ProgramState.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file implements ProgramState and ProgramStateManager.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
  14. #include "clang/Analysis/CFG.h"
  15. #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
  16. #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
  17. #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
  18. #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
  19. #include "llvm/Support/raw_ostream.h"
  20. using namespace clang;
  21. using namespace ento;
  22. namespace clang { namespace ento {
  23. /// Increments the number of times this state is referenced.
  24. void ProgramStateRetain(const ProgramState *state) {
  25. ++const_cast<ProgramState*>(state)->refCount;
  26. }
  27. /// Decrement the number of times this state is referenced.
  28. void ProgramStateRelease(const ProgramState *state) {
  29. assert(state->refCount > 0);
  30. ProgramState *s = const_cast<ProgramState*>(state);
  31. if (--s->refCount == 0) {
  32. ProgramStateManager &Mgr = s->getStateManager();
  33. Mgr.StateSet.RemoveNode(s);
  34. s->~ProgramState();
  35. Mgr.freeStates.push_back(s);
  36. }
  37. }
  38. }}
  39. ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
  40. StoreRef st, GenericDataMap gdm)
  41. : stateMgr(mgr),
  42. Env(env),
  43. store(st.getStore()),
  44. GDM(gdm),
  45. refCount(0) {
  46. stateMgr->getStoreManager().incrementReferenceCount(store);
  47. }
  48. ProgramState::ProgramState(const ProgramState &RHS)
  49. : llvm::FoldingSetNode(),
  50. stateMgr(RHS.stateMgr),
  51. Env(RHS.Env),
  52. store(RHS.store),
  53. GDM(RHS.GDM),
  54. refCount(0) {
  55. stateMgr->getStoreManager().incrementReferenceCount(store);
  56. }
  57. ProgramState::~ProgramState() {
  58. if (store)
  59. stateMgr->getStoreManager().decrementReferenceCount(store);
  60. }
  61. ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
  62. StoreManagerCreator CreateSMgr,
  63. ConstraintManagerCreator CreateCMgr,
  64. llvm::BumpPtrAllocator &alloc,
  65. SubEngine *SubEng)
  66. : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
  67. svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
  68. CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
  69. StoreMgr.reset((*CreateSMgr)(*this));
  70. ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
  71. }
  72. ProgramStateManager::~ProgramStateManager() {
  73. for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
  74. I!=E; ++I)
  75. I->second.second(I->second.first);
  76. }
  77. ProgramStateRef
  78. ProgramStateManager::removeDeadBindings(ProgramStateRef state,
  79. const StackFrameContext *LCtx,
  80. SymbolReaper& SymReaper) {
  81. // This code essentially performs a "mark-and-sweep" of the VariableBindings.
  82. // The roots are any Block-level exprs and Decls that our liveness algorithm
  83. // tells us are live. We then see what Decls they may reference, and keep
  84. // those around. This code more than likely can be made faster, and the
  85. // frequency of which this method is called should be experimented with
  86. // for optimum performance.
  87. ProgramState NewState = *state;
  88. NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
  89. // Clean up the store.
  90. StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
  91. SymReaper);
  92. NewState.setStore(newStore);
  93. SymReaper.setReapedStore(newStore);
  94. ProgramStateRef Result = getPersistentState(NewState);
  95. return ConstraintMgr->removeDeadBindings(Result, SymReaper);
  96. }
  97. ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
  98. ProgramStateManager &Mgr = getStateManager();
  99. ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
  100. LV, V));
  101. const MemRegion *MR = LV.getAsRegion();
  102. if (MR && Mgr.getOwningEngine() && notifyChanges)
  103. return Mgr.getOwningEngine()->processRegionChange(newState, MR);
  104. return newState;
  105. }
  106. ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
  107. ProgramStateManager &Mgr = getStateManager();
  108. const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
  109. const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
  110. ProgramStateRef new_state = makeWithStore(newStore);
  111. return Mgr.getOwningEngine() ?
  112. Mgr.getOwningEngine()->processRegionChange(new_state, R) :
  113. new_state;
  114. }
  115. typedef ArrayRef<const MemRegion *> RegionList;
  116. typedef ArrayRef<SVal> ValueList;
  117. ProgramStateRef
  118. ProgramState::invalidateRegions(RegionList Regions,
  119. const Expr *E, unsigned Count,
  120. const LocationContext *LCtx,
  121. bool CausedByPointerEscape,
  122. InvalidatedSymbols *IS,
  123. const CallEvent *Call,
  124. RegionAndSymbolInvalidationTraits *ITraits) const {
  125. SmallVector<SVal, 8> Values;
  126. for (RegionList::const_iterator I = Regions.begin(),
  127. End = Regions.end(); I != End; ++I)
  128. Values.push_back(loc::MemRegionVal(*I));
  129. return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
  130. IS, ITraits, Call);
  131. }
  132. ProgramStateRef
  133. ProgramState::invalidateRegions(ValueList Values,
  134. const Expr *E, unsigned Count,
  135. const LocationContext *LCtx,
  136. bool CausedByPointerEscape,
  137. InvalidatedSymbols *IS,
  138. const CallEvent *Call,
  139. RegionAndSymbolInvalidationTraits *ITraits) const {
  140. return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
  141. IS, ITraits, Call);
  142. }
  143. ProgramStateRef
  144. ProgramState::invalidateRegionsImpl(ValueList Values,
  145. const Expr *E, unsigned Count,
  146. const LocationContext *LCtx,
  147. bool CausedByPointerEscape,
  148. InvalidatedSymbols *IS,
  149. RegionAndSymbolInvalidationTraits *ITraits,
  150. const CallEvent *Call) const {
  151. ProgramStateManager &Mgr = getStateManager();
  152. SubEngine* Eng = Mgr.getOwningEngine();
  153. InvalidatedSymbols Invalidated;
  154. if (!IS)
  155. IS = &Invalidated;
  156. RegionAndSymbolInvalidationTraits ITraitsLocal;
  157. if (!ITraits)
  158. ITraits = &ITraitsLocal;
  159. if (Eng) {
  160. StoreManager::InvalidatedRegions TopLevelInvalidated;
  161. StoreManager::InvalidatedRegions Invalidated;
  162. const StoreRef &newStore
  163. = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
  164. *IS, *ITraits, &TopLevelInvalidated,
  165. &Invalidated);
  166. ProgramStateRef newState = makeWithStore(newStore);
  167. if (CausedByPointerEscape) {
  168. newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
  169. TopLevelInvalidated,
  170. Invalidated, Call,
  171. *ITraits);
  172. }
  173. return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
  174. Invalidated, Call);
  175. }
  176. const StoreRef &newStore =
  177. Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
  178. *IS, *ITraits, nullptr, nullptr);
  179. return makeWithStore(newStore);
  180. }
  181. ProgramStateRef ProgramState::killBinding(Loc LV) const {
  182. assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
  183. Store OldStore = getStore();
  184. const StoreRef &newStore =
  185. getStateManager().StoreMgr->killBinding(OldStore, LV);
  186. if (newStore.getStore() == OldStore)
  187. return this;
  188. return makeWithStore(newStore);
  189. }
  190. ProgramStateRef
  191. ProgramState::enterStackFrame(const CallEvent &Call,
  192. const StackFrameContext *CalleeCtx) const {
  193. const StoreRef &NewStore =
  194. getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
  195. return makeWithStore(NewStore);
  196. }
  197. SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
  198. // We only want to do fetches from regions that we can actually bind
  199. // values. For example, SymbolicRegions of type 'id<...>' cannot
  200. // have direct bindings (but their can be bindings on their subregions).
  201. if (!R->isBoundable())
  202. return UnknownVal();
  203. if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
  204. QualType T = TR->getValueType();
  205. if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
  206. return getSVal(R);
  207. }
  208. return UnknownVal();
  209. }
  210. SVal ProgramState::getSVal(Loc location, QualType T) const {
  211. SVal V = getRawSVal(cast<Loc>(location), T);
  212. // If 'V' is a symbolic value that is *perfectly* constrained to
  213. // be a constant value, use that value instead to lessen the burden
  214. // on later analysis stages (so we have less symbolic values to reason
  215. // about).
  216. if (!T.isNull()) {
  217. if (SymbolRef sym = V.getAsSymbol()) {
  218. if (const llvm::APSInt *Int = getStateManager()
  219. .getConstraintManager()
  220. .getSymVal(this, sym)) {
  221. // FIXME: Because we don't correctly model (yet) sign-extension
  222. // and truncation of symbolic values, we need to convert
  223. // the integer value to the correct signedness and bitwidth.
  224. //
  225. // This shows up in the following:
  226. //
  227. // char foo();
  228. // unsigned x = foo();
  229. // if (x == 54)
  230. // ...
  231. //
  232. // The symbolic value stored to 'x' is actually the conjured
  233. // symbol for the call to foo(); the type of that symbol is 'char',
  234. // not unsigned.
  235. const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
  236. if (V.getAs<Loc>())
  237. return loc::ConcreteInt(NewV);
  238. else
  239. return nonloc::ConcreteInt(NewV);
  240. }
  241. }
  242. }
  243. return V;
  244. }
  245. ProgramStateRef ProgramState::BindExpr(const Stmt *S,
  246. const LocationContext *LCtx,
  247. SVal V, bool Invalidate) const{
  248. Environment NewEnv =
  249. getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
  250. Invalidate);
  251. if (NewEnv == Env)
  252. return this;
  253. ProgramState NewSt = *this;
  254. NewSt.Env = NewEnv;
  255. return getStateManager().getPersistentState(NewSt);
  256. }
  257. ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
  258. DefinedOrUnknownSVal UpperBound,
  259. bool Assumption,
  260. QualType indexTy) const {
  261. if (Idx.isUnknown() || UpperBound.isUnknown())
  262. return this;
  263. // Build an expression for 0 <= Idx < UpperBound.
  264. // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
  265. // FIXME: This should probably be part of SValBuilder.
  266. ProgramStateManager &SM = getStateManager();
  267. SValBuilder &svalBuilder = SM.getSValBuilder();
  268. ASTContext &Ctx = svalBuilder.getContext();
  269. // Get the offset: the minimum value of the array index type.
  270. BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
  271. // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
  272. if (indexTy.isNull())
  273. indexTy = Ctx.IntTy;
  274. nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
  275. // Adjust the index.
  276. SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
  277. Idx.castAs<NonLoc>(), Min, indexTy);
  278. if (newIdx.isUnknownOrUndef())
  279. return this;
  280. // Adjust the upper bound.
  281. SVal newBound =
  282. svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
  283. Min, indexTy);
  284. if (newBound.isUnknownOrUndef())
  285. return this;
  286. // Build the actual comparison.
  287. SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
  288. newBound.castAs<NonLoc>(), Ctx.IntTy);
  289. if (inBound.isUnknownOrUndef())
  290. return this;
  291. // Finally, let the constraint manager take care of it.
  292. ConstraintManager &CM = SM.getConstraintManager();
  293. return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
  294. }
  295. ConditionTruthVal ProgramState::isNull(SVal V) const {
  296. if (V.isZeroConstant())
  297. return true;
  298. if (V.isConstant())
  299. return false;
  300. SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
  301. if (!Sym)
  302. return ConditionTruthVal();
  303. return getStateManager().ConstraintMgr->isNull(this, Sym);
  304. }
  305. ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
  306. ProgramState State(this,
  307. EnvMgr.getInitialEnvironment(),
  308. StoreMgr->getInitialStore(InitLoc),
  309. GDMFactory.getEmptyMap());
  310. return getPersistentState(State);
  311. }
  312. ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
  313. ProgramStateRef FromState,
  314. ProgramStateRef GDMState) {
  315. ProgramState NewState(*FromState);
  316. NewState.GDM = GDMState->GDM;
  317. return getPersistentState(NewState);
  318. }
  319. ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
  320. llvm::FoldingSetNodeID ID;
  321. State.Profile(ID);
  322. void *InsertPos;
  323. if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
  324. return I;
  325. ProgramState *newState = nullptr;
  326. if (!freeStates.empty()) {
  327. newState = freeStates.back();
  328. freeStates.pop_back();
  329. }
  330. else {
  331. newState = (ProgramState*) Alloc.Allocate<ProgramState>();
  332. }
  333. new (newState) ProgramState(State);
  334. StateSet.InsertNode(newState, InsertPos);
  335. return newState;
  336. }
  337. ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
  338. ProgramState NewSt(*this);
  339. NewSt.setStore(store);
  340. return getStateManager().getPersistentState(NewSt);
  341. }
  342. void ProgramState::setStore(const StoreRef &newStore) {
  343. Store newStoreStore = newStore.getStore();
  344. if (newStoreStore)
  345. stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
  346. if (store)
  347. stateMgr->getStoreManager().decrementReferenceCount(store);
  348. store = newStoreStore;
  349. }
  350. //===----------------------------------------------------------------------===//
  351. // State pretty-printing.
  352. //===----------------------------------------------------------------------===//
  353. void ProgramState::print(raw_ostream &Out,
  354. const char *NL, const char *Sep) const {
  355. // Print the store.
  356. ProgramStateManager &Mgr = getStateManager();
  357. Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
  358. // Print out the environment.
  359. Env.print(Out, NL, Sep);
  360. // Print out the constraints.
  361. Mgr.getConstraintManager().print(this, Out, NL, Sep);
  362. // Print checker-specific data.
  363. Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
  364. }
  365. void ProgramState::printDOT(raw_ostream &Out) const {
  366. print(Out, "\\l", "\\|");
  367. }
  368. void ProgramState::dump() const {
  369. print(llvm::errs());
  370. }
  371. void ProgramState::printTaint(raw_ostream &Out,
  372. const char *NL, const char *Sep) const {
  373. TaintMapImpl TM = get<TaintMap>();
  374. if (!TM.isEmpty())
  375. Out <<"Tainted Symbols:" << NL;
  376. for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
  377. Out << I->first << " : " << I->second << NL;
  378. }
  379. }
  380. void ProgramState::dumpTaint() const {
  381. printTaint(llvm::errs());
  382. }
  383. //===----------------------------------------------------------------------===//
  384. // Generic Data Map.
  385. //===----------------------------------------------------------------------===//
  386. void *const* ProgramState::FindGDM(void *K) const {
  387. return GDM.lookup(K);
  388. }
  389. void*
  390. ProgramStateManager::FindGDMContext(void *K,
  391. void *(*CreateContext)(llvm::BumpPtrAllocator&),
  392. void (*DeleteContext)(void*)) {
  393. std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
  394. if (!p.first) {
  395. p.first = CreateContext(Alloc);
  396. p.second = DeleteContext;
  397. }
  398. return p.first;
  399. }
  400. ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
  401. ProgramState::GenericDataMap M1 = St->getGDM();
  402. ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
  403. if (M1 == M2)
  404. return St;
  405. ProgramState NewSt = *St;
  406. NewSt.GDM = M2;
  407. return getPersistentState(NewSt);
  408. }
  409. ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
  410. ProgramState::GenericDataMap OldM = state->getGDM();
  411. ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
  412. if (NewM == OldM)
  413. return state;
  414. ProgramState NewState = *state;
  415. NewState.GDM = NewM;
  416. return getPersistentState(NewState);
  417. }
  418. bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
  419. bool wasVisited = !visited.insert(val.getCVData()).second;
  420. if (wasVisited)
  421. return true;
  422. StoreManager &StoreMgr = state->getStateManager().getStoreManager();
  423. // FIXME: We don't really want to use getBaseRegion() here because pointer
  424. // arithmetic doesn't apply, but scanReachableSymbols only accepts base
  425. // regions right now.
  426. const MemRegion *R = val.getRegion()->getBaseRegion();
  427. return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
  428. }
  429. bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
  430. for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
  431. if (!scan(*I))
  432. return false;
  433. return true;
  434. }
  435. bool ScanReachableSymbols::scan(const SymExpr *sym) {
  436. bool wasVisited = !visited.insert(sym).second;
  437. if (wasVisited)
  438. return true;
  439. if (!visitor.VisitSymbol(sym))
  440. return false;
  441. // TODO: should be rewritten using SymExpr::symbol_iterator.
  442. switch (sym->getKind()) {
  443. case SymExpr::RegionValueKind:
  444. case SymExpr::ConjuredKind:
  445. case SymExpr::DerivedKind:
  446. case SymExpr::ExtentKind:
  447. case SymExpr::MetadataKind:
  448. break;
  449. case SymExpr::CastSymbolKind:
  450. return scan(cast<SymbolCast>(sym)->getOperand());
  451. case SymExpr::SymIntKind:
  452. return scan(cast<SymIntExpr>(sym)->getLHS());
  453. case SymExpr::IntSymKind:
  454. return scan(cast<IntSymExpr>(sym)->getRHS());
  455. case SymExpr::SymSymKind: {
  456. const SymSymExpr *x = cast<SymSymExpr>(sym);
  457. return scan(x->getLHS()) && scan(x->getRHS());
  458. }
  459. }
  460. return true;
  461. }
  462. bool ScanReachableSymbols::scan(SVal val) {
  463. if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
  464. return scan(X->getRegion());
  465. if (Optional<nonloc::LazyCompoundVal> X =
  466. val.getAs<nonloc::LazyCompoundVal>())
  467. return scan(*X);
  468. if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
  469. return scan(X->getLoc());
  470. if (SymbolRef Sym = val.getAsSymbol())
  471. return scan(Sym);
  472. if (const SymExpr *Sym = val.getAsSymbolicExpression())
  473. return scan(Sym);
  474. if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
  475. return scan(*X);
  476. return true;
  477. }
  478. bool ScanReachableSymbols::scan(const MemRegion *R) {
  479. if (isa<MemSpaceRegion>(R))
  480. return true;
  481. bool wasVisited = !visited.insert(R).second;
  482. if (wasVisited)
  483. return true;
  484. if (!visitor.VisitMemRegion(R))
  485. return false;
  486. // If this is a symbolic region, visit the symbol for the region.
  487. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
  488. if (!visitor.VisitSymbol(SR->getSymbol()))
  489. return false;
  490. // If this is a subregion, also visit the parent regions.
  491. if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
  492. const MemRegion *Super = SR->getSuperRegion();
  493. if (!scan(Super))
  494. return false;
  495. // When we reach the topmost region, scan all symbols in it.
  496. if (isa<MemSpaceRegion>(Super)) {
  497. StoreManager &StoreMgr = state->getStateManager().getStoreManager();
  498. if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
  499. return false;
  500. }
  501. }
  502. // Regions captured by a block are also implicitly reachable.
  503. if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
  504. BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
  505. E = BDR->referenced_vars_end();
  506. for ( ; I != E; ++I) {
  507. if (!scan(I.getCapturedRegion()))
  508. return false;
  509. }
  510. }
  511. return true;
  512. }
  513. bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
  514. ScanReachableSymbols S(this, visitor);
  515. return S.scan(val);
  516. }
  517. bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
  518. SymbolVisitor &visitor) const {
  519. ScanReachableSymbols S(this, visitor);
  520. for ( ; I != E; ++I) {
  521. if (!S.scan(*I))
  522. return false;
  523. }
  524. return true;
  525. }
  526. bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
  527. const MemRegion * const *E,
  528. SymbolVisitor &visitor) const {
  529. ScanReachableSymbols S(this, visitor);
  530. for ( ; I != E; ++I) {
  531. if (!S.scan(*I))
  532. return false;
  533. }
  534. return true;
  535. }
  536. ProgramStateRef ProgramState::addTaint(const Stmt *S,
  537. const LocationContext *LCtx,
  538. TaintTagType Kind) const {
  539. if (const Expr *E = dyn_cast_or_null<Expr>(S))
  540. S = E->IgnoreParens();
  541. SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
  542. if (Sym)
  543. return addTaint(Sym, Kind);
  544. const MemRegion *R = getSVal(S, LCtx).getAsRegion();
  545. addTaint(R, Kind);
  546. // Cannot add taint, so just return the state.
  547. return this;
  548. }
  549. ProgramStateRef ProgramState::addTaint(const MemRegion *R,
  550. TaintTagType Kind) const {
  551. if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
  552. return addTaint(SR->getSymbol(), Kind);
  553. return this;
  554. }
  555. ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
  556. TaintTagType Kind) const {
  557. // If this is a symbol cast, remove the cast before adding the taint. Taint
  558. // is cast agnostic.
  559. while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
  560. Sym = SC->getOperand();
  561. ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
  562. assert(NewState);
  563. return NewState;
  564. }
  565. bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
  566. TaintTagType Kind) const {
  567. if (const Expr *E = dyn_cast_or_null<Expr>(S))
  568. S = E->IgnoreParens();
  569. SVal val = getSVal(S, LCtx);
  570. return isTainted(val, Kind);
  571. }
  572. bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
  573. if (const SymExpr *Sym = V.getAsSymExpr())
  574. return isTainted(Sym, Kind);
  575. if (const MemRegion *Reg = V.getAsRegion())
  576. return isTainted(Reg, Kind);
  577. return false;
  578. }
  579. bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
  580. if (!Reg)
  581. return false;
  582. // Element region (array element) is tainted if either the base or the offset
  583. // are tainted.
  584. if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
  585. return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
  586. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
  587. return isTainted(SR->getSymbol(), K);
  588. if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
  589. return isTainted(ER->getSuperRegion(), K);
  590. return false;
  591. }
  592. bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
  593. if (!Sym)
  594. return false;
  595. // Traverse all the symbols this symbol depends on to see if any are tainted.
  596. bool Tainted = false;
  597. for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
  598. SI != SE; ++SI) {
  599. if (!isa<SymbolData>(*SI))
  600. continue;
  601. const TaintTagType *Tag = get<TaintMap>(*SI);
  602. Tainted = (Tag && *Tag == Kind);
  603. // If this is a SymbolDerived with a tainted parent, it's also tainted.
  604. if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
  605. Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
  606. // If memory region is tainted, data is also tainted.
  607. if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
  608. Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
  609. // If If this is a SymbolCast from a tainted value, it's also tainted.
  610. if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
  611. Tainted = Tainted || isTainted(SC->getOperand(), Kind);
  612. if (Tainted)
  613. return true;
  614. }
  615. return Tainted;
  616. }
  617. /// The GDM component containing the dynamic type info. This is a map from a
  618. /// symbol to its most likely type.
  619. REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
  620. CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
  621. DynamicTypeInfo))
  622. DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
  623. Reg = Reg->StripCasts();
  624. // Look up the dynamic type in the GDM.
  625. const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
  626. if (GDMType)
  627. return *GDMType;
  628. // Otherwise, fall back to what we know about the region.
  629. if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
  630. return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
  631. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
  632. SymbolRef Sym = SR->getSymbol();
  633. return DynamicTypeInfo(Sym->getType());
  634. }
  635. return DynamicTypeInfo();
  636. }
  637. ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
  638. DynamicTypeInfo NewTy) const {
  639. Reg = Reg->StripCasts();
  640. ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
  641. assert(NewState);
  642. return NewState;
  643. }