123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines SimpleConstraintManager, a class that holds code shared
- // between BasicConstraintManager and RangeConstraintManager.
- //
- //===----------------------------------------------------------------------===//
- #include "SimpleConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- namespace clang {
- namespace ento {
- SimpleConstraintManager::~SimpleConstraintManager() {}
- bool SimpleConstraintManager::canReasonAbout(SVal X) const {
- Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
- if (SymVal && SymVal->isExpression()) {
- const SymExpr *SE = SymVal->getSymbol();
- if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
- switch (SIE->getOpcode()) {
- // We don't reason yet about bitwise-constraints on symbolic values.
- case BO_And:
- case BO_Or:
- case BO_Xor:
- return false;
- // We don't reason yet about these arithmetic constraints on
- // symbolic values.
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Shl:
- case BO_Shr:
- return false;
- // All other cases.
- default:
- return true;
- }
- }
- if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
- if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
- // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
- if (Loc::isLocType(SSE->getLHS()->getType())) {
- assert(Loc::isLocType(SSE->getRHS()->getType()));
- return true;
- }
- }
- }
- return false;
- }
- return true;
- }
- ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
- DefinedSVal Cond,
- bool Assumption) {
- // If we have a Loc value, cast it to a bool NonLoc first.
- if (Optional<Loc> LV = Cond.getAs<Loc>()) {
- SValBuilder &SVB = state->getStateManager().getSValBuilder();
- QualType T;
- const MemRegion *MR = LV->getAsRegion();
- if (const TypedRegion *TR = dyn_cast_or_null<TypedRegion>(MR))
- T = TR->getLocationType();
- else
- T = SVB.getContext().VoidPtrTy;
- Cond = SVB.evalCast(*LV, SVB.getContext().BoolTy, T).castAs<DefinedSVal>();
- }
- return assume(state, Cond.castAs<NonLoc>(), Assumption);
- }
- ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
- NonLoc cond,
- bool assumption) {
- state = assumeAux(state, cond, assumption);
- if (NotifyAssumeClients && SU)
- return SU->processAssume(state, cond, assumption);
- return state;
- }
- ProgramStateRef
- SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
- SymbolRef Sym, bool Assumption) {
- BasicValueFactory &BVF = getBasicVals();
- QualType T = Sym->getType();
- // None of the constraint solvers currently support non-integer types.
- if (!T->isIntegralOrEnumerationType())
- return State;
- const llvm::APSInt &zero = BVF.getValue(0, T);
- if (Assumption)
- return assumeSymNE(State, Sym, zero, zero);
- else
- return assumeSymEQ(State, Sym, zero, zero);
- }
- ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
- NonLoc Cond,
- bool Assumption) {
- // We cannot reason about SymSymExprs, and can only reason about some
- // SymIntExprs.
- if (!canReasonAbout(Cond)) {
- // Just add the constraint to the expression without trying to simplify.
- SymbolRef sym = Cond.getAsSymExpr();
- return assumeAuxForSymbol(state, sym, Assumption);
- }
- switch (Cond.getSubKind()) {
- default:
- llvm_unreachable("'Assume' not implemented for this NonLoc");
- case nonloc::SymbolValKind: {
- nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
- SymbolRef sym = SV.getSymbol();
- assert(sym);
- // Handle SymbolData.
- if (!SV.isExpression()) {
- return assumeAuxForSymbol(state, sym, Assumption);
- // Handle symbolic expression.
- } else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
- // We can only simplify expressions whose RHS is an integer.
- BinaryOperator::Opcode op = SE->getOpcode();
- if (BinaryOperator::isComparisonOp(op)) {
- if (!Assumption)
- op = BinaryOperator::negateComparisonOp(op);
- return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
- }
- } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
- // Translate "a != b" to "(b - a) != 0".
- // We invert the order of the operands as a heuristic for how loop
- // conditions are usually written ("begin != end") as compared to length
- // calculations ("end - begin"). The more correct thing to do would be to
- // canonicalize "a - b" and "b - a", which would allow us to treat
- // "a != b" and "b != a" the same.
- SymbolManager &SymMgr = getSymbolManager();
- BinaryOperator::Opcode Op = SSE->getOpcode();
- assert(BinaryOperator::isComparisonOp(Op));
- // For now, we only support comparing pointers.
- assert(Loc::isLocType(SSE->getLHS()->getType()));
- assert(Loc::isLocType(SSE->getRHS()->getType()));
- QualType DiffTy = SymMgr.getContext().getPointerDiffType();
- SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
- SSE->getLHS(), DiffTy);
- const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
- Op = BinaryOperator::reverseComparisonOp(Op);
- if (!Assumption)
- Op = BinaryOperator::negateComparisonOp(Op);
- return assumeSymRel(state, Subtraction, Op, Zero);
- }
- // If we get here, there's nothing else we can do but treat the symbol as
- // opaque.
- return assumeAuxForSymbol(state, sym, Assumption);
- }
- case nonloc::ConcreteIntKind: {
- bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
- bool isFeasible = b ? Assumption : !Assumption;
- return isFeasible ? state : nullptr;
- }
- case nonloc::LocAsIntegerKind:
- return assume(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
- Assumption);
- } // end switch
- }
- static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
- // Is it a "($sym+constant1)" expression?
- if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
- BinaryOperator::Opcode Op = SE->getOpcode();
- if (Op == BO_Add || Op == BO_Sub) {
- Sym = SE->getLHS();
- Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
- // Don't forget to negate the adjustment if it's being subtracted.
- // This should happen /after/ promotion, in case the value being
- // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
- if (Op == BO_Sub)
- Adjustment = -Adjustment;
- }
- }
- }
- ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
- const SymExpr *LHS,
- BinaryOperator::Opcode op,
- const llvm::APSInt& Int) {
- assert(BinaryOperator::isComparisonOp(op) &&
- "Non-comparison ops should be rewritten as comparisons to zero.");
- // Get the type used for calculating wraparound.
- BasicValueFactory &BVF = getBasicVals();
- APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
- // We only handle simple comparisons of the form "$sym == constant"
- // or "($sym+constant1) == constant2".
- // The adjustment is "constant1" in the above expression. It's used to
- // "slide" the solution range around for modular arithmetic. For example,
- // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
- // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
- // the subclasses of SimpleConstraintManager to handle the adjustment.
- SymbolRef Sym = LHS;
- llvm::APSInt Adjustment = WraparoundType.getZeroValue();
- computeAdjustment(Sym, Adjustment);
- // Convert the right-hand side integer as necessary.
- APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
- llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
- // Prefer unsigned comparisons.
- if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
- ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
- Adjustment.setIsSigned(false);
- switch (op) {
- default:
- llvm_unreachable("invalid operation not caught by assertion above");
- case BO_EQ:
- return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
- case BO_NE:
- return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
- case BO_GT:
- return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
- case BO_GE:
- return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
- case BO_LT:
- return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
- case BO_LE:
- return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
- } // end switch
- }
- } // end of namespace ento
- } // end of namespace clang
|