<>
- struct ProgramStateTrait<ConstraintRange>
- : public ProgramStatePartialTrait<ConstraintRangeTy> {
- static inline void *GDMIndex() { return &ConstraintRangeIndex; }
- };
- }
- }
- namespace {
- class RangeConstraintManager : public SimpleConstraintManager{
- RangeSet GetRange(const ProgramState *state, SymbolRef sym);
- public:
- RangeConstraintManager(SubEngine &subengine)
- : SimpleConstraintManager(subengine) {}
- const ProgramState *assumeSymNE(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
- const ProgramState *assumeSymEQ(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
- const ProgramState *assumeSymLT(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
- const ProgramState *assumeSymGT(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
- const ProgramState *assumeSymGE(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
- const ProgramState *assumeSymLE(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
- const llvm::APSInt* getSymVal(const ProgramState *St, SymbolRef sym) const;
- // FIXME: Refactor into SimpleConstraintManager?
- bool isEqual(const ProgramState *St, SymbolRef sym, const llvm::APSInt& V) const {
- const llvm::APSInt *i = getSymVal(St, sym);
- return i ? *i == V : false;
- }
- const ProgramState *removeDeadBindings(const ProgramState *St, SymbolReaper& SymReaper);
- void print(const ProgramState *St, raw_ostream &Out,
- const char* nl, const char *sep);
- private:
- RangeSet::Factory F;
- };
- } // end anonymous namespace
- ConstraintManager* ento::CreateRangeConstraintManager(ProgramStateManager&,
- SubEngine &subeng) {
- return new RangeConstraintManager(subeng);
- }
- const llvm::APSInt* RangeConstraintManager::getSymVal(const ProgramState *St,
- SymbolRef sym) const {
- const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
- return T ? T->getConcreteValue() : NULL;
- }
- /// Scan all symbols referenced by the constraints. If the symbol is not alive
- /// as marked in LSymbols, mark it as dead in DSymbols.
- const ProgramState*
- RangeConstraintManager::removeDeadBindings(const ProgramState *state,
- SymbolReaper& SymReaper) {
- ConstraintRangeTy CR = state->get<ConstraintRange>();
- ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
- for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
- SymbolRef sym = I.getKey();
- if (SymReaper.maybeDead(sym))
- CR = CRFactory.remove(CR, sym);
- }
- return state->set<ConstraintRange>(CR);
- }
- RangeSet
- RangeConstraintManager::GetRange(const ProgramState *state, SymbolRef sym) {
- if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
- return *V;
- // Lazily generate a new RangeSet representing all possible values for the
- // given symbol type.
- QualType T = state->getSymbolManager().getType(sym);
- BasicValueFactory& BV = state->getBasicVals();
- return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
- }
- //===------------------------------------------------------------------------===
- // assumeSymX methods: public interface for RangeConstraintManager.
- //===------------------------------------------------------------------------===/
- // The syntax for ranges below is mathematical, using [x, y] for closed ranges
- // and (x, y) for open ranges. These ranges are modular, corresponding with
- // a common treatment of C integer overflow. This means that these methods
- // do not have to worry about overflow; RangeSet::Intersect can handle such a
- // "wraparound" range.
- // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
- // UINT_MAX, 0, 1, and 2.
- const ProgramState*
- RangeConstraintManager::assumeSymNE(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
- llvm::APSInt Lower = Int-Adjustment;
- llvm::APSInt Upper = Lower;
- --Lower;
- ++Upper;
- // [Int-Adjustment+1, Int-Adjustment-1]
- // Notice that the lower bound is greater than the upper bound.
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
- }
- const ProgramState*
- RangeConstraintManager::assumeSymEQ(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- // [Int-Adjustment, Int-Adjustment]
- BasicValueFactory &BV = state->getBasicVals();
- llvm::APSInt AdjInt = Int-Adjustment;
- RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
- }
- const ProgramState*
- RangeConstraintManager::assumeSymLT(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Min = BV.getMinValue(T);
- // Special case for Int == Min. This is always false.
- if (Int == Min)
- return NULL;
- llvm::APSInt Lower = Min-Adjustment;
- llvm::APSInt Upper = Int-Adjustment;
- --Upper;
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
- }
- const ProgramState*
- RangeConstraintManager::assumeSymGT(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Max = BV.getMaxValue(T);
- // Special case for Int == Max. This is always false.
- if (Int == Max)
- return NULL;
- llvm::APSInt Lower = Int-Adjustment;
- llvm::APSInt Upper = Max-Adjustment;
- ++Lower;
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
- }
- const ProgramState*
- RangeConstraintManager::assumeSymGE(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Min = BV.getMinValue(T);
- // Special case for Int == Min. This is always feasible.
- if (Int == Min)
- return state;
- const llvm::APSInt &Max = BV.getMaxValue(T);
- llvm::APSInt Lower = Int-Adjustment;
- llvm::APSInt Upper = Max-Adjustment;
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
- }
- const ProgramState*
- RangeConstraintManager::assumeSymLE(const ProgramState *state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Max = BV.getMaxValue(T);
- // Special case for Int == Max. This is always feasible.
- if (Int == Max)
- return state;
- const llvm::APSInt &Min = BV.getMinValue(T);
- llvm::APSInt Lower = Min-Adjustment;
- llvm::APSInt Upper = Int-Adjustment;
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
- }
- //===------------------------------------------------------------------------===
- // Pretty-printing.
- //===------------------------------------------------------------------------===/
- void RangeConstraintManager::print(const ProgramState *St, raw_ostream &Out,
- const char* nl, const char *sep) {
- ConstraintRangeTy Ranges = St->get<ConstraintRange>();
- if (Ranges.isEmpty()) {
- Out << nl << sep << "Ranges are empty." << nl;
- return;
- }
- Out << nl << sep << "Ranges of symbol values:";
- for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
- Out << nl << ' ' << I.getKey() << " : ";
- I.getData().print(Out);
- }
- Out << nl;
- }
|