123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838 |
- //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements semantic analysis for expressions.
- //
- //===----------------------------------------------------------------------===//
- #include "TreeTransform.h"
- #include "clang/AST/ASTConsumer.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/ASTLambda.h"
- #include "clang/AST/ASTMutationListener.h"
- #include "clang/AST/CXXInheritance.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/DeclTemplate.h"
- #include "clang/AST/EvaluatedExprVisitor.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/ExprOpenMP.h"
- #include "clang/AST/RecursiveASTVisitor.h"
- #include "clang/AST/TypeLoc.h"
- #include "clang/Basic/FixedPoint.h"
- #include "clang/Basic/PartialDiagnostic.h"
- #include "clang/Basic/SourceManager.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Lex/LiteralSupport.h"
- #include "clang/Lex/Preprocessor.h"
- #include "clang/Sema/AnalysisBasedWarnings.h"
- #include "clang/Sema/DeclSpec.h"
- #include "clang/Sema/DelayedDiagnostic.h"
- #include "clang/Sema/Designator.h"
- #include "clang/Sema/Initialization.h"
- #include "clang/Sema/Lookup.h"
- #include "clang/Sema/Overload.h"
- #include "clang/Sema/ParsedTemplate.h"
- #include "clang/Sema/Scope.h"
- #include "clang/Sema/ScopeInfo.h"
- #include "clang/Sema/SemaFixItUtils.h"
- #include "clang/Sema/SemaInternal.h"
- #include "clang/Sema/Template.h"
- #include "llvm/Support/ConvertUTF.h"
- using namespace clang;
- using namespace sema;
- /// Determine whether the use of this declaration is valid, without
- /// emitting diagnostics.
- bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
- // See if this is an auto-typed variable whose initializer we are parsing.
- if (ParsingInitForAutoVars.count(D))
- return false;
- // See if this is a deleted function.
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->isDeleted())
- return false;
- // If the function has a deduced return type, and we can't deduce it,
- // then we can't use it either.
- if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
- DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
- return false;
- // See if this is an aligned allocation/deallocation function that is
- // unavailable.
- if (TreatUnavailableAsInvalid &&
- isUnavailableAlignedAllocationFunction(*FD))
- return false;
- }
- // See if this function is unavailable.
- if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
- cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
- return false;
- return true;
- }
- static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
- // Warn if this is used but marked unused.
- if (const auto *A = D->getAttr<UnusedAttr>()) {
- // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
- // should diagnose them.
- if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
- A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
- const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
- if (DC && !DC->hasAttr<UnusedAttr>())
- S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
- }
- }
- }
- /// Emit a note explaining that this function is deleted.
- void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
- assert(Decl->isDeleted());
- CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
- if (Method && Method->isDeleted() && Method->isDefaulted()) {
- // If the method was explicitly defaulted, point at that declaration.
- if (!Method->isImplicit())
- Diag(Decl->getLocation(), diag::note_implicitly_deleted);
- // Try to diagnose why this special member function was implicitly
- // deleted. This might fail, if that reason no longer applies.
- CXXSpecialMember CSM = getSpecialMember(Method);
- if (CSM != CXXInvalid)
- ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
- return;
- }
- auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
- if (Ctor && Ctor->isInheritingConstructor())
- return NoteDeletedInheritingConstructor(Ctor);
- Diag(Decl->getLocation(), diag::note_availability_specified_here)
- << Decl << 1;
- }
- /// Determine whether a FunctionDecl was ever declared with an
- /// explicit storage class.
- static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
- for (auto I : D->redecls()) {
- if (I->getStorageClass() != SC_None)
- return true;
- }
- return false;
- }
- /// Check whether we're in an extern inline function and referring to a
- /// variable or function with internal linkage (C11 6.7.4p3).
- ///
- /// This is only a warning because we used to silently accept this code, but
- /// in many cases it will not behave correctly. This is not enabled in C++ mode
- /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
- /// and so while there may still be user mistakes, most of the time we can't
- /// prove that there are errors.
- static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
- const NamedDecl *D,
- SourceLocation Loc) {
- // This is disabled under C++; there are too many ways for this to fire in
- // contexts where the warning is a false positive, or where it is technically
- // correct but benign.
- if (S.getLangOpts().CPlusPlus)
- return;
- // Check if this is an inlined function or method.
- FunctionDecl *Current = S.getCurFunctionDecl();
- if (!Current)
- return;
- if (!Current->isInlined())
- return;
- if (!Current->isExternallyVisible())
- return;
- // Check if the decl has internal linkage.
- if (D->getFormalLinkage() != InternalLinkage)
- return;
- // Downgrade from ExtWarn to Extension if
- // (1) the supposedly external inline function is in the main file,
- // and probably won't be included anywhere else.
- // (2) the thing we're referencing is a pure function.
- // (3) the thing we're referencing is another inline function.
- // This last can give us false negatives, but it's better than warning on
- // wrappers for simple C library functions.
- const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
- bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
- if (!DowngradeWarning && UsedFn)
- DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
- S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
- : diag::ext_internal_in_extern_inline)
- << /*IsVar=*/!UsedFn << D;
- S.MaybeSuggestAddingStaticToDecl(Current);
- S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
- << D;
- }
- void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
- const FunctionDecl *First = Cur->getFirstDecl();
- // Suggest "static" on the function, if possible.
- if (!hasAnyExplicitStorageClass(First)) {
- SourceLocation DeclBegin = First->getSourceRange().getBegin();
- Diag(DeclBegin, diag::note_convert_inline_to_static)
- << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
- }
- }
- /// Determine whether the use of this declaration is valid, and
- /// emit any corresponding diagnostics.
- ///
- /// This routine diagnoses various problems with referencing
- /// declarations that can occur when using a declaration. For example,
- /// it might warn if a deprecated or unavailable declaration is being
- /// used, or produce an error (and return true) if a C++0x deleted
- /// function is being used.
- ///
- /// \returns true if there was an error (this declaration cannot be
- /// referenced), false otherwise.
- ///
- bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
- const ObjCInterfaceDecl *UnknownObjCClass,
- bool ObjCPropertyAccess,
- bool AvoidPartialAvailabilityChecks,
- ObjCInterfaceDecl *ClassReceiver) {
- SourceLocation Loc = Locs.front();
- if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
- // If there were any diagnostics suppressed by template argument deduction,
- // emit them now.
- auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
- if (Pos != SuppressedDiagnostics.end()) {
- for (const PartialDiagnosticAt &Suppressed : Pos->second)
- Diag(Suppressed.first, Suppressed.second);
- // Clear out the list of suppressed diagnostics, so that we don't emit
- // them again for this specialization. However, we don't obsolete this
- // entry from the table, because we want to avoid ever emitting these
- // diagnostics again.
- Pos->second.clear();
- }
- // C++ [basic.start.main]p3:
- // The function 'main' shall not be used within a program.
- if (cast<FunctionDecl>(D)->isMain())
- Diag(Loc, diag::ext_main_used);
- diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
- }
- // See if this is an auto-typed variable whose initializer we are parsing.
- if (ParsingInitForAutoVars.count(D)) {
- if (isa<BindingDecl>(D)) {
- Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
- << D->getDeclName();
- } else {
- Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
- << D->getDeclName() << cast<VarDecl>(D)->getType();
- }
- return true;
- }
- // See if this is a deleted function.
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->isDeleted()) {
- auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
- if (Ctor && Ctor->isInheritingConstructor())
- Diag(Loc, diag::err_deleted_inherited_ctor_use)
- << Ctor->getParent()
- << Ctor->getInheritedConstructor().getConstructor()->getParent();
- else
- Diag(Loc, diag::err_deleted_function_use);
- NoteDeletedFunction(FD);
- return true;
- }
- // If the function has a deduced return type, and we can't deduce it,
- // then we can't use it either.
- if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
- DeduceReturnType(FD, Loc))
- return true;
- if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
- return true;
- }
- if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
- // Lambdas are only default-constructible or assignable in C++2a onwards.
- if (MD->getParent()->isLambda() &&
- ((isa<CXXConstructorDecl>(MD) &&
- cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
- MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
- Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
- << !isa<CXXConstructorDecl>(MD);
- }
- }
- auto getReferencedObjCProp = [](const NamedDecl *D) ->
- const ObjCPropertyDecl * {
- if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
- return MD->findPropertyDecl();
- return nullptr;
- };
- if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
- if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
- return true;
- } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
- return true;
- }
- // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
- // Only the variables omp_in and omp_out are allowed in the combiner.
- // Only the variables omp_priv and omp_orig are allowed in the
- // initializer-clause.
- auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
- if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
- isa<VarDecl>(D)) {
- Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
- << getCurFunction()->HasOMPDeclareReductionCombiner;
- Diag(D->getLocation(), diag::note_entity_declared_at) << D;
- return true;
- }
- // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
- // List-items in map clauses on this construct may only refer to the declared
- // variable var and entities that could be referenced by a procedure defined
- // at the same location
- auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
- if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
- isa<VarDecl>(D)) {
- Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
- << DMD->getVarName().getAsString();
- Diag(D->getLocation(), diag::note_entity_declared_at) << D;
- return true;
- }
- DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
- AvoidPartialAvailabilityChecks, ClassReceiver);
- DiagnoseUnusedOfDecl(*this, D, Loc);
- diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
- return false;
- }
- /// DiagnoseSentinelCalls - This routine checks whether a call or
- /// message-send is to a declaration with the sentinel attribute, and
- /// if so, it checks that the requirements of the sentinel are
- /// satisfied.
- void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
- ArrayRef<Expr *> Args) {
- const SentinelAttr *attr = D->getAttr<SentinelAttr>();
- if (!attr)
- return;
- // The number of formal parameters of the declaration.
- unsigned numFormalParams;
- // The kind of declaration. This is also an index into a %select in
- // the diagnostic.
- enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
- if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
- numFormalParams = MD->param_size();
- calleeType = CT_Method;
- } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- numFormalParams = FD->param_size();
- calleeType = CT_Function;
- } else if (isa<VarDecl>(D)) {
- QualType type = cast<ValueDecl>(D)->getType();
- const FunctionType *fn = nullptr;
- if (const PointerType *ptr = type->getAs<PointerType>()) {
- fn = ptr->getPointeeType()->getAs<FunctionType>();
- if (!fn) return;
- calleeType = CT_Function;
- } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
- fn = ptr->getPointeeType()->castAs<FunctionType>();
- calleeType = CT_Block;
- } else {
- return;
- }
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
- numFormalParams = proto->getNumParams();
- } else {
- numFormalParams = 0;
- }
- } else {
- return;
- }
- // "nullPos" is the number of formal parameters at the end which
- // effectively count as part of the variadic arguments. This is
- // useful if you would prefer to not have *any* formal parameters,
- // but the language forces you to have at least one.
- unsigned nullPos = attr->getNullPos();
- assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
- numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
- // The number of arguments which should follow the sentinel.
- unsigned numArgsAfterSentinel = attr->getSentinel();
- // If there aren't enough arguments for all the formal parameters,
- // the sentinel, and the args after the sentinel, complain.
- if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
- Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
- Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
- return;
- }
- // Otherwise, find the sentinel expression.
- Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
- if (!sentinelExpr) return;
- if (sentinelExpr->isValueDependent()) return;
- if (Context.isSentinelNullExpr(sentinelExpr)) return;
- // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
- // or 'NULL' if those are actually defined in the context. Only use
- // 'nil' for ObjC methods, where it's much more likely that the
- // variadic arguments form a list of object pointers.
- SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
- std::string NullValue;
- if (calleeType == CT_Method && PP.isMacroDefined("nil"))
- NullValue = "nil";
- else if (getLangOpts().CPlusPlus11)
- NullValue = "nullptr";
- else if (PP.isMacroDefined("NULL"))
- NullValue = "NULL";
- else
- NullValue = "(void*) 0";
- if (MissingNilLoc.isInvalid())
- Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
- else
- Diag(MissingNilLoc, diag::warn_missing_sentinel)
- << int(calleeType)
- << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
- Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
- }
- SourceRange Sema::getExprRange(Expr *E) const {
- return E ? E->getSourceRange() : SourceRange();
- }
- //===----------------------------------------------------------------------===//
- // Standard Promotions and Conversions
- //===----------------------------------------------------------------------===//
- /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
- ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
- // Handle any placeholder expressions which made it here.
- if (E->getType()->isPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.get();
- }
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
- if (Ty->isFunctionType()) {
- if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
- if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
- if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
- return ExprError();
- E = ImpCastExprToType(E, Context.getPointerType(Ty),
- CK_FunctionToPointerDecay).get();
- } else if (Ty->isArrayType()) {
- // In C90 mode, arrays only promote to pointers if the array expression is
- // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
- // type 'array of type' is converted to an expression that has type 'pointer
- // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
- // that has type 'array of type' ...". The relevant change is "an lvalue"
- // (C90) to "an expression" (C99).
- //
- // C++ 4.2p1:
- // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
- // T" can be converted to an rvalue of type "pointer to T".
- //
- if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
- E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
- CK_ArrayToPointerDecay).get();
- }
- return E;
- }
- static void CheckForNullPointerDereference(Sema &S, Expr *E) {
- // Check to see if we are dereferencing a null pointer. If so,
- // and if not volatile-qualified, this is undefined behavior that the
- // optimizer will delete, so warn about it. People sometimes try to use this
- // to get a deterministic trap and are surprised by clang's behavior. This
- // only handles the pattern "*null", which is a very syntactic check.
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
- if (UO->getOpcode() == UO_Deref &&
- UO->getSubExpr()->IgnoreParenCasts()->
- isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
- !UO->getType().isVolatileQualified()) {
- S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
- S.PDiag(diag::warn_indirection_through_null)
- << UO->getSubExpr()->getSourceRange());
- S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
- S.PDiag(diag::note_indirection_through_null));
- }
- }
- static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
- SourceLocation AssignLoc,
- const Expr* RHS) {
- const ObjCIvarDecl *IV = OIRE->getDecl();
- if (!IV)
- return;
- DeclarationName MemberName = IV->getDeclName();
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
- if (!Member || !Member->isStr("isa"))
- return;
- const Expr *Base = OIRE->getBase();
- QualType BaseType = Base->getType();
- if (OIRE->isArrow())
- BaseType = BaseType->getPointeeType();
- if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
- if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
- ObjCInterfaceDecl *ClassDeclared = nullptr;
- ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
- if (!ClassDeclared->getSuperClass()
- && (*ClassDeclared->ivar_begin()) == IV) {
- if (RHS) {
- NamedDecl *ObjectSetClass =
- S.LookupSingleName(S.TUScope,
- &S.Context.Idents.get("object_setClass"),
- SourceLocation(), S.LookupOrdinaryName);
- if (ObjectSetClass) {
- SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
- S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
- << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
- "object_setClass(")
- << FixItHint::CreateReplacement(
- SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
- << FixItHint::CreateInsertion(RHSLocEnd, ")");
- }
- else
- S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
- } else {
- NamedDecl *ObjectGetClass =
- S.LookupSingleName(S.TUScope,
- &S.Context.Idents.get("object_getClass"),
- SourceLocation(), S.LookupOrdinaryName);
- if (ObjectGetClass)
- S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
- << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
- "object_getClass(")
- << FixItHint::CreateReplacement(
- SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
- else
- S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
- }
- S.Diag(IV->getLocation(), diag::note_ivar_decl);
- }
- }
- }
- ExprResult Sema::DefaultLvalueConversion(Expr *E) {
- // Handle any placeholder expressions which made it here.
- if (E->getType()->isPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.get();
- }
- // C++ [conv.lval]p1:
- // A glvalue of a non-function, non-array type T can be
- // converted to a prvalue.
- if (!E->isGLValue()) return E;
- QualType T = E->getType();
- assert(!T.isNull() && "r-value conversion on typeless expression?");
- // We don't want to throw lvalue-to-rvalue casts on top of
- // expressions of certain types in C++.
- if (getLangOpts().CPlusPlus &&
- (E->getType() == Context.OverloadTy ||
- T->isDependentType() ||
- T->isRecordType()))
- return E;
- // The C standard is actually really unclear on this point, and
- // DR106 tells us what the result should be but not why. It's
- // generally best to say that void types just doesn't undergo
- // lvalue-to-rvalue at all. Note that expressions of unqualified
- // 'void' type are never l-values, but qualified void can be.
- if (T->isVoidType())
- return E;
- // OpenCL usually rejects direct accesses to values of 'half' type.
- if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
- T->isHalfType()) {
- Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
- << 0 << T;
- return ExprError();
- }
- CheckForNullPointerDereference(*this, E);
- if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
- NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
- &Context.Idents.get("object_getClass"),
- SourceLocation(), LookupOrdinaryName);
- if (ObjectGetClass)
- Diag(E->getExprLoc(), diag::warn_objc_isa_use)
- << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
- << FixItHint::CreateReplacement(
- SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
- else
- Diag(E->getExprLoc(), diag::warn_objc_isa_use);
- }
- else if (const ObjCIvarRefExpr *OIRE =
- dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
- DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
- // C++ [conv.lval]p1:
- // [...] If T is a non-class type, the type of the prvalue is the
- // cv-unqualified version of T. Otherwise, the type of the
- // rvalue is T.
- //
- // C99 6.3.2.1p2:
- // If the lvalue has qualified type, the value has the unqualified
- // version of the type of the lvalue; otherwise, the value has the
- // type of the lvalue.
- if (T.hasQualifiers())
- T = T.getUnqualifiedType();
- // Under the MS ABI, lock down the inheritance model now.
- if (T->isMemberPointerType() &&
- Context.getTargetInfo().getCXXABI().isMicrosoft())
- (void)isCompleteType(E->getExprLoc(), T);
- ExprResult Res = CheckLValueToRValueConversionOperand(E);
- if (Res.isInvalid())
- return Res;
- E = Res.get();
- // Loading a __weak object implicitly retains the value, so we need a cleanup to
- // balance that.
- if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
- Cleanup.setExprNeedsCleanups(true);
- // C++ [conv.lval]p3:
- // If T is cv std::nullptr_t, the result is a null pointer constant.
- CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
- Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue);
- // C11 6.3.2.1p2:
- // ... if the lvalue has atomic type, the value has the non-atomic version
- // of the type of the lvalue ...
- if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
- T = Atomic->getValueType().getUnqualifiedType();
- Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
- nullptr, VK_RValue);
- }
- return Res;
- }
- ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
- ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
- if (Res.isInvalid())
- return ExprError();
- Res = DefaultLvalueConversion(Res.get());
- if (Res.isInvalid())
- return ExprError();
- return Res;
- }
- /// CallExprUnaryConversions - a special case of an unary conversion
- /// performed on a function designator of a call expression.
- ExprResult Sema::CallExprUnaryConversions(Expr *E) {
- QualType Ty = E->getType();
- ExprResult Res = E;
- // Only do implicit cast for a function type, but not for a pointer
- // to function type.
- if (Ty->isFunctionType()) {
- Res = ImpCastExprToType(E, Context.getPointerType(Ty),
- CK_FunctionToPointerDecay).get();
- if (Res.isInvalid())
- return ExprError();
- }
- Res = DefaultLvalueConversion(Res.get());
- if (Res.isInvalid())
- return ExprError();
- return Res.get();
- }
- /// UsualUnaryConversions - Performs various conversions that are common to most
- /// operators (C99 6.3). The conversions of array and function types are
- /// sometimes suppressed. For example, the array->pointer conversion doesn't
- /// apply if the array is an argument to the sizeof or address (&) operators.
- /// In these instances, this routine should *not* be called.
- ExprResult Sema::UsualUnaryConversions(Expr *E) {
- // First, convert to an r-value.
- ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
- if (Res.isInvalid())
- return ExprError();
- E = Res.get();
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
- // Half FP have to be promoted to float unless it is natively supported
- if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
- return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
- // Try to perform integral promotions if the object has a theoretically
- // promotable type.
- if (Ty->isIntegralOrUnscopedEnumerationType()) {
- // C99 6.3.1.1p2:
- //
- // The following may be used in an expression wherever an int or
- // unsigned int may be used:
- // - an object or expression with an integer type whose integer
- // conversion rank is less than or equal to the rank of int
- // and unsigned int.
- // - A bit-field of type _Bool, int, signed int, or unsigned int.
- //
- // If an int can represent all values of the original type, the
- // value is converted to an int; otherwise, it is converted to an
- // unsigned int. These are called the integer promotions. All
- // other types are unchanged by the integer promotions.
- QualType PTy = Context.isPromotableBitField(E);
- if (!PTy.isNull()) {
- E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
- return E;
- }
- if (Ty->isPromotableIntegerType()) {
- QualType PT = Context.getPromotedIntegerType(Ty);
- E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
- return E;
- }
- }
- return E;
- }
- /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
- /// do not have a prototype. Arguments that have type float or __fp16
- /// are promoted to double. All other argument types are converted by
- /// UsualUnaryConversions().
- ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
- ExprResult Res = UsualUnaryConversions(E);
- if (Res.isInvalid())
- return ExprError();
- E = Res.get();
- // If this is a 'float' or '__fp16' (CVR qualified or typedef)
- // promote to double.
- // Note that default argument promotion applies only to float (and
- // half/fp16); it does not apply to _Float16.
- const BuiltinType *BTy = Ty->getAs<BuiltinType>();
- if (BTy && (BTy->getKind() == BuiltinType::Half ||
- BTy->getKind() == BuiltinType::Float)) {
- if (getLangOpts().OpenCL &&
- !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
- if (BTy->getKind() == BuiltinType::Half) {
- E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
- }
- } else {
- E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
- }
- }
- // C++ performs lvalue-to-rvalue conversion as a default argument
- // promotion, even on class types, but note:
- // C++11 [conv.lval]p2:
- // When an lvalue-to-rvalue conversion occurs in an unevaluated
- // operand or a subexpression thereof the value contained in the
- // referenced object is not accessed. Otherwise, if the glvalue
- // has a class type, the conversion copy-initializes a temporary
- // of type T from the glvalue and the result of the conversion
- // is a prvalue for the temporary.
- // FIXME: add some way to gate this entire thing for correctness in
- // potentially potentially evaluated contexts.
- if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
- ExprResult Temp = PerformCopyInitialization(
- InitializedEntity::InitializeTemporary(E->getType()),
- E->getExprLoc(), E);
- if (Temp.isInvalid())
- return ExprError();
- E = Temp.get();
- }
- return E;
- }
- /// Determine the degree of POD-ness for an expression.
- /// Incomplete types are considered POD, since this check can be performed
- /// when we're in an unevaluated context.
- Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
- if (Ty->isIncompleteType()) {
- // C++11 [expr.call]p7:
- // After these conversions, if the argument does not have arithmetic,
- // enumeration, pointer, pointer to member, or class type, the program
- // is ill-formed.
- //
- // Since we've already performed array-to-pointer and function-to-pointer
- // decay, the only such type in C++ is cv void. This also handles
- // initializer lists as variadic arguments.
- if (Ty->isVoidType())
- return VAK_Invalid;
- if (Ty->isObjCObjectType())
- return VAK_Invalid;
- return VAK_Valid;
- }
- if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
- return VAK_Invalid;
- if (Ty.isCXX98PODType(Context))
- return VAK_Valid;
- // C++11 [expr.call]p7:
- // Passing a potentially-evaluated argument of class type (Clause 9)
- // having a non-trivial copy constructor, a non-trivial move constructor,
- // or a non-trivial destructor, with no corresponding parameter,
- // is conditionally-supported with implementation-defined semantics.
- if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
- if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
- if (!Record->hasNonTrivialCopyConstructor() &&
- !Record->hasNonTrivialMoveConstructor() &&
- !Record->hasNonTrivialDestructor())
- return VAK_ValidInCXX11;
- if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
- return VAK_Valid;
- if (Ty->isObjCObjectType())
- return VAK_Invalid;
- if (getLangOpts().MSVCCompat)
- return VAK_MSVCUndefined;
- // FIXME: In C++11, these cases are conditionally-supported, meaning we're
- // permitted to reject them. We should consider doing so.
- return VAK_Undefined;
- }
- void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
- // Don't allow one to pass an Objective-C interface to a vararg.
- const QualType &Ty = E->getType();
- VarArgKind VAK = isValidVarArgType(Ty);
- // Complain about passing non-POD types through varargs.
- switch (VAK) {
- case VAK_ValidInCXX11:
- DiagRuntimeBehavior(
- E->getBeginLoc(), nullptr,
- PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
- LLVM_FALLTHROUGH;
- case VAK_Valid:
- if (Ty->isRecordType()) {
- // This is unlikely to be what the user intended. If the class has a
- // 'c_str' member function, the user probably meant to call that.
- DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
- PDiag(diag::warn_pass_class_arg_to_vararg)
- << Ty << CT << hasCStrMethod(E) << ".c_str()");
- }
- break;
- case VAK_Undefined:
- case VAK_MSVCUndefined:
- DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
- PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
- << getLangOpts().CPlusPlus11 << Ty << CT);
- break;
- case VAK_Invalid:
- if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
- Diag(E->getBeginLoc(),
- diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
- << Ty << CT;
- else if (Ty->isObjCObjectType())
- DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
- PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
- << Ty << CT);
- else
- Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
- << isa<InitListExpr>(E) << Ty << CT;
- break;
- }
- }
- /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
- /// will create a trap if the resulting type is not a POD type.
- ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
- FunctionDecl *FDecl) {
- if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
- // Strip the unbridged-cast placeholder expression off, if applicable.
- if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
- (CT == VariadicMethod ||
- (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
- E = stripARCUnbridgedCast(E);
- // Otherwise, do normal placeholder checking.
- } else {
- ExprResult ExprRes = CheckPlaceholderExpr(E);
- if (ExprRes.isInvalid())
- return ExprError();
- E = ExprRes.get();
- }
- }
- ExprResult ExprRes = DefaultArgumentPromotion(E);
- if (ExprRes.isInvalid())
- return ExprError();
- E = ExprRes.get();
- // Diagnostics regarding non-POD argument types are
- // emitted along with format string checking in Sema::CheckFunctionCall().
- if (isValidVarArgType(E->getType()) == VAK_Undefined) {
- // Turn this into a trap.
- CXXScopeSpec SS;
- SourceLocation TemplateKWLoc;
- UnqualifiedId Name;
- Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
- E->getBeginLoc());
- ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
- /*HasTrailingLParen=*/true,
- /*IsAddressOfOperand=*/false);
- if (TrapFn.isInvalid())
- return ExprError();
- ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
- None, E->getEndLoc());
- if (Call.isInvalid())
- return ExprError();
- ExprResult Comma =
- ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
- if (Comma.isInvalid())
- return ExprError();
- return Comma.get();
- }
- if (!getLangOpts().CPlusPlus &&
- RequireCompleteType(E->getExprLoc(), E->getType(),
- diag::err_call_incomplete_argument))
- return ExprError();
- return E;
- }
- /// Converts an integer to complex float type. Helper function of
- /// UsualArithmeticConversions()
- ///
- /// \return false if the integer expression is an integer type and is
- /// successfully converted to the complex type.
- static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
- ExprResult &ComplexExpr,
- QualType IntTy,
- QualType ComplexTy,
- bool SkipCast) {
- if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
- if (SkipCast) return false;
- if (IntTy->isIntegerType()) {
- QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
- IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
- IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
- CK_FloatingRealToComplex);
- } else {
- assert(IntTy->isComplexIntegerType());
- IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
- CK_IntegralComplexToFloatingComplex);
- }
- return false;
- }
- /// Handle arithmetic conversion with complex types. Helper function of
- /// UsualArithmeticConversions()
- static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType,
- bool IsCompAssign) {
- // if we have an integer operand, the result is the complex type.
- if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
- /*skipCast*/false))
- return LHSType;
- if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
- /*skipCast*/IsCompAssign))
- return RHSType;
- // This handles complex/complex, complex/float, or float/complex.
- // When both operands are complex, the shorter operand is converted to the
- // type of the longer, and that is the type of the result. This corresponds
- // to what is done when combining two real floating-point operands.
- // The fun begins when size promotion occur across type domains.
- // From H&S 6.3.4: When one operand is complex and the other is a real
- // floating-point type, the less precise type is converted, within it's
- // real or complex domain, to the precision of the other type. For example,
- // when combining a "long double" with a "double _Complex", the
- // "double _Complex" is promoted to "long double _Complex".
- // Compute the rank of the two types, regardless of whether they are complex.
- int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
- auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
- auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
- QualType LHSElementType =
- LHSComplexType ? LHSComplexType->getElementType() : LHSType;
- QualType RHSElementType =
- RHSComplexType ? RHSComplexType->getElementType() : RHSType;
- QualType ResultType = S.Context.getComplexType(LHSElementType);
- if (Order < 0) {
- // Promote the precision of the LHS if not an assignment.
- ResultType = S.Context.getComplexType(RHSElementType);
- if (!IsCompAssign) {
- if (LHSComplexType)
- LHS =
- S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
- else
- LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
- }
- } else if (Order > 0) {
- // Promote the precision of the RHS.
- if (RHSComplexType)
- RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
- else
- RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
- }
- return ResultType;
- }
- /// Handle arithmetic conversion from integer to float. Helper function
- /// of UsualArithmeticConversions()
- static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
- ExprResult &IntExpr,
- QualType FloatTy, QualType IntTy,
- bool ConvertFloat, bool ConvertInt) {
- if (IntTy->isIntegerType()) {
- if (ConvertInt)
- // Convert intExpr to the lhs floating point type.
- IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
- CK_IntegralToFloating);
- return FloatTy;
- }
- // Convert both sides to the appropriate complex float.
- assert(IntTy->isComplexIntegerType());
- QualType result = S.Context.getComplexType(FloatTy);
- // _Complex int -> _Complex float
- if (ConvertInt)
- IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
- CK_IntegralComplexToFloatingComplex);
- // float -> _Complex float
- if (ConvertFloat)
- FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
- CK_FloatingRealToComplex);
- return result;
- }
- /// Handle arithmethic conversion with floating point types. Helper
- /// function of UsualArithmeticConversions()
- static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType, bool IsCompAssign) {
- bool LHSFloat = LHSType->isRealFloatingType();
- bool RHSFloat = RHSType->isRealFloatingType();
- // If we have two real floating types, convert the smaller operand
- // to the bigger result.
- if (LHSFloat && RHSFloat) {
- int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
- if (order > 0) {
- RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
- return LHSType;
- }
- assert(order < 0 && "illegal float comparison");
- if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
- return RHSType;
- }
- if (LHSFloat) {
- // Half FP has to be promoted to float unless it is natively supported
- if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
- LHSType = S.Context.FloatTy;
- return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
- /*ConvertFloat=*/!IsCompAssign,
- /*ConvertInt=*/ true);
- }
- assert(RHSFloat);
- return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
- /*convertInt=*/ true,
- /*convertFloat=*/!IsCompAssign);
- }
- /// Diagnose attempts to convert between __float128 and long double if
- /// there is no support for such conversion. Helper function of
- /// UsualArithmeticConversions().
- static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
- QualType RHSType) {
- /* No issue converting if at least one of the types is not a floating point
- type or the two types have the same rank.
- */
- if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
- S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
- return false;
- assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
- "The remaining types must be floating point types.");
- auto *LHSComplex = LHSType->getAs<ComplexType>();
- auto *RHSComplex = RHSType->getAs<ComplexType>();
- QualType LHSElemType = LHSComplex ?
- LHSComplex->getElementType() : LHSType;
- QualType RHSElemType = RHSComplex ?
- RHSComplex->getElementType() : RHSType;
- // No issue if the two types have the same representation
- if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
- &S.Context.getFloatTypeSemantics(RHSElemType))
- return false;
- bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
- RHSElemType == S.Context.LongDoubleTy);
- Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
- RHSElemType == S.Context.Float128Ty);
- // We've handled the situation where __float128 and long double have the same
- // representation. We allow all conversions for all possible long double types
- // except PPC's double double.
- return Float128AndLongDouble &&
- (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
- &llvm::APFloat::PPCDoubleDouble());
- }
- typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
- namespace {
- /// These helper callbacks are placed in an anonymous namespace to
- /// permit their use as function template parameters.
- ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
- return S.ImpCastExprToType(op, toType, CK_IntegralCast);
- }
- ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
- return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
- CK_IntegralComplexCast);
- }
- }
- /// Handle integer arithmetic conversions. Helper function of
- /// UsualArithmeticConversions()
- template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
- static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType, bool IsCompAssign) {
- // The rules for this case are in C99 6.3.1.8
- int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
- bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
- bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
- if (LHSSigned == RHSSigned) {
- // Same signedness; use the higher-ranked type
- if (order >= 0) {
- RHS = (*doRHSCast)(S, RHS.get(), LHSType);
- return LHSType;
- } else if (!IsCompAssign)
- LHS = (*doLHSCast)(S, LHS.get(), RHSType);
- return RHSType;
- } else if (order != (LHSSigned ? 1 : -1)) {
- // The unsigned type has greater than or equal rank to the
- // signed type, so use the unsigned type
- if (RHSSigned) {
- RHS = (*doRHSCast)(S, RHS.get(), LHSType);
- return LHSType;
- } else if (!IsCompAssign)
- LHS = (*doLHSCast)(S, LHS.get(), RHSType);
- return RHSType;
- } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
- // The two types are different widths; if we are here, that
- // means the signed type is larger than the unsigned type, so
- // use the signed type.
- if (LHSSigned) {
- RHS = (*doRHSCast)(S, RHS.get(), LHSType);
- return LHSType;
- } else if (!IsCompAssign)
- LHS = (*doLHSCast)(S, LHS.get(), RHSType);
- return RHSType;
- } else {
- // The signed type is higher-ranked than the unsigned type,
- // but isn't actually any bigger (like unsigned int and long
- // on most 32-bit systems). Use the unsigned type corresponding
- // to the signed type.
- QualType result =
- S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
- RHS = (*doRHSCast)(S, RHS.get(), result);
- if (!IsCompAssign)
- LHS = (*doLHSCast)(S, LHS.get(), result);
- return result;
- }
- }
- /// Handle conversions with GCC complex int extension. Helper function
- /// of UsualArithmeticConversions()
- static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType,
- bool IsCompAssign) {
- const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
- const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
- if (LHSComplexInt && RHSComplexInt) {
- QualType LHSEltType = LHSComplexInt->getElementType();
- QualType RHSEltType = RHSComplexInt->getElementType();
- QualType ScalarType =
- handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
- (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
- return S.Context.getComplexType(ScalarType);
- }
- if (LHSComplexInt) {
- QualType LHSEltType = LHSComplexInt->getElementType();
- QualType ScalarType =
- handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
- (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
- QualType ComplexType = S.Context.getComplexType(ScalarType);
- RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
- CK_IntegralRealToComplex);
- return ComplexType;
- }
- assert(RHSComplexInt);
- QualType RHSEltType = RHSComplexInt->getElementType();
- QualType ScalarType =
- handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
- (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
- QualType ComplexType = S.Context.getComplexType(ScalarType);
- if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
- CK_IntegralRealToComplex);
- return ComplexType;
- }
- /// Return the rank of a given fixed point or integer type. The value itself
- /// doesn't matter, but the values must be increasing with proper increasing
- /// rank as described in N1169 4.1.1.
- static unsigned GetFixedPointRank(QualType Ty) {
- const auto *BTy = Ty->getAs<BuiltinType>();
- assert(BTy && "Expected a builtin type.");
- switch (BTy->getKind()) {
- case BuiltinType::ShortFract:
- case BuiltinType::UShortFract:
- case BuiltinType::SatShortFract:
- case BuiltinType::SatUShortFract:
- return 1;
- case BuiltinType::Fract:
- case BuiltinType::UFract:
- case BuiltinType::SatFract:
- case BuiltinType::SatUFract:
- return 2;
- case BuiltinType::LongFract:
- case BuiltinType::ULongFract:
- case BuiltinType::SatLongFract:
- case BuiltinType::SatULongFract:
- return 3;
- case BuiltinType::ShortAccum:
- case BuiltinType::UShortAccum:
- case BuiltinType::SatShortAccum:
- case BuiltinType::SatUShortAccum:
- return 4;
- case BuiltinType::Accum:
- case BuiltinType::UAccum:
- case BuiltinType::SatAccum:
- case BuiltinType::SatUAccum:
- return 5;
- case BuiltinType::LongAccum:
- case BuiltinType::ULongAccum:
- case BuiltinType::SatLongAccum:
- case BuiltinType::SatULongAccum:
- return 6;
- default:
- if (BTy->isInteger())
- return 0;
- llvm_unreachable("Unexpected fixed point or integer type");
- }
- }
- /// handleFixedPointConversion - Fixed point operations between fixed
- /// point types and integers or other fixed point types do not fall under
- /// usual arithmetic conversion since these conversions could result in loss
- /// of precsision (N1169 4.1.4). These operations should be calculated with
- /// the full precision of their result type (N1169 4.1.6.2.1).
- static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
- QualType RHSTy) {
- assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
- "Expected at least one of the operands to be a fixed point type");
- assert((LHSTy->isFixedPointOrIntegerType() ||
- RHSTy->isFixedPointOrIntegerType()) &&
- "Special fixed point arithmetic operation conversions are only "
- "applied to ints or other fixed point types");
- // If one operand has signed fixed-point type and the other operand has
- // unsigned fixed-point type, then the unsigned fixed-point operand is
- // converted to its corresponding signed fixed-point type and the resulting
- // type is the type of the converted operand.
- if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
- LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
- else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
- RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
- // The result type is the type with the highest rank, whereby a fixed-point
- // conversion rank is always greater than an integer conversion rank; if the
- // type of either of the operands is a saturating fixedpoint type, the result
- // type shall be the saturating fixed-point type corresponding to the type
- // with the highest rank; the resulting value is converted (taking into
- // account rounding and overflow) to the precision of the resulting type.
- // Same ranks between signed and unsigned types are resolved earlier, so both
- // types are either signed or both unsigned at this point.
- unsigned LHSTyRank = GetFixedPointRank(LHSTy);
- unsigned RHSTyRank = GetFixedPointRank(RHSTy);
- QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
- if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
- ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
- return ResultTy;
- }
- /// UsualArithmeticConversions - Performs various conversions that are common to
- /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
- /// routine returns the first non-arithmetic type found. The client is
- /// responsible for emitting appropriate error diagnostics.
- QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
- bool IsCompAssign) {
- if (!IsCompAssign) {
- LHS = UsualUnaryConversions(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- }
- RHS = UsualUnaryConversions(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType LHSType =
- Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
- QualType RHSType =
- Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
- // For conversion purposes, we ignore any atomic qualifier on the LHS.
- if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
- LHSType = AtomicLHS->getValueType();
- // If both types are identical, no conversion is needed.
- if (LHSType == RHSType)
- return LHSType;
- // If either side is a non-arithmetic type (e.g. a pointer), we are done.
- // The caller can deal with this (e.g. pointer + int).
- if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
- return QualType();
- // Apply unary and bitfield promotions to the LHS's type.
- QualType LHSUnpromotedType = LHSType;
- if (LHSType->isPromotableIntegerType())
- LHSType = Context.getPromotedIntegerType(LHSType);
- QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
- if (!LHSBitfieldPromoteTy.isNull())
- LHSType = LHSBitfieldPromoteTy;
- if (LHSType != LHSUnpromotedType && !IsCompAssign)
- LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
- // If both types are identical, no conversion is needed.
- if (LHSType == RHSType)
- return LHSType;
- // At this point, we have two different arithmetic types.
- // Diagnose attempts to convert between __float128 and long double where
- // such conversions currently can't be handled.
- if (unsupportedTypeConversion(*this, LHSType, RHSType))
- return QualType();
- // Handle complex types first (C99 6.3.1.8p1).
- if (LHSType->isComplexType() || RHSType->isComplexType())
- return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- // Now handle "real" floating types (i.e. float, double, long double).
- if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
- return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- // Handle GCC complex int extension.
- if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
- return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
- return handleFixedPointConversion(*this, LHSType, RHSType);
- // Finally, we have two differing integer types.
- return handleIntegerConversion<doIntegralCast, doIntegralCast>
- (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
- }
- //===----------------------------------------------------------------------===//
- // Semantic Analysis for various Expression Types
- //===----------------------------------------------------------------------===//
- ExprResult
- Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
- SourceLocation DefaultLoc,
- SourceLocation RParenLoc,
- Expr *ControllingExpr,
- ArrayRef<ParsedType> ArgTypes,
- ArrayRef<Expr *> ArgExprs) {
- unsigned NumAssocs = ArgTypes.size();
- assert(NumAssocs == ArgExprs.size());
- TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
- for (unsigned i = 0; i < NumAssocs; ++i) {
- if (ArgTypes[i])
- (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
- else
- Types[i] = nullptr;
- }
- ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
- ControllingExpr,
- llvm::makeArrayRef(Types, NumAssocs),
- ArgExprs);
- delete [] Types;
- return ER;
- }
- ExprResult
- Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
- SourceLocation DefaultLoc,
- SourceLocation RParenLoc,
- Expr *ControllingExpr,
- ArrayRef<TypeSourceInfo *> Types,
- ArrayRef<Expr *> Exprs) {
- unsigned NumAssocs = Types.size();
- assert(NumAssocs == Exprs.size());
- // Decay and strip qualifiers for the controlling expression type, and handle
- // placeholder type replacement. See committee discussion from WG14 DR423.
- {
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
- if (R.isInvalid())
- return ExprError();
- ControllingExpr = R.get();
- }
- // The controlling expression is an unevaluated operand, so side effects are
- // likely unintended.
- if (!inTemplateInstantiation() &&
- ControllingExpr->HasSideEffects(Context, false))
- Diag(ControllingExpr->getExprLoc(),
- diag::warn_side_effects_unevaluated_context);
- bool TypeErrorFound = false,
- IsResultDependent = ControllingExpr->isTypeDependent(),
- ContainsUnexpandedParameterPack
- = ControllingExpr->containsUnexpandedParameterPack();
- for (unsigned i = 0; i < NumAssocs; ++i) {
- if (Exprs[i]->containsUnexpandedParameterPack())
- ContainsUnexpandedParameterPack = true;
- if (Types[i]) {
- if (Types[i]->getType()->containsUnexpandedParameterPack())
- ContainsUnexpandedParameterPack = true;
- if (Types[i]->getType()->isDependentType()) {
- IsResultDependent = true;
- } else {
- // C11 6.5.1.1p2 "The type name in a generic association shall specify a
- // complete object type other than a variably modified type."
- unsigned D = 0;
- if (Types[i]->getType()->isIncompleteType())
- D = diag::err_assoc_type_incomplete;
- else if (!Types[i]->getType()->isObjectType())
- D = diag::err_assoc_type_nonobject;
- else if (Types[i]->getType()->isVariablyModifiedType())
- D = diag::err_assoc_type_variably_modified;
- if (D != 0) {
- Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
- << Types[i]->getTypeLoc().getSourceRange()
- << Types[i]->getType();
- TypeErrorFound = true;
- }
- // C11 6.5.1.1p2 "No two generic associations in the same generic
- // selection shall specify compatible types."
- for (unsigned j = i+1; j < NumAssocs; ++j)
- if (Types[j] && !Types[j]->getType()->isDependentType() &&
- Context.typesAreCompatible(Types[i]->getType(),
- Types[j]->getType())) {
- Diag(Types[j]->getTypeLoc().getBeginLoc(),
- diag::err_assoc_compatible_types)
- << Types[j]->getTypeLoc().getSourceRange()
- << Types[j]->getType()
- << Types[i]->getType();
- Diag(Types[i]->getTypeLoc().getBeginLoc(),
- diag::note_compat_assoc)
- << Types[i]->getTypeLoc().getSourceRange()
- << Types[i]->getType();
- TypeErrorFound = true;
- }
- }
- }
- }
- if (TypeErrorFound)
- return ExprError();
- // If we determined that the generic selection is result-dependent, don't
- // try to compute the result expression.
- if (IsResultDependent)
- return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
- Exprs, DefaultLoc, RParenLoc,
- ContainsUnexpandedParameterPack);
- SmallVector<unsigned, 1> CompatIndices;
- unsigned DefaultIndex = -1U;
- for (unsigned i = 0; i < NumAssocs; ++i) {
- if (!Types[i])
- DefaultIndex = i;
- else if (Context.typesAreCompatible(ControllingExpr->getType(),
- Types[i]->getType()))
- CompatIndices.push_back(i);
- }
- // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
- // type compatible with at most one of the types named in its generic
- // association list."
- if (CompatIndices.size() > 1) {
- // We strip parens here because the controlling expression is typically
- // parenthesized in macro definitions.
- ControllingExpr = ControllingExpr->IgnoreParens();
- Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
- << ControllingExpr->getSourceRange() << ControllingExpr->getType()
- << (unsigned)CompatIndices.size();
- for (unsigned I : CompatIndices) {
- Diag(Types[I]->getTypeLoc().getBeginLoc(),
- diag::note_compat_assoc)
- << Types[I]->getTypeLoc().getSourceRange()
- << Types[I]->getType();
- }
- return ExprError();
- }
- // C11 6.5.1.1p2 "If a generic selection has no default generic association,
- // its controlling expression shall have type compatible with exactly one of
- // the types named in its generic association list."
- if (DefaultIndex == -1U && CompatIndices.size() == 0) {
- // We strip parens here because the controlling expression is typically
- // parenthesized in macro definitions.
- ControllingExpr = ControllingExpr->IgnoreParens();
- Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
- << ControllingExpr->getSourceRange() << ControllingExpr->getType();
- return ExprError();
- }
- // C11 6.5.1.1p3 "If a generic selection has a generic association with a
- // type name that is compatible with the type of the controlling expression,
- // then the result expression of the generic selection is the expression
- // in that generic association. Otherwise, the result expression of the
- // generic selection is the expression in the default generic association."
- unsigned ResultIndex =
- CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
- return GenericSelectionExpr::Create(
- Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
- ContainsUnexpandedParameterPack, ResultIndex);
- }
- /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
- /// location of the token and the offset of the ud-suffix within it.
- static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
- unsigned Offset) {
- return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
- S.getLangOpts());
- }
- /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
- /// the corresponding cooked (non-raw) literal operator, and build a call to it.
- static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
- IdentifierInfo *UDSuffix,
- SourceLocation UDSuffixLoc,
- ArrayRef<Expr*> Args,
- SourceLocation LitEndLoc) {
- assert(Args.size() <= 2 && "too many arguments for literal operator");
- QualType ArgTy[2];
- for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
- ArgTy[ArgIdx] = Args[ArgIdx]->getType();
- if (ArgTy[ArgIdx]->isArrayType())
- ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
- }
- DeclarationName OpName =
- S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
- DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
- OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
- LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
- if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
- /*AllowRaw*/ false, /*AllowTemplate*/ false,
- /*AllowStringTemplate*/ false,
- /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
- return ExprError();
- return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
- }
- /// ActOnStringLiteral - The specified tokens were lexed as pasted string
- /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
- /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
- /// multiple tokens. However, the common case is that StringToks points to one
- /// string.
- ///
- ExprResult
- Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
- assert(!StringToks.empty() && "Must have at least one string!");
- StringLiteralParser Literal(StringToks, PP);
- if (Literal.hadError)
- return ExprError();
- SmallVector<SourceLocation, 4> StringTokLocs;
- for (const Token &Tok : StringToks)
- StringTokLocs.push_back(Tok.getLocation());
- QualType CharTy = Context.CharTy;
- StringLiteral::StringKind Kind = StringLiteral::Ascii;
- if (Literal.isWide()) {
- CharTy = Context.getWideCharType();
- Kind = StringLiteral::Wide;
- } else if (Literal.isUTF8()) {
- if (getLangOpts().Char8)
- CharTy = Context.Char8Ty;
- Kind = StringLiteral::UTF8;
- } else if (Literal.isUTF16()) {
- CharTy = Context.Char16Ty;
- Kind = StringLiteral::UTF16;
- } else if (Literal.isUTF32()) {
- CharTy = Context.Char32Ty;
- Kind = StringLiteral::UTF32;
- } else if (Literal.isPascal()) {
- CharTy = Context.UnsignedCharTy;
- }
- // Warn on initializing an array of char from a u8 string literal; this
- // becomes ill-formed in C++2a.
- if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a &&
- !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
- Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string);
- // Create removals for all 'u8' prefixes in the string literal(s). This
- // ensures C++2a compatibility (but may change the program behavior when
- // built by non-Clang compilers for which the execution character set is
- // not always UTF-8).
- auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8);
- SourceLocation RemovalDiagLoc;
- for (const Token &Tok : StringToks) {
- if (Tok.getKind() == tok::utf8_string_literal) {
- if (RemovalDiagLoc.isInvalid())
- RemovalDiagLoc = Tok.getLocation();
- RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
- Tok.getLocation(),
- Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
- getSourceManager(), getLangOpts())));
- }
- }
- Diag(RemovalDiagLoc, RemovalDiag);
- }
- QualType StrTy =
- Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
- // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
- StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
- Kind, Literal.Pascal, StrTy,
- &StringTokLocs[0],
- StringTokLocs.size());
- if (Literal.getUDSuffix().empty())
- return Lit;
- // We're building a user-defined literal.
- IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
- SourceLocation UDSuffixLoc =
- getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
- Literal.getUDSuffixOffset());
- // Make sure we're allowed user-defined literals here.
- if (!UDLScope)
- return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
- // C++11 [lex.ext]p5: The literal L is treated as a call of the form
- // operator "" X (str, len)
- QualType SizeType = Context.getSizeType();
- DeclarationName OpName =
- Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
- DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
- OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
- QualType ArgTy[] = {
- Context.getArrayDecayedType(StrTy), SizeType
- };
- LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
- switch (LookupLiteralOperator(UDLScope, R, ArgTy,
- /*AllowRaw*/ false, /*AllowTemplate*/ false,
- /*AllowStringTemplate*/ true,
- /*DiagnoseMissing*/ true)) {
- case LOLR_Cooked: {
- llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
- IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
- StringTokLocs[0]);
- Expr *Args[] = { Lit, LenArg };
- return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
- }
- case LOLR_StringTemplate: {
- TemplateArgumentListInfo ExplicitArgs;
- unsigned CharBits = Context.getIntWidth(CharTy);
- bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
- llvm::APSInt Value(CharBits, CharIsUnsigned);
- TemplateArgument TypeArg(CharTy);
- TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
- ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
- for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
- Value = Lit->getCodeUnit(I);
- TemplateArgument Arg(Context, Value, CharTy);
- TemplateArgumentLocInfo ArgInfo;
- ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
- }
- return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
- &ExplicitArgs);
- }
- case LOLR_Raw:
- case LOLR_Template:
- case LOLR_ErrorNoDiagnostic:
- llvm_unreachable("unexpected literal operator lookup result");
- case LOLR_Error:
- return ExprError();
- }
- llvm_unreachable("unexpected literal operator lookup result");
- }
- DeclRefExpr *
- Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
- SourceLocation Loc,
- const CXXScopeSpec *SS) {
- DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
- return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
- }
- DeclRefExpr *
- Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
- const DeclarationNameInfo &NameInfo,
- const CXXScopeSpec *SS, NamedDecl *FoundD,
- SourceLocation TemplateKWLoc,
- const TemplateArgumentListInfo *TemplateArgs) {
- NestedNameSpecifierLoc NNS =
- SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
- return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
- TemplateArgs);
- }
- NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
- // A declaration named in an unevaluated operand never constitutes an odr-use.
- if (isUnevaluatedContext())
- return NOUR_Unevaluated;
- // C++2a [basic.def.odr]p4:
- // A variable x whose name appears as a potentially-evaluated expression e
- // is odr-used by e unless [...] x is a reference that is usable in
- // constant expressions.
- if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
- if (VD->getType()->isReferenceType() &&
- !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
- VD->isUsableInConstantExpressions(Context))
- return NOUR_Constant;
- }
- // All remaining non-variable cases constitute an odr-use. For variables, we
- // need to wait and see how the expression is used.
- return NOUR_None;
- }
- /// BuildDeclRefExpr - Build an expression that references a
- /// declaration that does not require a closure capture.
- DeclRefExpr *
- Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
- const DeclarationNameInfo &NameInfo,
- NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
- SourceLocation TemplateKWLoc,
- const TemplateArgumentListInfo *TemplateArgs) {
- bool RefersToCapturedVariable =
- isa<VarDecl>(D) &&
- NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
- DeclRefExpr *E = DeclRefExpr::Create(
- Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
- VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
- MarkDeclRefReferenced(E);
- if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
- Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
- !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
- getCurFunction()->recordUseOfWeak(E);
- FieldDecl *FD = dyn_cast<FieldDecl>(D);
- if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
- FD = IFD->getAnonField();
- if (FD) {
- UnusedPrivateFields.remove(FD);
- // Just in case we're building an illegal pointer-to-member.
- if (FD->isBitField())
- E->setObjectKind(OK_BitField);
- }
- // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
- // designates a bit-field.
- if (auto *BD = dyn_cast<BindingDecl>(D))
- if (auto *BE = BD->getBinding())
- E->setObjectKind(BE->getObjectKind());
- return E;
- }
- /// Decomposes the given name into a DeclarationNameInfo, its location, and
- /// possibly a list of template arguments.
- ///
- /// If this produces template arguments, it is permitted to call
- /// DecomposeTemplateName.
- ///
- /// This actually loses a lot of source location information for
- /// non-standard name kinds; we should consider preserving that in
- /// some way.
- void
- Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
- TemplateArgumentListInfo &Buffer,
- DeclarationNameInfo &NameInfo,
- const TemplateArgumentListInfo *&TemplateArgs) {
- if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
- Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
- Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
- ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
- Id.TemplateId->NumArgs);
- translateTemplateArguments(TemplateArgsPtr, Buffer);
- TemplateName TName = Id.TemplateId->Template.get();
- SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
- NameInfo = Context.getNameForTemplate(TName, TNameLoc);
- TemplateArgs = &Buffer;
- } else {
- NameInfo = GetNameFromUnqualifiedId(Id);
- TemplateArgs = nullptr;
- }
- }
- static void emitEmptyLookupTypoDiagnostic(
- const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
- DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
- unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
- DeclContext *Ctx =
- SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
- if (!TC) {
- // Emit a special diagnostic for failed member lookups.
- // FIXME: computing the declaration context might fail here (?)
- if (Ctx)
- SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
- << SS.getRange();
- else
- SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
- return;
- }
- std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
- bool DroppedSpecifier =
- TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
- unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
- ? diag::note_implicit_param_decl
- : diag::note_previous_decl;
- if (!Ctx)
- SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
- SemaRef.PDiag(NoteID));
- else
- SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
- << Typo << Ctx << DroppedSpecifier
- << SS.getRange(),
- SemaRef.PDiag(NoteID));
- }
- /// Diagnose an empty lookup.
- ///
- /// \return false if new lookup candidates were found
- bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
- CorrectionCandidateCallback &CCC,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- ArrayRef<Expr *> Args, TypoExpr **Out) {
- DeclarationName Name = R.getLookupName();
- unsigned diagnostic = diag::err_undeclared_var_use;
- unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
- if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
- Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
- Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
- diagnostic = diag::err_undeclared_use;
- diagnostic_suggest = diag::err_undeclared_use_suggest;
- }
- // If the original lookup was an unqualified lookup, fake an
- // unqualified lookup. This is useful when (for example) the
- // original lookup would not have found something because it was a
- // dependent name.
- DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
- while (DC) {
- if (isa<CXXRecordDecl>(DC)) {
- LookupQualifiedName(R, DC);
- if (!R.empty()) {
- // Don't give errors about ambiguities in this lookup.
- R.suppressDiagnostics();
- // During a default argument instantiation the CurContext points
- // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
- // function parameter list, hence add an explicit check.
- bool isDefaultArgument =
- !CodeSynthesisContexts.empty() &&
- CodeSynthesisContexts.back().Kind ==
- CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
- CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
- bool isInstance = CurMethod &&
- CurMethod->isInstance() &&
- DC == CurMethod->getParent() && !isDefaultArgument;
- // Give a code modification hint to insert 'this->'.
- // TODO: fixit for inserting 'Base<T>::' in the other cases.
- // Actually quite difficult!
- if (getLangOpts().MSVCCompat)
- diagnostic = diag::ext_found_via_dependent_bases_lookup;
- if (isInstance) {
- Diag(R.getNameLoc(), diagnostic) << Name
- << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
- CheckCXXThisCapture(R.getNameLoc());
- } else {
- Diag(R.getNameLoc(), diagnostic) << Name;
- }
- // Do we really want to note all of these?
- for (NamedDecl *D : R)
- Diag(D->getLocation(), diag::note_dependent_var_use);
- // Return true if we are inside a default argument instantiation
- // and the found name refers to an instance member function, otherwise
- // the function calling DiagnoseEmptyLookup will try to create an
- // implicit member call and this is wrong for default argument.
- if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
- Diag(R.getNameLoc(), diag::err_member_call_without_object);
- return true;
- }
- // Tell the callee to try to recover.
- return false;
- }
- R.clear();
- }
- // In Microsoft mode, if we are performing lookup from within a friend
- // function definition declared at class scope then we must set
- // DC to the lexical parent to be able to search into the parent
- // class.
- if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
- cast<FunctionDecl>(DC)->getFriendObjectKind() &&
- DC->getLexicalParent()->isRecord())
- DC = DC->getLexicalParent();
- else
- DC = DC->getParent();
- }
- // We didn't find anything, so try to correct for a typo.
- TypoCorrection Corrected;
- if (S && Out) {
- SourceLocation TypoLoc = R.getNameLoc();
- assert(!ExplicitTemplateArgs &&
- "Diagnosing an empty lookup with explicit template args!");
- *Out = CorrectTypoDelayed(
- R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
- [=](const TypoCorrection &TC) {
- emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
- diagnostic, diagnostic_suggest);
- },
- nullptr, CTK_ErrorRecovery);
- if (*Out)
- return true;
- } else if (S &&
- (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
- S, &SS, CCC, CTK_ErrorRecovery))) {
- std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
- bool DroppedSpecifier =
- Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
- R.setLookupName(Corrected.getCorrection());
- bool AcceptableWithRecovery = false;
- bool AcceptableWithoutRecovery = false;
- NamedDecl *ND = Corrected.getFoundDecl();
- if (ND) {
- if (Corrected.isOverloaded()) {
- OverloadCandidateSet OCS(R.getNameLoc(),
- OverloadCandidateSet::CSK_Normal);
- OverloadCandidateSet::iterator Best;
- for (NamedDecl *CD : Corrected) {
- if (FunctionTemplateDecl *FTD =
- dyn_cast<FunctionTemplateDecl>(CD))
- AddTemplateOverloadCandidate(
- FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
- Args, OCS);
- else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
- if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
- AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
- Args, OCS);
- }
- switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
- case OR_Success:
- ND = Best->FoundDecl;
- Corrected.setCorrectionDecl(ND);
- break;
- default:
- // FIXME: Arbitrarily pick the first declaration for the note.
- Corrected.setCorrectionDecl(ND);
- break;
- }
- }
- R.addDecl(ND);
- if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
- CXXRecordDecl *Record = nullptr;
- if (Corrected.getCorrectionSpecifier()) {
- const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
- Record = Ty->getAsCXXRecordDecl();
- }
- if (!Record)
- Record = cast<CXXRecordDecl>(
- ND->getDeclContext()->getRedeclContext());
- R.setNamingClass(Record);
- }
- auto *UnderlyingND = ND->getUnderlyingDecl();
- AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
- isa<FunctionTemplateDecl>(UnderlyingND);
- // FIXME: If we ended up with a typo for a type name or
- // Objective-C class name, we're in trouble because the parser
- // is in the wrong place to recover. Suggest the typo
- // correction, but don't make it a fix-it since we're not going
- // to recover well anyway.
- AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
- getAsTypeTemplateDecl(UnderlyingND) ||
- isa<ObjCInterfaceDecl>(UnderlyingND);
- } else {
- // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
- // because we aren't able to recover.
- AcceptableWithoutRecovery = true;
- }
- if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
- unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
- ? diag::note_implicit_param_decl
- : diag::note_previous_decl;
- if (SS.isEmpty())
- diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
- PDiag(NoteID), AcceptableWithRecovery);
- else
- diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false)
- << DroppedSpecifier << SS.getRange(),
- PDiag(NoteID), AcceptableWithRecovery);
- // Tell the callee whether to try to recover.
- return !AcceptableWithRecovery;
- }
- }
- R.clear();
- // Emit a special diagnostic for failed member lookups.
- // FIXME: computing the declaration context might fail here (?)
- if (!SS.isEmpty()) {
- Diag(R.getNameLoc(), diag::err_no_member)
- << Name << computeDeclContext(SS, false)
- << SS.getRange();
- return true;
- }
- // Give up, we can't recover.
- Diag(R.getNameLoc(), diagnostic) << Name;
- return true;
- }
- /// In Microsoft mode, if we are inside a template class whose parent class has
- /// dependent base classes, and we can't resolve an unqualified identifier, then
- /// assume the identifier is a member of a dependent base class. We can only
- /// recover successfully in static methods, instance methods, and other contexts
- /// where 'this' is available. This doesn't precisely match MSVC's
- /// instantiation model, but it's close enough.
- static Expr *
- recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
- DeclarationNameInfo &NameInfo,
- SourceLocation TemplateKWLoc,
- const TemplateArgumentListInfo *TemplateArgs) {
- // Only try to recover from lookup into dependent bases in static methods or
- // contexts where 'this' is available.
- QualType ThisType = S.getCurrentThisType();
- const CXXRecordDecl *RD = nullptr;
- if (!ThisType.isNull())
- RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
- else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
- RD = MD->getParent();
- if (!RD || !RD->hasAnyDependentBases())
- return nullptr;
- // Diagnose this as unqualified lookup into a dependent base class. If 'this'
- // is available, suggest inserting 'this->' as a fixit.
- SourceLocation Loc = NameInfo.getLoc();
- auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
- DB << NameInfo.getName() << RD;
- if (!ThisType.isNull()) {
- DB << FixItHint::CreateInsertion(Loc, "this->");
- return CXXDependentScopeMemberExpr::Create(
- Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
- /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
- /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
- }
- // Synthesize a fake NNS that points to the derived class. This will
- // perform name lookup during template instantiation.
- CXXScopeSpec SS;
- auto *NNS =
- NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
- SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
- return DependentScopeDeclRefExpr::Create(
- Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
- TemplateArgs);
- }
- ExprResult
- Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
- SourceLocation TemplateKWLoc, UnqualifiedId &Id,
- bool HasTrailingLParen, bool IsAddressOfOperand,
- CorrectionCandidateCallback *CCC,
- bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
- assert(!(IsAddressOfOperand && HasTrailingLParen) &&
- "cannot be direct & operand and have a trailing lparen");
- if (SS.isInvalid())
- return ExprError();
- TemplateArgumentListInfo TemplateArgsBuffer;
- // Decompose the UnqualifiedId into the following data.
- DeclarationNameInfo NameInfo;
- const TemplateArgumentListInfo *TemplateArgs;
- DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
- DeclarationName Name = NameInfo.getName();
- IdentifierInfo *II = Name.getAsIdentifierInfo();
- SourceLocation NameLoc = NameInfo.getLoc();
- if (II && II->isEditorPlaceholder()) {
- // FIXME: When typed placeholders are supported we can create a typed
- // placeholder expression node.
- return ExprError();
- }
- // C++ [temp.dep.expr]p3:
- // An id-expression is type-dependent if it contains:
- // -- an identifier that was declared with a dependent type,
- // (note: handled after lookup)
- // -- a template-id that is dependent,
- // (note: handled in BuildTemplateIdExpr)
- // -- a conversion-function-id that specifies a dependent type,
- // -- a nested-name-specifier that contains a class-name that
- // names a dependent type.
- // Determine whether this is a member of an unknown specialization;
- // we need to handle these differently.
- bool DependentID = false;
- if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
- Name.getCXXNameType()->isDependentType()) {
- DependentID = true;
- } else if (SS.isSet()) {
- if (DeclContext *DC = computeDeclContext(SS, false)) {
- if (RequireCompleteDeclContext(SS, DC))
- return ExprError();
- } else {
- DependentID = true;
- }
- }
- if (DependentID)
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- // Perform the required lookup.
- LookupResult R(*this, NameInfo,
- (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
- ? LookupObjCImplicitSelfParam
- : LookupOrdinaryName);
- if (TemplateKWLoc.isValid() || TemplateArgs) {
- // Lookup the template name again to correctly establish the context in
- // which it was found. This is really unfortunate as we already did the
- // lookup to determine that it was a template name in the first place. If
- // this becomes a performance hit, we can work harder to preserve those
- // results until we get here but it's likely not worth it.
- bool MemberOfUnknownSpecialization;
- AssumedTemplateKind AssumedTemplate;
- if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
- MemberOfUnknownSpecialization, TemplateKWLoc,
- &AssumedTemplate))
- return ExprError();
- if (MemberOfUnknownSpecialization ||
- (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- } else {
- bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
- LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
- // If the result might be in a dependent base class, this is a dependent
- // id-expression.
- if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- // If this reference is in an Objective-C method, then we need to do
- // some special Objective-C lookup, too.
- if (IvarLookupFollowUp) {
- ExprResult E(LookupInObjCMethod(R, S, II, true));
- if (E.isInvalid())
- return ExprError();
- if (Expr *Ex = E.getAs<Expr>())
- return Ex;
- }
- }
- if (R.isAmbiguous())
- return ExprError();
- // This could be an implicitly declared function reference (legal in C90,
- // extension in C99, forbidden in C++).
- if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
- NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
- if (D) R.addDecl(D);
- }
- // Determine whether this name might be a candidate for
- // argument-dependent lookup.
- bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
- if (R.empty() && !ADL) {
- if (SS.isEmpty() && getLangOpts().MSVCCompat) {
- if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
- TemplateKWLoc, TemplateArgs))
- return E;
- }
- // Don't diagnose an empty lookup for inline assembly.
- if (IsInlineAsmIdentifier)
- return ExprError();
- // If this name wasn't predeclared and if this is not a function
- // call, diagnose the problem.
- TypoExpr *TE = nullptr;
- DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
- : nullptr);
- DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
- assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
- "Typo correction callback misconfigured");
- if (CCC) {
- // Make sure the callback knows what the typo being diagnosed is.
- CCC->setTypoName(II);
- if (SS.isValid())
- CCC->setTypoNNS(SS.getScopeRep());
- }
- // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
- // a template name, but we happen to have always already looked up the name
- // before we get here if it must be a template name.
- if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
- None, &TE)) {
- if (TE && KeywordReplacement) {
- auto &State = getTypoExprState(TE);
- auto BestTC = State.Consumer->getNextCorrection();
- if (BestTC.isKeyword()) {
- auto *II = BestTC.getCorrectionAsIdentifierInfo();
- if (State.DiagHandler)
- State.DiagHandler(BestTC);
- KeywordReplacement->startToken();
- KeywordReplacement->setKind(II->getTokenID());
- KeywordReplacement->setIdentifierInfo(II);
- KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
- // Clean up the state associated with the TypoExpr, since it has
- // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
- clearDelayedTypo(TE);
- // Signal that a correction to a keyword was performed by returning a
- // valid-but-null ExprResult.
- return (Expr*)nullptr;
- }
- State.Consumer->resetCorrectionStream();
- }
- return TE ? TE : ExprError();
- }
- assert(!R.empty() &&
- "DiagnoseEmptyLookup returned false but added no results");
- // If we found an Objective-C instance variable, let
- // LookupInObjCMethod build the appropriate expression to
- // reference the ivar.
- if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
- R.clear();
- ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
- // In a hopelessly buggy code, Objective-C instance variable
- // lookup fails and no expression will be built to reference it.
- if (!E.isInvalid() && !E.get())
- return ExprError();
- return E;
- }
- }
- // This is guaranteed from this point on.
- assert(!R.empty() || ADL);
- // Check whether this might be a C++ implicit instance member access.
- // C++ [class.mfct.non-static]p3:
- // When an id-expression that is not part of a class member access
- // syntax and not used to form a pointer to member is used in the
- // body of a non-static member function of class X, if name lookup
- // resolves the name in the id-expression to a non-static non-type
- // member of some class C, the id-expression is transformed into a
- // class member access expression using (*this) as the
- // postfix-expression to the left of the . operator.
- //
- // But we don't actually need to do this for '&' operands if R
- // resolved to a function or overloaded function set, because the
- // expression is ill-formed if it actually works out to be a
- // non-static member function:
- //
- // C++ [expr.ref]p4:
- // Otherwise, if E1.E2 refers to a non-static member function. . .
- // [t]he expression can be used only as the left-hand operand of a
- // member function call.
- //
- // There are other safeguards against such uses, but it's important
- // to get this right here so that we don't end up making a
- // spuriously dependent expression if we're inside a dependent
- // instance method.
- if (!R.empty() && (*R.begin())->isCXXClassMember()) {
- bool MightBeImplicitMember;
- if (!IsAddressOfOperand)
- MightBeImplicitMember = true;
- else if (!SS.isEmpty())
- MightBeImplicitMember = false;
- else if (R.isOverloadedResult())
- MightBeImplicitMember = false;
- else if (R.isUnresolvableResult())
- MightBeImplicitMember = true;
- else
- MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
- isa<IndirectFieldDecl>(R.getFoundDecl()) ||
- isa<MSPropertyDecl>(R.getFoundDecl());
- if (MightBeImplicitMember)
- return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
- R, TemplateArgs, S);
- }
- if (TemplateArgs || TemplateKWLoc.isValid()) {
- // In C++1y, if this is a variable template id, then check it
- // in BuildTemplateIdExpr().
- // The single lookup result must be a variable template declaration.
- if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
- Id.TemplateId->Kind == TNK_Var_template) {
- assert(R.getAsSingle<VarTemplateDecl>() &&
- "There should only be one declaration found.");
- }
- return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
- }
- return BuildDeclarationNameExpr(SS, R, ADL);
- }
- /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
- /// declaration name, generally during template instantiation.
- /// There's a large number of things which don't need to be done along
- /// this path.
- ExprResult Sema::BuildQualifiedDeclarationNameExpr(
- CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
- bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
- DeclContext *DC = computeDeclContext(SS, false);
- if (!DC)
- return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
- NameInfo, /*TemplateArgs=*/nullptr);
- if (RequireCompleteDeclContext(SS, DC))
- return ExprError();
- LookupResult R(*this, NameInfo, LookupOrdinaryName);
- LookupQualifiedName(R, DC);
- if (R.isAmbiguous())
- return ExprError();
- if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
- return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
- NameInfo, /*TemplateArgs=*/nullptr);
- if (R.empty()) {
- Diag(NameInfo.getLoc(), diag::err_no_member)
- << NameInfo.getName() << DC << SS.getRange();
- return ExprError();
- }
- if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
- // Diagnose a missing typename if this resolved unambiguously to a type in
- // a dependent context. If we can recover with a type, downgrade this to
- // a warning in Microsoft compatibility mode.
- unsigned DiagID = diag::err_typename_missing;
- if (RecoveryTSI && getLangOpts().MSVCCompat)
- DiagID = diag::ext_typename_missing;
- SourceLocation Loc = SS.getBeginLoc();
- auto D = Diag(Loc, DiagID);
- D << SS.getScopeRep() << NameInfo.getName().getAsString()
- << SourceRange(Loc, NameInfo.getEndLoc());
- // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
- // context.
- if (!RecoveryTSI)
- return ExprError();
- // Only issue the fixit if we're prepared to recover.
- D << FixItHint::CreateInsertion(Loc, "typename ");
- // Recover by pretending this was an elaborated type.
- QualType Ty = Context.getTypeDeclType(TD);
- TypeLocBuilder TLB;
- TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
- QualType ET = getElaboratedType(ETK_None, SS, Ty);
- ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
- QTL.setElaboratedKeywordLoc(SourceLocation());
- QTL.setQualifierLoc(SS.getWithLocInContext(Context));
- *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
- return ExprEmpty();
- }
- // Defend against this resolving to an implicit member access. We usually
- // won't get here if this might be a legitimate a class member (we end up in
- // BuildMemberReferenceExpr instead), but this can be valid if we're forming
- // a pointer-to-member or in an unevaluated context in C++11.
- if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
- return BuildPossibleImplicitMemberExpr(SS,
- /*TemplateKWLoc=*/SourceLocation(),
- R, /*TemplateArgs=*/nullptr, S);
- return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
- }
- /// LookupInObjCMethod - The parser has read a name in, and Sema has
- /// detected that we're currently inside an ObjC method. Perform some
- /// additional lookup.
- ///
- /// Ideally, most of this would be done by lookup, but there's
- /// actually quite a lot of extra work involved.
- ///
- /// Returns a null sentinel to indicate trivial success.
- ExprResult
- Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
- IdentifierInfo *II, bool AllowBuiltinCreation) {
- SourceLocation Loc = Lookup.getNameLoc();
- ObjCMethodDecl *CurMethod = getCurMethodDecl();
- // Check for error condition which is already reported.
- if (!CurMethod)
- return ExprError();
- // There are two cases to handle here. 1) scoped lookup could have failed,
- // in which case we should look for an ivar. 2) scoped lookup could have
- // found a decl, but that decl is outside the current instance method (i.e.
- // a global variable). In these two cases, we do a lookup for an ivar with
- // this name, if the lookup sucedes, we replace it our current decl.
- // If we're in a class method, we don't normally want to look for
- // ivars. But if we don't find anything else, and there's an
- // ivar, that's an error.
- bool IsClassMethod = CurMethod->isClassMethod();
- bool LookForIvars;
- if (Lookup.empty())
- LookForIvars = true;
- else if (IsClassMethod)
- LookForIvars = false;
- else
- LookForIvars = (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
- ObjCInterfaceDecl *IFace = nullptr;
- if (LookForIvars) {
- IFace = CurMethod->getClassInterface();
- ObjCInterfaceDecl *ClassDeclared;
- ObjCIvarDecl *IV = nullptr;
- if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
- // Diagnose using an ivar in a class method.
- if (IsClassMethod)
- return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method)
- << IV->getDeclName());
- // If we're referencing an invalid decl, just return this as a silent
- // error node. The error diagnostic was already emitted on the decl.
- if (IV->isInvalidDecl())
- return ExprError();
- // Check if referencing a field with __attribute__((deprecated)).
- if (DiagnoseUseOfDecl(IV, Loc))
- return ExprError();
- // Diagnose the use of an ivar outside of the declaring class.
- if (IV->getAccessControl() == ObjCIvarDecl::Private &&
- !declaresSameEntity(ClassDeclared, IFace) &&
- !getLangOpts().DebuggerSupport)
- Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
- // FIXME: This should use a new expr for a direct reference, don't
- // turn this into Self->ivar, just return a BareIVarExpr or something.
- IdentifierInfo &II = Context.Idents.get("self");
- UnqualifiedId SelfName;
- SelfName.setIdentifier(&II, SourceLocation());
- SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
- CXXScopeSpec SelfScopeSpec;
- SourceLocation TemplateKWLoc;
- ExprResult SelfExpr =
- ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
- /*HasTrailingLParen=*/false,
- /*IsAddressOfOperand=*/false);
- if (SelfExpr.isInvalid())
- return ExprError();
- SelfExpr = DefaultLvalueConversion(SelfExpr.get());
- if (SelfExpr.isInvalid())
- return ExprError();
- MarkAnyDeclReferenced(Loc, IV, true);
- ObjCMethodFamily MF = CurMethod->getMethodFamily();
- if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
- !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
- Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
- ObjCIvarRefExpr *Result = new (Context)
- ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
- IV->getLocation(), SelfExpr.get(), true, true);
- if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
- if (!isUnevaluatedContext() &&
- !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
- getCurFunction()->recordUseOfWeak(Result);
- }
- if (getLangOpts().ObjCAutoRefCount)
- if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
- ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
- return Result;
- }
- } else if (CurMethod->isInstanceMethod()) {
- // We should warn if a local variable hides an ivar.
- if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
- ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
- if (IV->getAccessControl() != ObjCIvarDecl::Private ||
- declaresSameEntity(IFace, ClassDeclared))
- Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
- }
- }
- } else if (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
- // If accessing a stand-alone ivar in a class method, this is an error.
- if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
- return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method)
- << IV->getDeclName());
- }
- if (Lookup.empty() && II && AllowBuiltinCreation) {
- // FIXME. Consolidate this with similar code in LookupName.
- if (unsigned BuiltinID = II->getBuiltinID()) {
- if (!(getLangOpts().CPlusPlus &&
- Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
- NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
- S, Lookup.isForRedeclaration(),
- Lookup.getNameLoc());
- if (D) Lookup.addDecl(D);
- }
- }
- }
- // Sentinel value saying that we didn't do anything special.
- return ExprResult((Expr *)nullptr);
- }
- /// Cast a base object to a member's actual type.
- ///
- /// Logically this happens in three phases:
- ///
- /// * First we cast from the base type to the naming class.
- /// The naming class is the class into which we were looking
- /// when we found the member; it's the qualifier type if a
- /// qualifier was provided, and otherwise it's the base type.
- ///
- /// * Next we cast from the naming class to the declaring class.
- /// If the member we found was brought into a class's scope by
- /// a using declaration, this is that class; otherwise it's
- /// the class declaring the member.
- ///
- /// * Finally we cast from the declaring class to the "true"
- /// declaring class of the member. This conversion does not
- /// obey access control.
- ExprResult
- Sema::PerformObjectMemberConversion(Expr *From,
- NestedNameSpecifier *Qualifier,
- NamedDecl *FoundDecl,
- NamedDecl *Member) {
- CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
- if (!RD)
- return From;
- QualType DestRecordType;
- QualType DestType;
- QualType FromRecordType;
- QualType FromType = From->getType();
- bool PointerConversions = false;
- if (isa<FieldDecl>(Member)) {
- DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
- auto FromPtrType = FromType->getAs<PointerType>();
- DestRecordType = Context.getAddrSpaceQualType(
- DestRecordType, FromPtrType
- ? FromType->getPointeeType().getAddressSpace()
- : FromType.getAddressSpace());
- if (FromPtrType) {
- DestType = Context.getPointerType(DestRecordType);
- FromRecordType = FromPtrType->getPointeeType();
- PointerConversions = true;
- } else {
- DestType = DestRecordType;
- FromRecordType = FromType;
- }
- } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
- if (Method->isStatic())
- return From;
- DestType = Method->getThisType();
- DestRecordType = DestType->getPointeeType();
- if (FromType->getAs<PointerType>()) {
- FromRecordType = FromType->getPointeeType();
- PointerConversions = true;
- } else {
- FromRecordType = FromType;
- DestType = DestRecordType;
- }
- } else {
- // No conversion necessary.
- return From;
- }
- if (DestType->isDependentType() || FromType->isDependentType())
- return From;
- // If the unqualified types are the same, no conversion is necessary.
- if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
- return From;
- SourceRange FromRange = From->getSourceRange();
- SourceLocation FromLoc = FromRange.getBegin();
- ExprValueKind VK = From->getValueKind();
- // C++ [class.member.lookup]p8:
- // [...] Ambiguities can often be resolved by qualifying a name with its
- // class name.
- //
- // If the member was a qualified name and the qualified referred to a
- // specific base subobject type, we'll cast to that intermediate type
- // first and then to the object in which the member is declared. That allows
- // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
- //
- // class Base { public: int x; };
- // class Derived1 : public Base { };
- // class Derived2 : public Base { };
- // class VeryDerived : public Derived1, public Derived2 { void f(); };
- //
- // void VeryDerived::f() {
- // x = 17; // error: ambiguous base subobjects
- // Derived1::x = 17; // okay, pick the Base subobject of Derived1
- // }
- if (Qualifier && Qualifier->getAsType()) {
- QualType QType = QualType(Qualifier->getAsType(), 0);
- assert(QType->isRecordType() && "lookup done with non-record type");
- QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
- // In C++98, the qualifier type doesn't actually have to be a base
- // type of the object type, in which case we just ignore it.
- // Otherwise build the appropriate casts.
- if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
- FromLoc, FromRange, &BasePath))
- return ExprError();
- if (PointerConversions)
- QType = Context.getPointerType(QType);
- From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
- VK, &BasePath).get();
- FromType = QType;
- FromRecordType = QRecordType;
- // If the qualifier type was the same as the destination type,
- // we're done.
- if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
- return From;
- }
- }
- bool IgnoreAccess = false;
- // If we actually found the member through a using declaration, cast
- // down to the using declaration's type.
- //
- // Pointer equality is fine here because only one declaration of a
- // class ever has member declarations.
- if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
- assert(isa<UsingShadowDecl>(FoundDecl));
- QualType URecordType = Context.getTypeDeclType(
- cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
- // We only need to do this if the naming-class to declaring-class
- // conversion is non-trivial.
- if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
- assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
- FromLoc, FromRange, &BasePath))
- return ExprError();
- QualType UType = URecordType;
- if (PointerConversions)
- UType = Context.getPointerType(UType);
- From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
- VK, &BasePath).get();
- FromType = UType;
- FromRecordType = URecordType;
- }
- // We don't do access control for the conversion from the
- // declaring class to the true declaring class.
- IgnoreAccess = true;
- }
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
- FromLoc, FromRange, &BasePath,
- IgnoreAccess))
- return ExprError();
- return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
- VK, &BasePath);
- }
- bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
- const LookupResult &R,
- bool HasTrailingLParen) {
- // Only when used directly as the postfix-expression of a call.
- if (!HasTrailingLParen)
- return false;
- // Never if a scope specifier was provided.
- if (SS.isSet())
- return false;
- // Only in C++ or ObjC++.
- if (!getLangOpts().CPlusPlus)
- return false;
- // Turn off ADL when we find certain kinds of declarations during
- // normal lookup:
- for (NamedDecl *D : R) {
- // C++0x [basic.lookup.argdep]p3:
- // -- a declaration of a class member
- // Since using decls preserve this property, we check this on the
- // original decl.
- if (D->isCXXClassMember())
- return false;
- // C++0x [basic.lookup.argdep]p3:
- // -- a block-scope function declaration that is not a
- // using-declaration
- // NOTE: we also trigger this for function templates (in fact, we
- // don't check the decl type at all, since all other decl types
- // turn off ADL anyway).
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- else if (D->getLexicalDeclContext()->isFunctionOrMethod())
- return false;
- // C++0x [basic.lookup.argdep]p3:
- // -- a declaration that is neither a function or a function
- // template
- // And also for builtin functions.
- if (isa<FunctionDecl>(D)) {
- FunctionDecl *FDecl = cast<FunctionDecl>(D);
- // But also builtin functions.
- if (FDecl->getBuiltinID() && FDecl->isImplicit())
- return false;
- } else if (!isa<FunctionTemplateDecl>(D))
- return false;
- }
- return true;
- }
- /// Diagnoses obvious problems with the use of the given declaration
- /// as an expression. This is only actually called for lookups that
- /// were not overloaded, and it doesn't promise that the declaration
- /// will in fact be used.
- static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
- if (D->isInvalidDecl())
- return true;
- if (isa<TypedefNameDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
- return true;
- }
- if (isa<ObjCInterfaceDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
- return true;
- }
- if (isa<NamespaceDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
- return true;
- }
- return false;
- }
- // Certain multiversion types should be treated as overloaded even when there is
- // only one result.
- static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
- assert(R.isSingleResult() && "Expected only a single result");
- const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
- return FD &&
- (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
- }
- ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
- LookupResult &R, bool NeedsADL,
- bool AcceptInvalidDecl) {
- // If this is a single, fully-resolved result and we don't need ADL,
- // just build an ordinary singleton decl ref.
- if (!NeedsADL && R.isSingleResult() &&
- !R.getAsSingle<FunctionTemplateDecl>() &&
- !ShouldLookupResultBeMultiVersionOverload(R))
- return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
- R.getRepresentativeDecl(), nullptr,
- AcceptInvalidDecl);
- // We only need to check the declaration if there's exactly one
- // result, because in the overloaded case the results can only be
- // functions and function templates.
- if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
- CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
- return ExprError();
- // Otherwise, just build an unresolved lookup expression. Suppress
- // any lookup-related diagnostics; we'll hash these out later, when
- // we've picked a target.
- R.suppressDiagnostics();
- UnresolvedLookupExpr *ULE
- = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
- SS.getWithLocInContext(Context),
- R.getLookupNameInfo(),
- NeedsADL, R.isOverloadedResult(),
- R.begin(), R.end());
- return ULE;
- }
- static void
- diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
- ValueDecl *var, DeclContext *DC);
- /// Complete semantic analysis for a reference to the given declaration.
- ExprResult Sema::BuildDeclarationNameExpr(
- const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
- NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
- bool AcceptInvalidDecl) {
- assert(D && "Cannot refer to a NULL declaration");
- assert(!isa<FunctionTemplateDecl>(D) &&
- "Cannot refer unambiguously to a function template");
- SourceLocation Loc = NameInfo.getLoc();
- if (CheckDeclInExpr(*this, Loc, D))
- return ExprError();
- if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
- // Specifically diagnose references to class templates that are missing
- // a template argument list.
- diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
- return ExprError();
- }
- // Make sure that we're referring to a value.
- ValueDecl *VD = dyn_cast<ValueDecl>(D);
- if (!VD) {
- Diag(Loc, diag::err_ref_non_value)
- << D << SS.getRange();
- Diag(D->getLocation(), diag::note_declared_at);
- return ExprError();
- }
- // Check whether this declaration can be used. Note that we suppress
- // this check when we're going to perform argument-dependent lookup
- // on this function name, because this might not be the function
- // that overload resolution actually selects.
- if (DiagnoseUseOfDecl(VD, Loc))
- return ExprError();
- // Only create DeclRefExpr's for valid Decl's.
- if (VD->isInvalidDecl() && !AcceptInvalidDecl)
- return ExprError();
- // Handle members of anonymous structs and unions. If we got here,
- // and the reference is to a class member indirect field, then this
- // must be the subject of a pointer-to-member expression.
- if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
- if (!indirectField->isCXXClassMember())
- return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
- indirectField);
- {
- QualType type = VD->getType();
- if (type.isNull())
- return ExprError();
- if (auto *FPT = type->getAs<FunctionProtoType>()) {
- // C++ [except.spec]p17:
- // An exception-specification is considered to be needed when:
- // - in an expression, the function is the unique lookup result or
- // the selected member of a set of overloaded functions.
- ResolveExceptionSpec(Loc, FPT);
- type = VD->getType();
- }
- ExprValueKind valueKind = VK_RValue;
- switch (D->getKind()) {
- // Ignore all the non-ValueDecl kinds.
- #define ABSTRACT_DECL(kind)
- #define VALUE(type, base)
- #define DECL(type, base) \
- case Decl::type:
- #include "clang/AST/DeclNodes.inc"
- llvm_unreachable("invalid value decl kind");
- // These shouldn't make it here.
- case Decl::ObjCAtDefsField:
- llvm_unreachable("forming non-member reference to ivar?");
- // Enum constants are always r-values and never references.
- // Unresolved using declarations are dependent.
- case Decl::EnumConstant:
- case Decl::UnresolvedUsingValue:
- case Decl::OMPDeclareReduction:
- case Decl::OMPDeclareMapper:
- valueKind = VK_RValue;
- break;
- // Fields and indirect fields that got here must be for
- // pointer-to-member expressions; we just call them l-values for
- // internal consistency, because this subexpression doesn't really
- // exist in the high-level semantics.
- case Decl::Field:
- case Decl::IndirectField:
- case Decl::ObjCIvar:
- assert(getLangOpts().CPlusPlus &&
- "building reference to field in C?");
- // These can't have reference type in well-formed programs, but
- // for internal consistency we do this anyway.
- type = type.getNonReferenceType();
- valueKind = VK_LValue;
- break;
- // Non-type template parameters are either l-values or r-values
- // depending on the type.
- case Decl::NonTypeTemplateParm: {
- if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
- type = reftype->getPointeeType();
- valueKind = VK_LValue; // even if the parameter is an r-value reference
- break;
- }
- // For non-references, we need to strip qualifiers just in case
- // the template parameter was declared as 'const int' or whatever.
- valueKind = VK_RValue;
- type = type.getUnqualifiedType();
- break;
- }
- case Decl::Var:
- case Decl::VarTemplateSpecialization:
- case Decl::VarTemplatePartialSpecialization:
- case Decl::Decomposition:
- case Decl::OMPCapturedExpr:
- // In C, "extern void blah;" is valid and is an r-value.
- if (!getLangOpts().CPlusPlus &&
- !type.hasQualifiers() &&
- type->isVoidType()) {
- valueKind = VK_RValue;
- break;
- }
- LLVM_FALLTHROUGH;
- case Decl::ImplicitParam:
- case Decl::ParmVar: {
- // These are always l-values.
- valueKind = VK_LValue;
- type = type.getNonReferenceType();
- // FIXME: Does the addition of const really only apply in
- // potentially-evaluated contexts? Since the variable isn't actually
- // captured in an unevaluated context, it seems that the answer is no.
- if (!isUnevaluatedContext()) {
- QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
- if (!CapturedType.isNull())
- type = CapturedType;
- }
- break;
- }
- case Decl::Binding: {
- // These are always lvalues.
- valueKind = VK_LValue;
- type = type.getNonReferenceType();
- // FIXME: Support lambda-capture of BindingDecls, once CWG actually
- // decides how that's supposed to work.
- auto *BD = cast<BindingDecl>(VD);
- if (BD->getDeclContext() != CurContext) {
- auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
- if (DD && DD->hasLocalStorage())
- diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
- }
- break;
- }
- case Decl::Function: {
- if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
- if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
- type = Context.BuiltinFnTy;
- valueKind = VK_RValue;
- break;
- }
- }
- const FunctionType *fty = type->castAs<FunctionType>();
- // If we're referring to a function with an __unknown_anytype
- // result type, make the entire expression __unknown_anytype.
- if (fty->getReturnType() == Context.UnknownAnyTy) {
- type = Context.UnknownAnyTy;
- valueKind = VK_RValue;
- break;
- }
- // Functions are l-values in C++.
- if (getLangOpts().CPlusPlus) {
- valueKind = VK_LValue;
- break;
- }
- // C99 DR 316 says that, if a function type comes from a
- // function definition (without a prototype), that type is only
- // used for checking compatibility. Therefore, when referencing
- // the function, we pretend that we don't have the full function
- // type.
- if (!cast<FunctionDecl>(VD)->hasPrototype() &&
- isa<FunctionProtoType>(fty))
- type = Context.getFunctionNoProtoType(fty->getReturnType(),
- fty->getExtInfo());
- // Functions are r-values in C.
- valueKind = VK_RValue;
- break;
- }
- case Decl::CXXDeductionGuide:
- llvm_unreachable("building reference to deduction guide");
- case Decl::MSProperty:
- valueKind = VK_LValue;
- break;
- case Decl::CXXMethod:
- // If we're referring to a method with an __unknown_anytype
- // result type, make the entire expression __unknown_anytype.
- // This should only be possible with a type written directly.
- if (const FunctionProtoType *proto
- = dyn_cast<FunctionProtoType>(VD->getType()))
- if (proto->getReturnType() == Context.UnknownAnyTy) {
- type = Context.UnknownAnyTy;
- valueKind = VK_RValue;
- break;
- }
- // C++ methods are l-values if static, r-values if non-static.
- if (cast<CXXMethodDecl>(VD)->isStatic()) {
- valueKind = VK_LValue;
- break;
- }
- LLVM_FALLTHROUGH;
- case Decl::CXXConversion:
- case Decl::CXXDestructor:
- case Decl::CXXConstructor:
- valueKind = VK_RValue;
- break;
- }
- return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
- /*FIXME: TemplateKWLoc*/ SourceLocation(),
- TemplateArgs);
- }
- }
- static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
- SmallString<32> &Target) {
- Target.resize(CharByteWidth * (Source.size() + 1));
- char *ResultPtr = &Target[0];
- const llvm::UTF8 *ErrorPtr;
- bool success =
- llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
- (void)success;
- assert(success);
- Target.resize(ResultPtr - &Target[0]);
- }
- ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
- PredefinedExpr::IdentKind IK) {
- // Pick the current block, lambda, captured statement or function.
- Decl *currentDecl = nullptr;
- if (const BlockScopeInfo *BSI = getCurBlock())
- currentDecl = BSI->TheDecl;
- else if (const LambdaScopeInfo *LSI = getCurLambda())
- currentDecl = LSI->CallOperator;
- else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
- currentDecl = CSI->TheCapturedDecl;
- else
- currentDecl = getCurFunctionOrMethodDecl();
- if (!currentDecl) {
- Diag(Loc, diag::ext_predef_outside_function);
- currentDecl = Context.getTranslationUnitDecl();
- }
- QualType ResTy;
- StringLiteral *SL = nullptr;
- if (cast<DeclContext>(currentDecl)->isDependentContext())
- ResTy = Context.DependentTy;
- else {
- // Pre-defined identifiers are of type char[x], where x is the length of
- // the string.
- auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
- unsigned Length = Str.length();
- llvm::APInt LengthI(32, Length + 1);
- if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
- ResTy =
- Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
- SmallString<32> RawChars;
- ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
- Str, RawChars);
- ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
- /*IndexTypeQuals*/ 0);
- SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
- /*Pascal*/ false, ResTy, Loc);
- } else {
- ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
- ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
- /*IndexTypeQuals*/ 0);
- SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
- /*Pascal*/ false, ResTy, Loc);
- }
- }
- return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
- }
- ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
- PredefinedExpr::IdentKind IK;
- switch (Kind) {
- default: llvm_unreachable("Unknown simple primary expr!");
- case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
- case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
- case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
- case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
- case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
- case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
- case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
- }
- return BuildPredefinedExpr(Loc, IK);
- }
- ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
- SmallString<16> CharBuffer;
- bool Invalid = false;
- StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
- if (Invalid)
- return ExprError();
- CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
- PP, Tok.getKind());
- if (Literal.hadError())
- return ExprError();
- QualType Ty;
- if (Literal.isWide())
- Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
- else if (Literal.isUTF8() && getLangOpts().Char8)
- Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
- else if (Literal.isUTF16())
- Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
- else if (Literal.isUTF32())
- Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
- else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
- Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
- else
- Ty = Context.CharTy; // 'x' -> char in C++
- CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
- if (Literal.isWide())
- Kind = CharacterLiteral::Wide;
- else if (Literal.isUTF16())
- Kind = CharacterLiteral::UTF16;
- else if (Literal.isUTF32())
- Kind = CharacterLiteral::UTF32;
- else if (Literal.isUTF8())
- Kind = CharacterLiteral::UTF8;
- Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
- Tok.getLocation());
- if (Literal.getUDSuffix().empty())
- return Lit;
- // We're building a user-defined literal.
- IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
- SourceLocation UDSuffixLoc =
- getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
- // Make sure we're allowed user-defined literals here.
- if (!UDLScope)
- return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
- // C++11 [lex.ext]p6: The literal L is treated as a call of the form
- // operator "" X (ch)
- return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
- Lit, Tok.getLocation());
- }
- ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
- unsigned IntSize = Context.getTargetInfo().getIntWidth();
- return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
- Context.IntTy, Loc);
- }
- static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
- QualType Ty, SourceLocation Loc) {
- const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
- using llvm::APFloat;
- APFloat Val(Format);
- APFloat::opStatus result = Literal.GetFloatValue(Val);
- // Overflow is always an error, but underflow is only an error if
- // we underflowed to zero (APFloat reports denormals as underflow).
- if ((result & APFloat::opOverflow) ||
- ((result & APFloat::opUnderflow) && Val.isZero())) {
- unsigned diagnostic;
- SmallString<20> buffer;
- if (result & APFloat::opOverflow) {
- diagnostic = diag::warn_float_overflow;
- APFloat::getLargest(Format).toString(buffer);
- } else {
- diagnostic = diag::warn_float_underflow;
- APFloat::getSmallest(Format).toString(buffer);
- }
- S.Diag(Loc, diagnostic)
- << Ty
- << StringRef(buffer.data(), buffer.size());
- }
- bool isExact = (result == APFloat::opOK);
- return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
- }
- bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
- assert(E && "Invalid expression");
- if (E->isValueDependent())
- return false;
- QualType QT = E->getType();
- if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
- Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
- return true;
- }
- llvm::APSInt ValueAPS;
- ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
- if (R.isInvalid())
- return true;
- bool ValueIsPositive = ValueAPS.isStrictlyPositive();
- if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
- Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
- << ValueAPS.toString(10) << ValueIsPositive;
- return true;
- }
- return false;
- }
- ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
- // Fast path for a single digit (which is quite common). A single digit
- // cannot have a trigraph, escaped newline, radix prefix, or suffix.
- if (Tok.getLength() == 1) {
- const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
- return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
- }
- SmallString<128> SpellingBuffer;
- // NumericLiteralParser wants to overread by one character. Add padding to
- // the buffer in case the token is copied to the buffer. If getSpelling()
- // returns a StringRef to the memory buffer, it should have a null char at
- // the EOF, so it is also safe.
- SpellingBuffer.resize(Tok.getLength() + 1);
- // Get the spelling of the token, which eliminates trigraphs, etc.
- bool Invalid = false;
- StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
- if (Invalid)
- return ExprError();
- NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
- if (Literal.hadError)
- return ExprError();
- if (Literal.hasUDSuffix()) {
- // We're building a user-defined literal.
- IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
- SourceLocation UDSuffixLoc =
- getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
- // Make sure we're allowed user-defined literals here.
- if (!UDLScope)
- return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
- QualType CookedTy;
- if (Literal.isFloatingLiteral()) {
- // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
- // long double, the literal is treated as a call of the form
- // operator "" X (f L)
- CookedTy = Context.LongDoubleTy;
- } else {
- // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
- // unsigned long long, the literal is treated as a call of the form
- // operator "" X (n ULL)
- CookedTy = Context.UnsignedLongLongTy;
- }
- DeclarationName OpName =
- Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
- DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
- OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
- SourceLocation TokLoc = Tok.getLocation();
- // Perform literal operator lookup to determine if we're building a raw
- // literal or a cooked one.
- LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
- switch (LookupLiteralOperator(UDLScope, R, CookedTy,
- /*AllowRaw*/ true, /*AllowTemplate*/ true,
- /*AllowStringTemplate*/ false,
- /*DiagnoseMissing*/ !Literal.isImaginary)) {
- case LOLR_ErrorNoDiagnostic:
- // Lookup failure for imaginary constants isn't fatal, there's still the
- // GNU extension producing _Complex types.
- break;
- case LOLR_Error:
- return ExprError();
- case LOLR_Cooked: {
- Expr *Lit;
- if (Literal.isFloatingLiteral()) {
- Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
- } else {
- llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
- if (Literal.GetIntegerValue(ResultVal))
- Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
- << /* Unsigned */ 1;
- Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
- Tok.getLocation());
- }
- return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
- }
- case LOLR_Raw: {
- // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
- // literal is treated as a call of the form
- // operator "" X ("n")
- unsigned Length = Literal.getUDSuffixOffset();
- QualType StrTy = Context.getConstantArrayType(
- Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
- llvm::APInt(32, Length + 1), ArrayType::Normal, 0);
- Expr *Lit = StringLiteral::Create(
- Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
- /*Pascal*/false, StrTy, &TokLoc, 1);
- return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
- }
- case LOLR_Template: {
- // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
- // template), L is treated as a call fo the form
- // operator "" X <'c1', 'c2', ... 'ck'>()
- // where n is the source character sequence c1 c2 ... ck.
- TemplateArgumentListInfo ExplicitArgs;
- unsigned CharBits = Context.getIntWidth(Context.CharTy);
- bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
- llvm::APSInt Value(CharBits, CharIsUnsigned);
- for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
- Value = TokSpelling[I];
- TemplateArgument Arg(Context, Value, Context.CharTy);
- TemplateArgumentLocInfo ArgInfo;
- ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
- }
- return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
- &ExplicitArgs);
- }
- case LOLR_StringTemplate:
- llvm_unreachable("unexpected literal operator lookup result");
- }
- }
- Expr *Res;
- if (Literal.isFixedPointLiteral()) {
- QualType Ty;
- if (Literal.isAccum) {
- if (Literal.isHalf) {
- Ty = Context.ShortAccumTy;
- } else if (Literal.isLong) {
- Ty = Context.LongAccumTy;
- } else {
- Ty = Context.AccumTy;
- }
- } else if (Literal.isFract) {
- if (Literal.isHalf) {
- Ty = Context.ShortFractTy;
- } else if (Literal.isLong) {
- Ty = Context.LongFractTy;
- } else {
- Ty = Context.FractTy;
- }
- }
- if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
- bool isSigned = !Literal.isUnsigned;
- unsigned scale = Context.getFixedPointScale(Ty);
- unsigned bit_width = Context.getTypeInfo(Ty).Width;
- llvm::APInt Val(bit_width, 0, isSigned);
- bool Overflowed = Literal.GetFixedPointValue(Val, scale);
- bool ValIsZero = Val.isNullValue() && !Overflowed;
- auto MaxVal = Context.getFixedPointMax(Ty).getValue();
- if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
- // Clause 6.4.4 - The value of a constant shall be in the range of
- // representable values for its type, with exception for constants of a
- // fract type with a value of exactly 1; such a constant shall denote
- // the maximal value for the type.
- --Val;
- else if (Val.ugt(MaxVal) || Overflowed)
- Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
- Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
- Tok.getLocation(), scale);
- } else if (Literal.isFloatingLiteral()) {
- QualType Ty;
- if (Literal.isHalf){
- if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
- Ty = Context.HalfTy;
- else {
- Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
- return ExprError();
- }
- } else if (Literal.isFloat)
- Ty = Context.FloatTy;
- else if (Literal.isLong)
- Ty = Context.LongDoubleTy;
- else if (Literal.isFloat16)
- Ty = Context.Float16Ty;
- else if (Literal.isFloat128)
- Ty = Context.Float128Ty;
- else
- Ty = Context.DoubleTy;
- Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
- if (Ty == Context.DoubleTy) {
- if (getLangOpts().SinglePrecisionConstants) {
- const BuiltinType *BTy = Ty->getAs<BuiltinType>();
- if (BTy->getKind() != BuiltinType::Float) {
- Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
- }
- } else if (getLangOpts().OpenCL &&
- !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
- // Impose single-precision float type when cl_khr_fp64 is not enabled.
- Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
- Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
- }
- }
- } else if (!Literal.isIntegerLiteral()) {
- return ExprError();
- } else {
- QualType Ty;
- // 'long long' is a C99 or C++11 feature.
- if (!getLangOpts().C99 && Literal.isLongLong) {
- if (getLangOpts().CPlusPlus)
- Diag(Tok.getLocation(),
- getLangOpts().CPlusPlus11 ?
- diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
- else
- Diag(Tok.getLocation(), diag::ext_c99_longlong);
- }
- // Get the value in the widest-possible width.
- unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
- llvm::APInt ResultVal(MaxWidth, 0);
- if (Literal.GetIntegerValue(ResultVal)) {
- // If this value didn't fit into uintmax_t, error and force to ull.
- Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
- << /* Unsigned */ 1;
- Ty = Context.UnsignedLongLongTy;
- assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
- "long long is not intmax_t?");
- } else {
- // If this value fits into a ULL, try to figure out what else it fits into
- // according to the rules of C99 6.4.4.1p5.
- // Octal, Hexadecimal, and integers with a U suffix are allowed to
- // be an unsigned int.
- bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
- // Check from smallest to largest, picking the smallest type we can.
- unsigned Width = 0;
- // Microsoft specific integer suffixes are explicitly sized.
- if (Literal.MicrosoftInteger) {
- if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
- Width = 8;
- Ty = Context.CharTy;
- } else {
- Width = Literal.MicrosoftInteger;
- Ty = Context.getIntTypeForBitwidth(Width,
- /*Signed=*/!Literal.isUnsigned);
- }
- }
- if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
- // Are int/unsigned possibilities?
- unsigned IntSize = Context.getTargetInfo().getIntWidth();
- // Does it fit in a unsigned int?
- if (ResultVal.isIntN(IntSize)) {
- // Does it fit in a signed int?
- if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
- Ty = Context.IntTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedIntTy;
- Width = IntSize;
- }
- }
- // Are long/unsigned long possibilities?
- if (Ty.isNull() && !Literal.isLongLong) {
- unsigned LongSize = Context.getTargetInfo().getLongWidth();
- // Does it fit in a unsigned long?
- if (ResultVal.isIntN(LongSize)) {
- // Does it fit in a signed long?
- if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
- Ty = Context.LongTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedLongTy;
- // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
- // is compatible.
- else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
- const unsigned LongLongSize =
- Context.getTargetInfo().getLongLongWidth();
- Diag(Tok.getLocation(),
- getLangOpts().CPlusPlus
- ? Literal.isLong
- ? diag::warn_old_implicitly_unsigned_long_cxx
- : /*C++98 UB*/ diag::
- ext_old_implicitly_unsigned_long_cxx
- : diag::warn_old_implicitly_unsigned_long)
- << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
- : /*will be ill-formed*/ 1);
- Ty = Context.UnsignedLongTy;
- }
- Width = LongSize;
- }
- }
- // Check long long if needed.
- if (Ty.isNull()) {
- unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
- // Does it fit in a unsigned long long?
- if (ResultVal.isIntN(LongLongSize)) {
- // Does it fit in a signed long long?
- // To be compatible with MSVC, hex integer literals ending with the
- // LL or i64 suffix are always signed in Microsoft mode.
- if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
- (getLangOpts().MSVCCompat && Literal.isLongLong)))
- Ty = Context.LongLongTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedLongLongTy;
- Width = LongLongSize;
- }
- }
- // If we still couldn't decide a type, we probably have something that
- // does not fit in a signed long long, but has no U suffix.
- if (Ty.isNull()) {
- Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
- Ty = Context.UnsignedLongLongTy;
- Width = Context.getTargetInfo().getLongLongWidth();
- }
- if (ResultVal.getBitWidth() != Width)
- ResultVal = ResultVal.trunc(Width);
- }
- Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
- }
- // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
- if (Literal.isImaginary) {
- Res = new (Context) ImaginaryLiteral(Res,
- Context.getComplexType(Res->getType()));
- Diag(Tok.getLocation(), diag::ext_imaginary_constant);
- }
- return Res;
- }
- ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
- assert(E && "ActOnParenExpr() missing expr");
- return new (Context) ParenExpr(L, R, E);
- }
- static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
- SourceLocation Loc,
- SourceRange ArgRange) {
- // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
- // scalar or vector data type argument..."
- // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
- // type (C99 6.2.5p18) or void.
- if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
- S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
- << T << ArgRange;
- return true;
- }
- assert((T->isVoidType() || !T->isIncompleteType()) &&
- "Scalar types should always be complete");
- return false;
- }
- static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
- SourceLocation Loc,
- SourceRange ArgRange,
- UnaryExprOrTypeTrait TraitKind) {
- // Invalid types must be hard errors for SFINAE in C++.
- if (S.LangOpts.CPlusPlus)
- return true;
- // C99 6.5.3.4p1:
- if (T->isFunctionType() &&
- (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
- TraitKind == UETT_PreferredAlignOf)) {
- // sizeof(function)/alignof(function) is allowed as an extension.
- S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
- << TraitKind << ArgRange;
- return false;
- }
- // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
- // this is an error (OpenCL v1.1 s6.3.k)
- if (T->isVoidType()) {
- unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
- : diag::ext_sizeof_alignof_void_type;
- S.Diag(Loc, DiagID) << TraitKind << ArgRange;
- return false;
- }
- return true;
- }
- static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
- SourceLocation Loc,
- SourceRange ArgRange,
- UnaryExprOrTypeTrait TraitKind) {
- // Reject sizeof(interface) and sizeof(interface<proto>) if the
- // runtime doesn't allow it.
- if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
- S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
- << T << (TraitKind == UETT_SizeOf)
- << ArgRange;
- return true;
- }
- return false;
- }
- /// Check whether E is a pointer from a decayed array type (the decayed
- /// pointer type is equal to T) and emit a warning if it is.
- static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
- Expr *E) {
- // Don't warn if the operation changed the type.
- if (T != E->getType())
- return;
- // Now look for array decays.
- ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
- if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
- return;
- S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
- << ICE->getType()
- << ICE->getSubExpr()->getType();
- }
- /// Check the constraints on expression operands to unary type expression
- /// and type traits.
- ///
- /// Completes any types necessary and validates the constraints on the operand
- /// expression. The logic mostly mirrors the type-based overload, but may modify
- /// the expression as it completes the type for that expression through template
- /// instantiation, etc.
- bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
- UnaryExprOrTypeTrait ExprKind) {
- QualType ExprTy = E->getType();
- assert(!ExprTy->isReferenceType());
- if (ExprKind == UETT_VecStep)
- return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
- E->getSourceRange());
- // Whitelist some types as extensions
- if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
- E->getSourceRange(), ExprKind))
- return false;
- // 'alignof' applied to an expression only requires the base element type of
- // the expression to be complete. 'sizeof' requires the expression's type to
- // be complete (and will attempt to complete it if it's an array of unknown
- // bound).
- if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
- if (RequireCompleteType(E->getExprLoc(),
- Context.getBaseElementType(E->getType()),
- diag::err_sizeof_alignof_incomplete_type, ExprKind,
- E->getSourceRange()))
- return true;
- } else {
- if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
- ExprKind, E->getSourceRange()))
- return true;
- }
- // Completing the expression's type may have changed it.
- ExprTy = E->getType();
- assert(!ExprTy->isReferenceType());
- if (ExprTy->isFunctionType()) {
- Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
- << ExprKind << E->getSourceRange();
- return true;
- }
- // The operand for sizeof and alignof is in an unevaluated expression context,
- // so side effects could result in unintended consequences.
- if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
- ExprKind == UETT_PreferredAlignOf) &&
- !inTemplateInstantiation() && E->HasSideEffects(Context, false))
- Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
- if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
- E->getSourceRange(), ExprKind))
- return true;
- if (ExprKind == UETT_SizeOf) {
- if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
- if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
- QualType OType = PVD->getOriginalType();
- QualType Type = PVD->getType();
- if (Type->isPointerType() && OType->isArrayType()) {
- Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
- << Type << OType;
- Diag(PVD->getLocation(), diag::note_declared_at);
- }
- }
- }
- // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
- // decays into a pointer and returns an unintended result. This is most
- // likely a typo for "sizeof(array) op x".
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
- warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
- BO->getLHS());
- warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
- BO->getRHS());
- }
- }
- return false;
- }
- /// Check the constraints on operands to unary expression and type
- /// traits.
- ///
- /// This will complete any types necessary, and validate the various constraints
- /// on those operands.
- ///
- /// The UsualUnaryConversions() function is *not* called by this routine.
- /// C99 6.3.2.1p[2-4] all state:
- /// Except when it is the operand of the sizeof operator ...
- ///
- /// C++ [expr.sizeof]p4
- /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
- /// standard conversions are not applied to the operand of sizeof.
- ///
- /// This policy is followed for all of the unary trait expressions.
- bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
- SourceLocation OpLoc,
- SourceRange ExprRange,
- UnaryExprOrTypeTrait ExprKind) {
- if (ExprType->isDependentType())
- return false;
- // C++ [expr.sizeof]p2:
- // When applied to a reference or a reference type, the result
- // is the size of the referenced type.
- // C++11 [expr.alignof]p3:
- // When alignof is applied to a reference type, the result
- // shall be the alignment of the referenced type.
- if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
- ExprType = Ref->getPointeeType();
- // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
- // When alignof or _Alignof is applied to an array type, the result
- // is the alignment of the element type.
- if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
- ExprKind == UETT_OpenMPRequiredSimdAlign)
- ExprType = Context.getBaseElementType(ExprType);
- if (ExprKind == UETT_VecStep)
- return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
- // Whitelist some types as extensions
- if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
- ExprKind))
- return false;
- if (RequireCompleteType(OpLoc, ExprType,
- diag::err_sizeof_alignof_incomplete_type,
- ExprKind, ExprRange))
- return true;
- if (ExprType->isFunctionType()) {
- Diag(OpLoc, diag::err_sizeof_alignof_function_type)
- << ExprKind << ExprRange;
- return true;
- }
- if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
- ExprKind))
- return true;
- return false;
- }
- static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
- E = E->IgnoreParens();
- // Cannot know anything else if the expression is dependent.
- if (E->isTypeDependent())
- return false;
- if (E->getObjectKind() == OK_BitField) {
- S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
- << 1 << E->getSourceRange();
- return true;
- }
- ValueDecl *D = nullptr;
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
- D = DRE->getDecl();
- } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
- D = ME->getMemberDecl();
- }
- // If it's a field, require the containing struct to have a
- // complete definition so that we can compute the layout.
- //
- // This can happen in C++11 onwards, either by naming the member
- // in a way that is not transformed into a member access expression
- // (in an unevaluated operand, for instance), or by naming the member
- // in a trailing-return-type.
- //
- // For the record, since __alignof__ on expressions is a GCC
- // extension, GCC seems to permit this but always gives the
- // nonsensical answer 0.
- //
- // We don't really need the layout here --- we could instead just
- // directly check for all the appropriate alignment-lowing
- // attributes --- but that would require duplicating a lot of
- // logic that just isn't worth duplicating for such a marginal
- // use-case.
- if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
- // Fast path this check, since we at least know the record has a
- // definition if we can find a member of it.
- if (!FD->getParent()->isCompleteDefinition()) {
- S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
- << E->getSourceRange();
- return true;
- }
- // Otherwise, if it's a field, and the field doesn't have
- // reference type, then it must have a complete type (or be a
- // flexible array member, which we explicitly want to
- // white-list anyway), which makes the following checks trivial.
- if (!FD->getType()->isReferenceType())
- return false;
- }
- return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
- }
- bool Sema::CheckVecStepExpr(Expr *E) {
- E = E->IgnoreParens();
- // Cannot know anything else if the expression is dependent.
- if (E->isTypeDependent())
- return false;
- return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
- }
- static void captureVariablyModifiedType(ASTContext &Context, QualType T,
- CapturingScopeInfo *CSI) {
- assert(T->isVariablyModifiedType());
- assert(CSI != nullptr);
- // We're going to walk down into the type and look for VLA expressions.
- do {
- const Type *Ty = T.getTypePtr();
- switch (Ty->getTypeClass()) {
- #define TYPE(Class, Base)
- #define ABSTRACT_TYPE(Class, Base)
- #define NON_CANONICAL_TYPE(Class, Base)
- #define DEPENDENT_TYPE(Class, Base) case Type::Class:
- #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
- #include "clang/AST/TypeNodes.def"
- T = QualType();
- break;
- // These types are never variably-modified.
- case Type::Builtin:
- case Type::Complex:
- case Type::Vector:
- case Type::ExtVector:
- case Type::Record:
- case Type::Enum:
- case Type::Elaborated:
- case Type::TemplateSpecialization:
- case Type::ObjCObject:
- case Type::ObjCInterface:
- case Type::ObjCObjectPointer:
- case Type::ObjCTypeParam:
- case Type::Pipe:
- llvm_unreachable("type class is never variably-modified!");
- case Type::Adjusted:
- T = cast<AdjustedType>(Ty)->getOriginalType();
- break;
- case Type::Decayed:
- T = cast<DecayedType>(Ty)->getPointeeType();
- break;
- case Type::Pointer:
- T = cast<PointerType>(Ty)->getPointeeType();
- break;
- case Type::BlockPointer:
- T = cast<BlockPointerType>(Ty)->getPointeeType();
- break;
- case Type::LValueReference:
- case Type::RValueReference:
- T = cast<ReferenceType>(Ty)->getPointeeType();
- break;
- case Type::MemberPointer:
- T = cast<MemberPointerType>(Ty)->getPointeeType();
- break;
- case Type::ConstantArray:
- case Type::IncompleteArray:
- // Losing element qualification here is fine.
- T = cast<ArrayType>(Ty)->getElementType();
- break;
- case Type::VariableArray: {
- // Losing element qualification here is fine.
- const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
- // Unknown size indication requires no size computation.
- // Otherwise, evaluate and record it.
- auto Size = VAT->getSizeExpr();
- if (Size && !CSI->isVLATypeCaptured(VAT) &&
- (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
- CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
- T = VAT->getElementType();
- break;
- }
- case Type::FunctionProto:
- case Type::FunctionNoProto:
- T = cast<FunctionType>(Ty)->getReturnType();
- break;
- case Type::Paren:
- case Type::TypeOf:
- case Type::UnaryTransform:
- case Type::Attributed:
- case Type::SubstTemplateTypeParm:
- case Type::PackExpansion:
- case Type::MacroQualified:
- // Keep walking after single level desugaring.
- T = T.getSingleStepDesugaredType(Context);
- break;
- case Type::Typedef:
- T = cast<TypedefType>(Ty)->desugar();
- break;
- case Type::Decltype:
- T = cast<DecltypeType>(Ty)->desugar();
- break;
- case Type::Auto:
- case Type::DeducedTemplateSpecialization:
- T = cast<DeducedType>(Ty)->getDeducedType();
- break;
- case Type::TypeOfExpr:
- T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
- break;
- case Type::Atomic:
- T = cast<AtomicType>(Ty)->getValueType();
- break;
- }
- } while (!T.isNull() && T->isVariablyModifiedType());
- }
- /// Build a sizeof or alignof expression given a type operand.
- ExprResult
- Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
- SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind,
- SourceRange R) {
- if (!TInfo)
- return ExprError();
- QualType T = TInfo->getType();
- if (!T->isDependentType() &&
- CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
- return ExprError();
- if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
- if (auto *TT = T->getAs<TypedefType>()) {
- for (auto I = FunctionScopes.rbegin(),
- E = std::prev(FunctionScopes.rend());
- I != E; ++I) {
- auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
- if (CSI == nullptr)
- break;
- DeclContext *DC = nullptr;
- if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
- DC = LSI->CallOperator;
- else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
- DC = CRSI->TheCapturedDecl;
- else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
- DC = BSI->TheDecl;
- if (DC) {
- if (DC->containsDecl(TT->getDecl()))
- break;
- captureVariablyModifiedType(Context, T, CSI);
- }
- }
- }
- }
- // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
- return new (Context) UnaryExprOrTypeTraitExpr(
- ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
- }
- /// Build a sizeof or alignof expression given an expression
- /// operand.
- ExprResult
- Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind) {
- ExprResult PE = CheckPlaceholderExpr(E);
- if (PE.isInvalid())
- return ExprError();
- E = PE.get();
- // Verify that the operand is valid.
- bool isInvalid = false;
- if (E->isTypeDependent()) {
- // Delay type-checking for type-dependent expressions.
- } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
- isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
- } else if (ExprKind == UETT_VecStep) {
- isInvalid = CheckVecStepExpr(E);
- } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
- Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
- isInvalid = true;
- } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
- Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
- isInvalid = true;
- } else {
- isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
- }
- if (isInvalid)
- return ExprError();
- if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
- PE = TransformToPotentiallyEvaluated(E);
- if (PE.isInvalid()) return ExprError();
- E = PE.get();
- }
- // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
- return new (Context) UnaryExprOrTypeTraitExpr(
- ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
- }
- /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
- /// expr and the same for @c alignof and @c __alignof
- /// Note that the ArgRange is invalid if isType is false.
- ExprResult
- Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind, bool IsType,
- void *TyOrEx, SourceRange ArgRange) {
- // If error parsing type, ignore.
- if (!TyOrEx) return ExprError();
- if (IsType) {
- TypeSourceInfo *TInfo;
- (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
- return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
- }
- Expr *ArgEx = (Expr *)TyOrEx;
- ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
- return Result;
- }
- static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
- bool IsReal) {
- if (V.get()->isTypeDependent())
- return S.Context.DependentTy;
- // _Real and _Imag are only l-values for normal l-values.
- if (V.get()->getObjectKind() != OK_Ordinary) {
- V = S.DefaultLvalueConversion(V.get());
- if (V.isInvalid())
- return QualType();
- }
- // These operators return the element type of a complex type.
- if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
- return CT->getElementType();
- // Otherwise they pass through real integer and floating point types here.
- if (V.get()->getType()->isArithmeticType())
- return V.get()->getType();
- // Test for placeholders.
- ExprResult PR = S.CheckPlaceholderExpr(V.get());
- if (PR.isInvalid()) return QualType();
- if (PR.get() != V.get()) {
- V = PR;
- return CheckRealImagOperand(S, V, Loc, IsReal);
- }
- // Reject anything else.
- S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
- << (IsReal ? "__real" : "__imag");
- return QualType();
- }
- ExprResult
- Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Kind, Expr *Input) {
- UnaryOperatorKind Opc;
- switch (Kind) {
- default: llvm_unreachable("Unknown unary op!");
- case tok::plusplus: Opc = UO_PostInc; break;
- case tok::minusminus: Opc = UO_PostDec; break;
- }
- // Since this might is a postfix expression, get rid of ParenListExprs.
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
- if (Result.isInvalid()) return ExprError();
- Input = Result.get();
- return BuildUnaryOp(S, OpLoc, Opc, Input);
- }
- /// Diagnose if arithmetic on the given ObjC pointer is illegal.
- ///
- /// \return true on error
- static bool checkArithmeticOnObjCPointer(Sema &S,
- SourceLocation opLoc,
- Expr *op) {
- assert(op->getType()->isObjCObjectPointerType());
- if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
- !S.LangOpts.ObjCSubscriptingLegacyRuntime)
- return false;
- S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
- << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
- << op->getSourceRange();
- return true;
- }
- static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
- auto *BaseNoParens = Base->IgnoreParens();
- if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
- return MSProp->getPropertyDecl()->getType()->isArrayType();
- return isa<MSPropertySubscriptExpr>(BaseNoParens);
- }
- ExprResult
- Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
- Expr *idx, SourceLocation rbLoc) {
- if (base && !base->getType().isNull() &&
- base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
- return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
- /*Length=*/nullptr, rbLoc);
- // Since this might be a postfix expression, get rid of ParenListExprs.
- if (isa<ParenListExpr>(base)) {
- ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
- if (result.isInvalid()) return ExprError();
- base = result.get();
- }
- // A comma-expression as the index is deprecated in C++2a onwards.
- if (getLangOpts().CPlusPlus2a &&
- ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
- (isa<CXXOperatorCallExpr>(idx) &&
- cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
- Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
- << SourceRange(base->getBeginLoc(), rbLoc);
- }
- // Handle any non-overload placeholder types in the base and index
- // expressions. We can't handle overloads here because the other
- // operand might be an overloadable type, in which case the overload
- // resolution for the operator overload should get the first crack
- // at the overload.
- bool IsMSPropertySubscript = false;
- if (base->getType()->isNonOverloadPlaceholderType()) {
- IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
- if (!IsMSPropertySubscript) {
- ExprResult result = CheckPlaceholderExpr(base);
- if (result.isInvalid())
- return ExprError();
- base = result.get();
- }
- }
- if (idx->getType()->isNonOverloadPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(idx);
- if (result.isInvalid()) return ExprError();
- idx = result.get();
- }
- // Build an unanalyzed expression if either operand is type-dependent.
- if (getLangOpts().CPlusPlus &&
- (base->isTypeDependent() || idx->isTypeDependent())) {
- return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
- VK_LValue, OK_Ordinary, rbLoc);
- }
- // MSDN, property (C++)
- // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
- // This attribute can also be used in the declaration of an empty array in a
- // class or structure definition. For example:
- // __declspec(property(get=GetX, put=PutX)) int x[];
- // The above statement indicates that x[] can be used with one or more array
- // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
- // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
- if (IsMSPropertySubscript) {
- // Build MS property subscript expression if base is MS property reference
- // or MS property subscript.
- return new (Context) MSPropertySubscriptExpr(
- base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
- }
- // Use C++ overloaded-operator rules if either operand has record
- // type. The spec says to do this if either type is *overloadable*,
- // but enum types can't declare subscript operators or conversion
- // operators, so there's nothing interesting for overload resolution
- // to do if there aren't any record types involved.
- //
- // ObjC pointers have their own subscripting logic that is not tied
- // to overload resolution and so should not take this path.
- if (getLangOpts().CPlusPlus &&
- (base->getType()->isRecordType() ||
- (!base->getType()->isObjCObjectPointerType() &&
- idx->getType()->isRecordType()))) {
- return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
- }
- ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
- if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
- CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
- return Res;
- }
- void Sema::CheckAddressOfNoDeref(const Expr *E) {
- ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
- const Expr *StrippedExpr = E->IgnoreParenImpCasts();
- // For expressions like `&(*s).b`, the base is recorded and what should be
- // checked.
- const MemberExpr *Member = nullptr;
- while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
- StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
- LastRecord.PossibleDerefs.erase(StrippedExpr);
- }
- void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
- QualType ResultTy = E->getType();
- ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
- // Bail if the element is an array since it is not memory access.
- if (isa<ArrayType>(ResultTy))
- return;
- if (ResultTy->hasAttr(attr::NoDeref)) {
- LastRecord.PossibleDerefs.insert(E);
- return;
- }
- // Check if the base type is a pointer to a member access of a struct
- // marked with noderef.
- const Expr *Base = E->getBase();
- QualType BaseTy = Base->getType();
- if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
- // Not a pointer access
- return;
- const MemberExpr *Member = nullptr;
- while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
- Member->isArrow())
- Base = Member->getBase();
- if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
- if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
- LastRecord.PossibleDerefs.insert(E);
- }
- }
- ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
- Expr *LowerBound,
- SourceLocation ColonLoc, Expr *Length,
- SourceLocation RBLoc) {
- if (Base->getType()->isPlaceholderType() &&
- !Base->getType()->isSpecificPlaceholderType(
- BuiltinType::OMPArraySection)) {
- ExprResult Result = CheckPlaceholderExpr(Base);
- if (Result.isInvalid())
- return ExprError();
- Base = Result.get();
- }
- if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
- ExprResult Result = CheckPlaceholderExpr(LowerBound);
- if (Result.isInvalid())
- return ExprError();
- Result = DefaultLvalueConversion(Result.get());
- if (Result.isInvalid())
- return ExprError();
- LowerBound = Result.get();
- }
- if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
- ExprResult Result = CheckPlaceholderExpr(Length);
- if (Result.isInvalid())
- return ExprError();
- Result = DefaultLvalueConversion(Result.get());
- if (Result.isInvalid())
- return ExprError();
- Length = Result.get();
- }
- // Build an unanalyzed expression if either operand is type-dependent.
- if (Base->isTypeDependent() ||
- (LowerBound &&
- (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
- (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
- return new (Context)
- OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
- VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
- }
- // Perform default conversions.
- QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
- QualType ResultTy;
- if (OriginalTy->isAnyPointerType()) {
- ResultTy = OriginalTy->getPointeeType();
- } else if (OriginalTy->isArrayType()) {
- ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
- } else {
- return ExprError(
- Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
- << Base->getSourceRange());
- }
- // C99 6.5.2.1p1
- if (LowerBound) {
- auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
- LowerBound);
- if (Res.isInvalid())
- return ExprError(Diag(LowerBound->getExprLoc(),
- diag::err_omp_typecheck_section_not_integer)
- << 0 << LowerBound->getSourceRange());
- LowerBound = Res.get();
- if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
- LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
- Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
- << 0 << LowerBound->getSourceRange();
- }
- if (Length) {
- auto Res =
- PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
- if (Res.isInvalid())
- return ExprError(Diag(Length->getExprLoc(),
- diag::err_omp_typecheck_section_not_integer)
- << 1 << Length->getSourceRange());
- Length = Res.get();
- if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
- Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
- Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
- << 1 << Length->getSourceRange();
- }
- // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
- // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
- // type. Note that functions are not objects, and that (in C99 parlance)
- // incomplete types are not object types.
- if (ResultTy->isFunctionType()) {
- Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
- << ResultTy << Base->getSourceRange();
- return ExprError();
- }
- if (RequireCompleteType(Base->getExprLoc(), ResultTy,
- diag::err_omp_section_incomplete_type, Base))
- return ExprError();
- if (LowerBound && !OriginalTy->isAnyPointerType()) {
- Expr::EvalResult Result;
- if (LowerBound->EvaluateAsInt(Result, Context)) {
- // OpenMP 4.5, [2.4 Array Sections]
- // The array section must be a subset of the original array.
- llvm::APSInt LowerBoundValue = Result.Val.getInt();
- if (LowerBoundValue.isNegative()) {
- Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
- << LowerBound->getSourceRange();
- return ExprError();
- }
- }
- }
- if (Length) {
- Expr::EvalResult Result;
- if (Length->EvaluateAsInt(Result, Context)) {
- // OpenMP 4.5, [2.4 Array Sections]
- // The length must evaluate to non-negative integers.
- llvm::APSInt LengthValue = Result.Val.getInt();
- if (LengthValue.isNegative()) {
- Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
- << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
- << Length->getSourceRange();
- return ExprError();
- }
- }
- } else if (ColonLoc.isValid() &&
- (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
- !OriginalTy->isVariableArrayType()))) {
- // OpenMP 4.5, [2.4 Array Sections]
- // When the size of the array dimension is not known, the length must be
- // specified explicitly.
- Diag(ColonLoc, diag::err_omp_section_length_undefined)
- << (!OriginalTy.isNull() && OriginalTy->isArrayType());
- return ExprError();
- }
- if (!Base->getType()->isSpecificPlaceholderType(
- BuiltinType::OMPArraySection)) {
- ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
- if (Result.isInvalid())
- return ExprError();
- Base = Result.get();
- }
- return new (Context)
- OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
- VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
- }
- ExprResult
- Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
- Expr *Idx, SourceLocation RLoc) {
- Expr *LHSExp = Base;
- Expr *RHSExp = Idx;
- ExprValueKind VK = VK_LValue;
- ExprObjectKind OK = OK_Ordinary;
- // Per C++ core issue 1213, the result is an xvalue if either operand is
- // a non-lvalue array, and an lvalue otherwise.
- if (getLangOpts().CPlusPlus11) {
- for (auto *Op : {LHSExp, RHSExp}) {
- Op = Op->IgnoreImplicit();
- if (Op->getType()->isArrayType() && !Op->isLValue())
- VK = VK_XValue;
- }
- }
- // Perform default conversions.
- if (!LHSExp->getType()->getAs<VectorType>()) {
- ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
- if (Result.isInvalid())
- return ExprError();
- LHSExp = Result.get();
- }
- ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
- if (Result.isInvalid())
- return ExprError();
- RHSExp = Result.get();
- QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
- // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
- // to the expression *((e1)+(e2)). This means the array "Base" may actually be
- // in the subscript position. As a result, we need to derive the array base
- // and index from the expression types.
- Expr *BaseExpr, *IndexExpr;
- QualType ResultType;
- if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = Context.DependentTy;
- } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const ObjCObjectPointerType *PTy =
- LHSTy->getAs<ObjCObjectPointerType>()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- // Use custom logic if this should be the pseudo-object subscript
- // expression.
- if (!LangOpts.isSubscriptPointerArithmetic())
- return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
- nullptr);
- ResultType = PTy->getPointeeType();
- } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
- // Handle the uncommon case of "123[Ptr]".
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const ObjCObjectPointerType *PTy =
- RHSTy->getAs<ObjCObjectPointerType>()) {
- // Handle the uncommon case of "123[Ptr]".
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = PTy->getPointeeType();
- if (!LangOpts.isSubscriptPointerArithmetic()) {
- Diag(LLoc, diag::err_subscript_nonfragile_interface)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
- } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
- BaseExpr = LHSExp; // vectors: V[123]
- IndexExpr = RHSExp;
- // We apply C++ DR1213 to vector subscripting too.
- if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
- ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
- if (Materialized.isInvalid())
- return ExprError();
- LHSExp = Materialized.get();
- }
- VK = LHSExp->getValueKind();
- if (VK != VK_RValue)
- OK = OK_VectorComponent;
- ResultType = VTy->getElementType();
- QualType BaseType = BaseExpr->getType();
- Qualifiers BaseQuals = BaseType.getQualifiers();
- Qualifiers MemberQuals = ResultType.getQualifiers();
- Qualifiers Combined = BaseQuals + MemberQuals;
- if (Combined != MemberQuals)
- ResultType = Context.getQualifiedType(ResultType, Combined);
- } else if (LHSTy->isArrayType()) {
- // If we see an array that wasn't promoted by
- // DefaultFunctionArrayLvalueConversion, it must be an array that
- // wasn't promoted because of the C90 rule that doesn't
- // allow promoting non-lvalue arrays. Warn, then
- // force the promotion here.
- Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
- << LHSExp->getSourceRange();
- LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
- CK_ArrayToPointerDecay).get();
- LHSTy = LHSExp->getType();
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
- } else if (RHSTy->isArrayType()) {
- // Same as previous, except for 123[f().a] case
- Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
- << RHSExp->getSourceRange();
- RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
- CK_ArrayToPointerDecay).get();
- RHSTy = RHSExp->getType();
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
- } else {
- return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
- << LHSExp->getSourceRange() << RHSExp->getSourceRange());
- }
- // C99 6.5.2.1p1
- if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
- return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
- << IndexExpr->getSourceRange());
- if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
- IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
- && !IndexExpr->isTypeDependent())
- Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
- // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
- // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
- // type. Note that Functions are not objects, and that (in C99 parlance)
- // incomplete types are not object types.
- if (ResultType->isFunctionType()) {
- Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
- if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
- // GNU extension: subscripting on pointer to void
- Diag(LLoc, diag::ext_gnu_subscript_void_type)
- << BaseExpr->getSourceRange();
- // C forbids expressions of unqualified void type from being l-values.
- // See IsCForbiddenLValueType.
- if (!ResultType.hasQualifiers()) VK = VK_RValue;
- } else if (!ResultType->isDependentType() &&
- RequireCompleteType(LLoc, ResultType,
- diag::err_subscript_incomplete_type, BaseExpr))
- return ExprError();
- assert(VK == VK_RValue || LangOpts.CPlusPlus ||
- !ResultType.isCForbiddenLValueType());
- if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
- FunctionScopes.size() > 1) {
- if (auto *TT =
- LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
- for (auto I = FunctionScopes.rbegin(),
- E = std::prev(FunctionScopes.rend());
- I != E; ++I) {
- auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
- if (CSI == nullptr)
- break;
- DeclContext *DC = nullptr;
- if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
- DC = LSI->CallOperator;
- else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
- DC = CRSI->TheCapturedDecl;
- else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
- DC = BSI->TheDecl;
- if (DC) {
- if (DC->containsDecl(TT->getDecl()))
- break;
- captureVariablyModifiedType(
- Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
- }
- }
- }
- }
- return new (Context)
- ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
- }
- bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
- ParmVarDecl *Param) {
- if (Param->hasUnparsedDefaultArg()) {
- Diag(CallLoc,
- diag::err_use_of_default_argument_to_function_declared_later) <<
- FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
- Diag(UnparsedDefaultArgLocs[Param],
- diag::note_default_argument_declared_here);
- return true;
- }
- if (Param->hasUninstantiatedDefaultArg()) {
- Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
- EnterExpressionEvaluationContext EvalContext(
- *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
- // Instantiate the expression.
- //
- // FIXME: Pass in a correct Pattern argument, otherwise
- // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
- //
- // template<typename T>
- // struct A {
- // static int FooImpl();
- //
- // template<typename Tp>
- // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
- // // template argument list [[T], [Tp]], should be [[Tp]].
- // friend A<Tp> Foo(int a);
- // };
- //
- // template<typename T>
- // A<T> Foo(int a = A<T>::FooImpl());
- MultiLevelTemplateArgumentList MutiLevelArgList
- = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
- InstantiatingTemplate Inst(*this, CallLoc, Param,
- MutiLevelArgList.getInnermost());
- if (Inst.isInvalid())
- return true;
- if (Inst.isAlreadyInstantiating()) {
- Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
- Param->setInvalidDecl();
- return true;
- }
- ExprResult Result;
- {
- // C++ [dcl.fct.default]p5:
- // The names in the [default argument] expression are bound, and
- // the semantic constraints are checked, at the point where the
- // default argument expression appears.
- ContextRAII SavedContext(*this, FD);
- LocalInstantiationScope Local(*this);
- runWithSufficientStackSpace(CallLoc, [&] {
- Result = SubstInitializer(UninstExpr, MutiLevelArgList,
- /*DirectInit*/false);
- });
- }
- if (Result.isInvalid())
- return true;
- // Check the expression as an initializer for the parameter.
- InitializedEntity Entity
- = InitializedEntity::InitializeParameter(Context, Param);
- InitializationKind Kind = InitializationKind::CreateCopy(
- Param->getLocation(),
- /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
- Expr *ResultE = Result.getAs<Expr>();
- InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
- Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
- if (Result.isInvalid())
- return true;
- Result =
- ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
- /*DiscardedValue*/ false);
- if (Result.isInvalid())
- return true;
- // Remember the instantiated default argument.
- Param->setDefaultArg(Result.getAs<Expr>());
- if (ASTMutationListener *L = getASTMutationListener()) {
- L->DefaultArgumentInstantiated(Param);
- }
- }
- // If the default argument expression is not set yet, we are building it now.
- if (!Param->hasInit()) {
- Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
- Param->setInvalidDecl();
- return true;
- }
- // If the default expression creates temporaries, we need to
- // push them to the current stack of expression temporaries so they'll
- // be properly destroyed.
- // FIXME: We should really be rebuilding the default argument with new
- // bound temporaries; see the comment in PR5810.
- // We don't need to do that with block decls, though, because
- // blocks in default argument expression can never capture anything.
- if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
- // Set the "needs cleanups" bit regardless of whether there are
- // any explicit objects.
- Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
- // Append all the objects to the cleanup list. Right now, this
- // should always be a no-op, because blocks in default argument
- // expressions should never be able to capture anything.
- assert(!Init->getNumObjects() &&
- "default argument expression has capturing blocks?");
- }
- // We already type-checked the argument, so we know it works.
- // Just mark all of the declarations in this potentially-evaluated expression
- // as being "referenced".
- EnterExpressionEvaluationContext EvalContext(
- *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
- MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
- /*SkipLocalVariables=*/true);
- return false;
- }
- ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
- FunctionDecl *FD, ParmVarDecl *Param) {
- if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
- return ExprError();
- return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
- }
- Sema::VariadicCallType
- Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
- Expr *Fn) {
- if (Proto && Proto->isVariadic()) {
- if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
- return VariadicConstructor;
- else if (Fn && Fn->getType()->isBlockPointerType())
- return VariadicBlock;
- else if (FDecl) {
- if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
- if (Method->isInstance())
- return VariadicMethod;
- } else if (Fn && Fn->getType() == Context.BoundMemberTy)
- return VariadicMethod;
- return VariadicFunction;
- }
- return VariadicDoesNotApply;
- }
- namespace {
- class FunctionCallCCC final : public FunctionCallFilterCCC {
- public:
- FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
- unsigned NumArgs, MemberExpr *ME)
- : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
- FunctionName(FuncName) {}
- bool ValidateCandidate(const TypoCorrection &candidate) override {
- if (!candidate.getCorrectionSpecifier() ||
- candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
- return false;
- }
- return FunctionCallFilterCCC::ValidateCandidate(candidate);
- }
- std::unique_ptr<CorrectionCandidateCallback> clone() override {
- return std::make_unique<FunctionCallCCC>(*this);
- }
- private:
- const IdentifierInfo *const FunctionName;
- };
- }
- static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
- FunctionDecl *FDecl,
- ArrayRef<Expr *> Args) {
- MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
- DeclarationName FuncName = FDecl->getDeclName();
- SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
- FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
- if (TypoCorrection Corrected = S.CorrectTypo(
- DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
- S.getScopeForContext(S.CurContext), nullptr, CCC,
- Sema::CTK_ErrorRecovery)) {
- if (NamedDecl *ND = Corrected.getFoundDecl()) {
- if (Corrected.isOverloaded()) {
- OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
- OverloadCandidateSet::iterator Best;
- for (NamedDecl *CD : Corrected) {
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
- S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
- OCS);
- }
- switch (OCS.BestViableFunction(S, NameLoc, Best)) {
- case OR_Success:
- ND = Best->FoundDecl;
- Corrected.setCorrectionDecl(ND);
- break;
- default:
- break;
- }
- }
- ND = ND->getUnderlyingDecl();
- if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
- return Corrected;
- }
- }
- return TypoCorrection();
- }
- /// ConvertArgumentsForCall - Converts the arguments specified in
- /// Args/NumArgs to the parameter types of the function FDecl with
- /// function prototype Proto. Call is the call expression itself, and
- /// Fn is the function expression. For a C++ member function, this
- /// routine does not attempt to convert the object argument. Returns
- /// true if the call is ill-formed.
- bool
- Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
- FunctionDecl *FDecl,
- const FunctionProtoType *Proto,
- ArrayRef<Expr *> Args,
- SourceLocation RParenLoc,
- bool IsExecConfig) {
- // Bail out early if calling a builtin with custom typechecking.
- if (FDecl)
- if (unsigned ID = FDecl->getBuiltinID())
- if (Context.BuiltinInfo.hasCustomTypechecking(ID))
- return false;
- // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
- // assignment, to the types of the corresponding parameter, ...
- unsigned NumParams = Proto->getNumParams();
- bool Invalid = false;
- unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
- unsigned FnKind = Fn->getType()->isBlockPointerType()
- ? 1 /* block */
- : (IsExecConfig ? 3 /* kernel function (exec config) */
- : 0 /* function */);
- // If too few arguments are available (and we don't have default
- // arguments for the remaining parameters), don't make the call.
- if (Args.size() < NumParams) {
- if (Args.size() < MinArgs) {
- TypoCorrection TC;
- if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
- unsigned diag_id =
- MinArgs == NumParams && !Proto->isVariadic()
- ? diag::err_typecheck_call_too_few_args_suggest
- : diag::err_typecheck_call_too_few_args_at_least_suggest;
- diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
- << static_cast<unsigned>(Args.size())
- << TC.getCorrectionRange());
- } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
- Diag(RParenLoc,
- MinArgs == NumParams && !Proto->isVariadic()
- ? diag::err_typecheck_call_too_few_args_one
- : diag::err_typecheck_call_too_few_args_at_least_one)
- << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
- else
- Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
- ? diag::err_typecheck_call_too_few_args
- : diag::err_typecheck_call_too_few_args_at_least)
- << FnKind << MinArgs << static_cast<unsigned>(Args.size())
- << Fn->getSourceRange();
- // Emit the location of the prototype.
- if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
- Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
- return true;
- }
- // We reserve space for the default arguments when we create
- // the call expression, before calling ConvertArgumentsForCall.
- assert((Call->getNumArgs() == NumParams) &&
- "We should have reserved space for the default arguments before!");
- }
- // If too many are passed and not variadic, error on the extras and drop
- // them.
- if (Args.size() > NumParams) {
- if (!Proto->isVariadic()) {
- TypoCorrection TC;
- if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
- unsigned diag_id =
- MinArgs == NumParams && !Proto->isVariadic()
- ? diag::err_typecheck_call_too_many_args_suggest
- : diag::err_typecheck_call_too_many_args_at_most_suggest;
- diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
- << static_cast<unsigned>(Args.size())
- << TC.getCorrectionRange());
- } else if (NumParams == 1 && FDecl &&
- FDecl->getParamDecl(0)->getDeclName())
- Diag(Args[NumParams]->getBeginLoc(),
- MinArgs == NumParams
- ? diag::err_typecheck_call_too_many_args_one
- : diag::err_typecheck_call_too_many_args_at_most_one)
- << FnKind << FDecl->getParamDecl(0)
- << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
- << SourceRange(Args[NumParams]->getBeginLoc(),
- Args.back()->getEndLoc());
- else
- Diag(Args[NumParams]->getBeginLoc(),
- MinArgs == NumParams
- ? diag::err_typecheck_call_too_many_args
- : diag::err_typecheck_call_too_many_args_at_most)
- << FnKind << NumParams << static_cast<unsigned>(Args.size())
- << Fn->getSourceRange()
- << SourceRange(Args[NumParams]->getBeginLoc(),
- Args.back()->getEndLoc());
- // Emit the location of the prototype.
- if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
- Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
- // This deletes the extra arguments.
- Call->shrinkNumArgs(NumParams);
- return true;
- }
- }
- SmallVector<Expr *, 8> AllArgs;
- VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
- Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
- AllArgs, CallType);
- if (Invalid)
- return true;
- unsigned TotalNumArgs = AllArgs.size();
- for (unsigned i = 0; i < TotalNumArgs; ++i)
- Call->setArg(i, AllArgs[i]);
- return false;
- }
- bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
- const FunctionProtoType *Proto,
- unsigned FirstParam, ArrayRef<Expr *> Args,
- SmallVectorImpl<Expr *> &AllArgs,
- VariadicCallType CallType, bool AllowExplicit,
- bool IsListInitialization) {
- unsigned NumParams = Proto->getNumParams();
- bool Invalid = false;
- size_t ArgIx = 0;
- // Continue to check argument types (even if we have too few/many args).
- for (unsigned i = FirstParam; i < NumParams; i++) {
- QualType ProtoArgType = Proto->getParamType(i);
- Expr *Arg;
- ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
- if (ArgIx < Args.size()) {
- Arg = Args[ArgIx++];
- if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
- diag::err_call_incomplete_argument, Arg))
- return true;
- // Strip the unbridged-cast placeholder expression off, if applicable.
- bool CFAudited = false;
- if (Arg->getType() == Context.ARCUnbridgedCastTy &&
- FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
- (!Param || !Param->hasAttr<CFConsumedAttr>()))
- Arg = stripARCUnbridgedCast(Arg);
- else if (getLangOpts().ObjCAutoRefCount &&
- FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
- (!Param || !Param->hasAttr<CFConsumedAttr>()))
- CFAudited = true;
- if (Proto->getExtParameterInfo(i).isNoEscape())
- if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
- BE->getBlockDecl()->setDoesNotEscape();
- InitializedEntity Entity =
- Param ? InitializedEntity::InitializeParameter(Context, Param,
- ProtoArgType)
- : InitializedEntity::InitializeParameter(
- Context, ProtoArgType, Proto->isParamConsumed(i));
- // Remember that parameter belongs to a CF audited API.
- if (CFAudited)
- Entity.setParameterCFAudited();
- ExprResult ArgE = PerformCopyInitialization(
- Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
- if (ArgE.isInvalid())
- return true;
- Arg = ArgE.getAs<Expr>();
- } else {
- assert(Param && "can't use default arguments without a known callee");
- ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
- if (ArgExpr.isInvalid())
- return true;
- Arg = ArgExpr.getAs<Expr>();
- }
- // Check for array bounds violations for each argument to the call. This
- // check only triggers warnings when the argument isn't a more complex Expr
- // with its own checking, such as a BinaryOperator.
- CheckArrayAccess(Arg);
- // Check for violations of C99 static array rules (C99 6.7.5.3p7).
- CheckStaticArrayArgument(CallLoc, Param, Arg);
- AllArgs.push_back(Arg);
- }
- // If this is a variadic call, handle args passed through "...".
- if (CallType != VariadicDoesNotApply) {
- // Assume that extern "C" functions with variadic arguments that
- // return __unknown_anytype aren't *really* variadic.
- if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
- FDecl->isExternC()) {
- for (Expr *A : Args.slice(ArgIx)) {
- QualType paramType; // ignored
- ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
- Invalid |= arg.isInvalid();
- AllArgs.push_back(arg.get());
- }
- // Otherwise do argument promotion, (C99 6.5.2.2p7).
- } else {
- for (Expr *A : Args.slice(ArgIx)) {
- ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
- Invalid |= Arg.isInvalid();
- AllArgs.push_back(Arg.get());
- }
- }
- // Check for array bounds violations.
- for (Expr *A : Args.slice(ArgIx))
- CheckArrayAccess(A);
- }
- return Invalid;
- }
- static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
- TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
- if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
- TL = DTL.getOriginalLoc();
- if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
- S.Diag(PVD->getLocation(), diag::note_callee_static_array)
- << ATL.getLocalSourceRange();
- }
- /// CheckStaticArrayArgument - If the given argument corresponds to a static
- /// array parameter, check that it is non-null, and that if it is formed by
- /// array-to-pointer decay, the underlying array is sufficiently large.
- ///
- /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
- /// array type derivation, then for each call to the function, the value of the
- /// corresponding actual argument shall provide access to the first element of
- /// an array with at least as many elements as specified by the size expression.
- void
- Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
- ParmVarDecl *Param,
- const Expr *ArgExpr) {
- // Static array parameters are not supported in C++.
- if (!Param || getLangOpts().CPlusPlus)
- return;
- QualType OrigTy = Param->getOriginalType();
- const ArrayType *AT = Context.getAsArrayType(OrigTy);
- if (!AT || AT->getSizeModifier() != ArrayType::Static)
- return;
- if (ArgExpr->isNullPointerConstant(Context,
- Expr::NPC_NeverValueDependent)) {
- Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
- DiagnoseCalleeStaticArrayParam(*this, Param);
- return;
- }
- const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
- if (!CAT)
- return;
- const ConstantArrayType *ArgCAT =
- Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
- if (!ArgCAT)
- return;
- if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
- ArgCAT->getElementType())) {
- if (ArgCAT->getSize().ult(CAT->getSize())) {
- Diag(CallLoc, diag::warn_static_array_too_small)
- << ArgExpr->getSourceRange()
- << (unsigned)ArgCAT->getSize().getZExtValue()
- << (unsigned)CAT->getSize().getZExtValue() << 0;
- DiagnoseCalleeStaticArrayParam(*this, Param);
- }
- return;
- }
- Optional<CharUnits> ArgSize =
- getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
- Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
- if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
- Diag(CallLoc, diag::warn_static_array_too_small)
- << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
- << (unsigned)ParmSize->getQuantity() << 1;
- DiagnoseCalleeStaticArrayParam(*this, Param);
- }
- }
- /// Given a function expression of unknown-any type, try to rebuild it
- /// to have a function type.
- static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
- /// Is the given type a placeholder that we need to lower out
- /// immediately during argument processing?
- static bool isPlaceholderToRemoveAsArg(QualType type) {
- // Placeholders are never sugared.
- const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
- if (!placeholder) return false;
- switch (placeholder->getKind()) {
- // Ignore all the non-placeholder types.
- #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLImageTypes.def"
- #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLExtensionTypes.def"
- // In practice we'll never use this, since all SVE types are sugared
- // via TypedefTypes rather than exposed directly as BuiltinTypes.
- #define SVE_TYPE(Name, Id, SingletonId) \
- case BuiltinType::Id:
- #include "clang/Basic/AArch64SVEACLETypes.def"
- #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
- #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
- #include "clang/AST/BuiltinTypes.def"
- return false;
- // We cannot lower out overload sets; they might validly be resolved
- // by the call machinery.
- case BuiltinType::Overload:
- return false;
- // Unbridged casts in ARC can be handled in some call positions and
- // should be left in place.
- case BuiltinType::ARCUnbridgedCast:
- return false;
- // Pseudo-objects should be converted as soon as possible.
- case BuiltinType::PseudoObject:
- return true;
- // The debugger mode could theoretically but currently does not try
- // to resolve unknown-typed arguments based on known parameter types.
- case BuiltinType::UnknownAny:
- return true;
- // These are always invalid as call arguments and should be reported.
- case BuiltinType::BoundMember:
- case BuiltinType::BuiltinFn:
- case BuiltinType::OMPArraySection:
- return true;
- }
- llvm_unreachable("bad builtin type kind");
- }
- /// Check an argument list for placeholders that we won't try to
- /// handle later.
- static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
- // Apply this processing to all the arguments at once instead of
- // dying at the first failure.
- bool hasInvalid = false;
- for (size_t i = 0, e = args.size(); i != e; i++) {
- if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
- ExprResult result = S.CheckPlaceholderExpr(args[i]);
- if (result.isInvalid()) hasInvalid = true;
- else args[i] = result.get();
- } else if (hasInvalid) {
- (void)S.CorrectDelayedTyposInExpr(args[i]);
- }
- }
- return hasInvalid;
- }
- /// If a builtin function has a pointer argument with no explicit address
- /// space, then it should be able to accept a pointer to any address
- /// space as input. In order to do this, we need to replace the
- /// standard builtin declaration with one that uses the same address space
- /// as the call.
- ///
- /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
- /// it does not contain any pointer arguments without
- /// an address space qualifer. Otherwise the rewritten
- /// FunctionDecl is returned.
- /// TODO: Handle pointer return types.
- static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
- FunctionDecl *FDecl,
- MultiExprArg ArgExprs) {
- QualType DeclType = FDecl->getType();
- const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
- if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
- ArgExprs.size() < FT->getNumParams())
- return nullptr;
- bool NeedsNewDecl = false;
- unsigned i = 0;
- SmallVector<QualType, 8> OverloadParams;
- for (QualType ParamType : FT->param_types()) {
- // Convert array arguments to pointer to simplify type lookup.
- ExprResult ArgRes =
- Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
- if (ArgRes.isInvalid())
- return nullptr;
- Expr *Arg = ArgRes.get();
- QualType ArgType = Arg->getType();
- if (!ParamType->isPointerType() ||
- ParamType.getQualifiers().hasAddressSpace() ||
- !ArgType->isPointerType() ||
- !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
- OverloadParams.push_back(ParamType);
- continue;
- }
- QualType PointeeType = ParamType->getPointeeType();
- if (PointeeType.getQualifiers().hasAddressSpace())
- continue;
- NeedsNewDecl = true;
- LangAS AS = ArgType->getPointeeType().getAddressSpace();
- PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
- OverloadParams.push_back(Context.getPointerType(PointeeType));
- }
- if (!NeedsNewDecl)
- return nullptr;
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.Variadic = FT->isVariadic();
- QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
- OverloadParams, EPI);
- DeclContext *Parent = FDecl->getParent();
- FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
- FDecl->getLocation(),
- FDecl->getLocation(),
- FDecl->getIdentifier(),
- OverloadTy,
- /*TInfo=*/nullptr,
- SC_Extern, false,
- /*hasPrototype=*/true);
- SmallVector<ParmVarDecl*, 16> Params;
- FT = cast<FunctionProtoType>(OverloadTy);
- for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
- QualType ParamType = FT->getParamType(i);
- ParmVarDecl *Parm =
- ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
- SourceLocation(), nullptr, ParamType,
- /*TInfo=*/nullptr, SC_None, nullptr);
- Parm->setScopeInfo(0, i);
- Params.push_back(Parm);
- }
- OverloadDecl->setParams(Params);
- return OverloadDecl;
- }
- static void checkDirectCallValidity(Sema &S, const Expr *Fn,
- FunctionDecl *Callee,
- MultiExprArg ArgExprs) {
- // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
- // similar attributes) really don't like it when functions are called with an
- // invalid number of args.
- if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
- /*PartialOverloading=*/false) &&
- !Callee->isVariadic())
- return;
- if (Callee->getMinRequiredArguments() > ArgExprs.size())
- return;
- if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
- S.Diag(Fn->getBeginLoc(),
- isa<CXXMethodDecl>(Callee)
- ? diag::err_ovl_no_viable_member_function_in_call
- : diag::err_ovl_no_viable_function_in_call)
- << Callee << Callee->getSourceRange();
- S.Diag(Callee->getLocation(),
- diag::note_ovl_candidate_disabled_by_function_cond_attr)
- << Attr->getCond()->getSourceRange() << Attr->getMessage();
- return;
- }
- }
- static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
- const UnresolvedMemberExpr *const UME, Sema &S) {
- const auto GetFunctionLevelDCIfCXXClass =
- [](Sema &S) -> const CXXRecordDecl * {
- const DeclContext *const DC = S.getFunctionLevelDeclContext();
- if (!DC || !DC->getParent())
- return nullptr;
- // If the call to some member function was made from within a member
- // function body 'M' return return 'M's parent.
- if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
- return MD->getParent()->getCanonicalDecl();
- // else the call was made from within a default member initializer of a
- // class, so return the class.
- if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
- return RD->getCanonicalDecl();
- return nullptr;
- };
- // If our DeclContext is neither a member function nor a class (in the
- // case of a lambda in a default member initializer), we can't have an
- // enclosing 'this'.
- const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
- if (!CurParentClass)
- return false;
- // The naming class for implicit member functions call is the class in which
- // name lookup starts.
- const CXXRecordDecl *const NamingClass =
- UME->getNamingClass()->getCanonicalDecl();
- assert(NamingClass && "Must have naming class even for implicit access");
- // If the unresolved member functions were found in a 'naming class' that is
- // related (either the same or derived from) to the class that contains the
- // member function that itself contained the implicit member access.
- return CurParentClass == NamingClass ||
- CurParentClass->isDerivedFrom(NamingClass);
- }
- static void
- tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
- Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
- if (!UME)
- return;
- LambdaScopeInfo *const CurLSI = S.getCurLambda();
- // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
- // already been captured, or if this is an implicit member function call (if
- // it isn't, an attempt to capture 'this' should already have been made).
- if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
- !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
- return;
- // Check if the naming class in which the unresolved members were found is
- // related (same as or is a base of) to the enclosing class.
- if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
- return;
- DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
- // If the enclosing function is not dependent, then this lambda is
- // capture ready, so if we can capture this, do so.
- if (!EnclosingFunctionCtx->isDependentContext()) {
- // If the current lambda and all enclosing lambdas can capture 'this' -
- // then go ahead and capture 'this' (since our unresolved overload set
- // contains at least one non-static member function).
- if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
- S.CheckCXXThisCapture(CallLoc);
- } else if (S.CurContext->isDependentContext()) {
- // ... since this is an implicit member reference, that might potentially
- // involve a 'this' capture, mark 'this' for potential capture in
- // enclosing lambdas.
- if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
- CurLSI->addPotentialThisCapture(CallLoc);
- }
- }
- ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
- MultiExprArg ArgExprs, SourceLocation RParenLoc,
- Expr *ExecConfig) {
- ExprResult Call =
- BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
- if (Call.isInvalid())
- return Call;
- // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
- // language modes.
- if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
- if (ULE->hasExplicitTemplateArgs() &&
- ULE->decls_begin() == ULE->decls_end()) {
- Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a
- ? diag::warn_cxx17_compat_adl_only_template_id
- : diag::ext_adl_only_template_id)
- << ULE->getName();
- }
- }
- return Call;
- }
- /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
- /// This provides the location of the left/right parens and a list of comma
- /// locations.
- ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
- MultiExprArg ArgExprs, SourceLocation RParenLoc,
- Expr *ExecConfig, bool IsExecConfig) {
- // Since this might be a postfix expression, get rid of ParenListExprs.
- ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
- if (Result.isInvalid()) return ExprError();
- Fn = Result.get();
- if (checkArgsForPlaceholders(*this, ArgExprs))
- return ExprError();
- if (getLangOpts().CPlusPlus) {
- // If this is a pseudo-destructor expression, build the call immediately.
- if (isa<CXXPseudoDestructorExpr>(Fn)) {
- if (!ArgExprs.empty()) {
- // Pseudo-destructor calls should not have any arguments.
- Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
- << FixItHint::CreateRemoval(
- SourceRange(ArgExprs.front()->getBeginLoc(),
- ArgExprs.back()->getEndLoc()));
- }
- return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
- VK_RValue, RParenLoc);
- }
- if (Fn->getType() == Context.PseudoObjectTy) {
- ExprResult result = CheckPlaceholderExpr(Fn);
- if (result.isInvalid()) return ExprError();
- Fn = result.get();
- }
- // Determine whether this is a dependent call inside a C++ template,
- // in which case we won't do any semantic analysis now.
- if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
- if (ExecConfig) {
- return CUDAKernelCallExpr::Create(
- Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
- Context.DependentTy, VK_RValue, RParenLoc);
- } else {
- tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
- *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
- Fn->getBeginLoc());
- return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
- VK_RValue, RParenLoc);
- }
- }
- // Determine whether this is a call to an object (C++ [over.call.object]).
- if (Fn->getType()->isRecordType())
- return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
- RParenLoc);
- if (Fn->getType() == Context.UnknownAnyTy) {
- ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
- if (result.isInvalid()) return ExprError();
- Fn = result.get();
- }
- if (Fn->getType() == Context.BoundMemberTy) {
- return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
- RParenLoc);
- }
- }
- // Check for overloaded calls. This can happen even in C due to extensions.
- if (Fn->getType() == Context.OverloadTy) {
- OverloadExpr::FindResult find = OverloadExpr::find(Fn);
- // We aren't supposed to apply this logic if there's an '&' involved.
- if (!find.HasFormOfMemberPointer) {
- if (Expr::hasAnyTypeDependentArguments(ArgExprs))
- return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
- VK_RValue, RParenLoc);
- OverloadExpr *ovl = find.Expression;
- if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
- return BuildOverloadedCallExpr(
- Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
- /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
- return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
- RParenLoc);
- }
- }
- // If we're directly calling a function, get the appropriate declaration.
- if (Fn->getType() == Context.UnknownAnyTy) {
- ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
- if (result.isInvalid()) return ExprError();
- Fn = result.get();
- }
- Expr *NakedFn = Fn->IgnoreParens();
- bool CallingNDeclIndirectly = false;
- NamedDecl *NDecl = nullptr;
- if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
- if (UnOp->getOpcode() == UO_AddrOf) {
- CallingNDeclIndirectly = true;
- NakedFn = UnOp->getSubExpr()->IgnoreParens();
- }
- }
- if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
- NDecl = DRE->getDecl();
- FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
- if (FDecl && FDecl->getBuiltinID()) {
- // Rewrite the function decl for this builtin by replacing parameters
- // with no explicit address space with the address space of the arguments
- // in ArgExprs.
- if ((FDecl =
- rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
- NDecl = FDecl;
- Fn = DeclRefExpr::Create(
- Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
- SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
- nullptr, DRE->isNonOdrUse());
- }
- }
- } else if (isa<MemberExpr>(NakedFn))
- NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
- if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
- if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
- FD, /*Complain=*/true, Fn->getBeginLoc()))
- return ExprError();
- if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
- return ExprError();
- checkDirectCallValidity(*this, Fn, FD, ArgExprs);
- }
- return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
- ExecConfig, IsExecConfig);
- }
- /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
- ///
- /// __builtin_astype( value, dst type )
- ///
- ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
- SourceLocation BuiltinLoc,
- SourceLocation RParenLoc) {
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType DstTy = GetTypeFromParser(ParsedDestTy);
- QualType SrcTy = E->getType();
- if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
- return ExprError(Diag(BuiltinLoc,
- diag::err_invalid_astype_of_different_size)
- << DstTy
- << SrcTy
- << E->getSourceRange());
- return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
- }
- /// ActOnConvertVectorExpr - create a new convert-vector expression from the
- /// provided arguments.
- ///
- /// __builtin_convertvector( value, dst type )
- ///
- ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
- SourceLocation BuiltinLoc,
- SourceLocation RParenLoc) {
- TypeSourceInfo *TInfo;
- GetTypeFromParser(ParsedDestTy, &TInfo);
- return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
- }
- /// BuildResolvedCallExpr - Build a call to a resolved expression,
- /// i.e. an expression not of \p OverloadTy. The expression should
- /// unary-convert to an expression of function-pointer or
- /// block-pointer type.
- ///
- /// \param NDecl the declaration being called, if available
- ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
- SourceLocation LParenLoc,
- ArrayRef<Expr *> Args,
- SourceLocation RParenLoc, Expr *Config,
- bool IsExecConfig, ADLCallKind UsesADL) {
- FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
- unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
- // Functions with 'interrupt' attribute cannot be called directly.
- if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
- Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
- return ExprError();
- }
- // Interrupt handlers don't save off the VFP regs automatically on ARM,
- // so there's some risk when calling out to non-interrupt handler functions
- // that the callee might not preserve them. This is easy to diagnose here,
- // but can be very challenging to debug.
- if (auto *Caller = getCurFunctionDecl())
- if (Caller->hasAttr<ARMInterruptAttr>()) {
- bool VFP = Context.getTargetInfo().hasFeature("vfp");
- if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
- Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
- }
- // Promote the function operand.
- // We special-case function promotion here because we only allow promoting
- // builtin functions to function pointers in the callee of a call.
- ExprResult Result;
- QualType ResultTy;
- if (BuiltinID &&
- Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
- // Extract the return type from the (builtin) function pointer type.
- // FIXME Several builtins still have setType in
- // Sema::CheckBuiltinFunctionCall. One should review their definitions in
- // Builtins.def to ensure they are correct before removing setType calls.
- QualType FnPtrTy = Context.getPointerType(FDecl->getType());
- Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
- ResultTy = FDecl->getCallResultType();
- } else {
- Result = CallExprUnaryConversions(Fn);
- ResultTy = Context.BoolTy;
- }
- if (Result.isInvalid())
- return ExprError();
- Fn = Result.get();
- // Check for a valid function type, but only if it is not a builtin which
- // requires custom type checking. These will be handled by
- // CheckBuiltinFunctionCall below just after creation of the call expression.
- const FunctionType *FuncT = nullptr;
- if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
- retry:
- if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
- // C99 6.5.2.2p1 - "The expression that denotes the called function shall
- // have type pointer to function".
- FuncT = PT->getPointeeType()->getAs<FunctionType>();
- if (!FuncT)
- return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
- } else if (const BlockPointerType *BPT =
- Fn->getType()->getAs<BlockPointerType>()) {
- FuncT = BPT->getPointeeType()->castAs<FunctionType>();
- } else {
- // Handle calls to expressions of unknown-any type.
- if (Fn->getType() == Context.UnknownAnyTy) {
- ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
- if (rewrite.isInvalid())
- return ExprError();
- Fn = rewrite.get();
- goto retry;
- }
- return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
- }
- }
- // Get the number of parameters in the function prototype, if any.
- // We will allocate space for max(Args.size(), NumParams) arguments
- // in the call expression.
- const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
- unsigned NumParams = Proto ? Proto->getNumParams() : 0;
- CallExpr *TheCall;
- if (Config) {
- assert(UsesADL == ADLCallKind::NotADL &&
- "CUDAKernelCallExpr should not use ADL");
- TheCall =
- CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
- ResultTy, VK_RValue, RParenLoc, NumParams);
- } else {
- TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
- RParenLoc, NumParams, UsesADL);
- }
- if (!getLangOpts().CPlusPlus) {
- // Forget about the nulled arguments since typo correction
- // do not handle them well.
- TheCall->shrinkNumArgs(Args.size());
- // C cannot always handle TypoExpr nodes in builtin calls and direct
- // function calls as their argument checking don't necessarily handle
- // dependent types properly, so make sure any TypoExprs have been
- // dealt with.
- ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
- if (!Result.isUsable()) return ExprError();
- CallExpr *TheOldCall = TheCall;
- TheCall = dyn_cast<CallExpr>(Result.get());
- bool CorrectedTypos = TheCall != TheOldCall;
- if (!TheCall) return Result;
- Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
- // A new call expression node was created if some typos were corrected.
- // However it may not have been constructed with enough storage. In this
- // case, rebuild the node with enough storage. The waste of space is
- // immaterial since this only happens when some typos were corrected.
- if (CorrectedTypos && Args.size() < NumParams) {
- if (Config)
- TheCall = CUDAKernelCallExpr::Create(
- Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
- RParenLoc, NumParams);
- else
- TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
- RParenLoc, NumParams, UsesADL);
- }
- // We can now handle the nulled arguments for the default arguments.
- TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
- }
- // Bail out early if calling a builtin with custom type checking.
- if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
- return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
- if (getLangOpts().CUDA) {
- if (Config) {
- // CUDA: Kernel calls must be to global functions
- if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
- return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
- << FDecl << Fn->getSourceRange());
- // CUDA: Kernel function must have 'void' return type
- if (!FuncT->getReturnType()->isVoidType())
- return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
- << Fn->getType() << Fn->getSourceRange());
- } else {
- // CUDA: Calls to global functions must be configured
- if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
- return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
- << FDecl << Fn->getSourceRange());
- }
- }
- // Check for a valid return type
- if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
- FDecl))
- return ExprError();
- // We know the result type of the call, set it.
- TheCall->setType(FuncT->getCallResultType(Context));
- TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
- if (Proto) {
- if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
- IsExecConfig))
- return ExprError();
- } else {
- assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
- if (FDecl) {
- // Check if we have too few/too many template arguments, based
- // on our knowledge of the function definition.
- const FunctionDecl *Def = nullptr;
- if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
- Proto = Def->getType()->getAs<FunctionProtoType>();
- if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
- Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
- << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
- }
- // If the function we're calling isn't a function prototype, but we have
- // a function prototype from a prior declaratiom, use that prototype.
- if (!FDecl->hasPrototype())
- Proto = FDecl->getType()->getAs<FunctionProtoType>();
- }
- // Promote the arguments (C99 6.5.2.2p6).
- for (unsigned i = 0, e = Args.size(); i != e; i++) {
- Expr *Arg = Args[i];
- if (Proto && i < Proto->getNumParams()) {
- InitializedEntity Entity = InitializedEntity::InitializeParameter(
- Context, Proto->getParamType(i), Proto->isParamConsumed(i));
- ExprResult ArgE =
- PerformCopyInitialization(Entity, SourceLocation(), Arg);
- if (ArgE.isInvalid())
- return true;
- Arg = ArgE.getAs<Expr>();
- } else {
- ExprResult ArgE = DefaultArgumentPromotion(Arg);
- if (ArgE.isInvalid())
- return true;
- Arg = ArgE.getAs<Expr>();
- }
- if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
- diag::err_call_incomplete_argument, Arg))
- return ExprError();
- TheCall->setArg(i, Arg);
- }
- }
- if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
- if (!Method->isStatic())
- return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
- << Fn->getSourceRange());
- // Check for sentinels
- if (NDecl)
- DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
- // Do special checking on direct calls to functions.
- if (FDecl) {
- if (CheckFunctionCall(FDecl, TheCall, Proto))
- return ExprError();
- checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
- if (BuiltinID)
- return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
- } else if (NDecl) {
- if (CheckPointerCall(NDecl, TheCall, Proto))
- return ExprError();
- } else {
- if (CheckOtherCall(TheCall, Proto))
- return ExprError();
- }
- return MaybeBindToTemporary(TheCall);
- }
- ExprResult
- Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
- SourceLocation RParenLoc, Expr *InitExpr) {
- assert(Ty && "ActOnCompoundLiteral(): missing type");
- assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
- TypeSourceInfo *TInfo;
- QualType literalType = GetTypeFromParser(Ty, &TInfo);
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(literalType);
- return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
- }
- ExprResult
- Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
- SourceLocation RParenLoc, Expr *LiteralExpr) {
- QualType literalType = TInfo->getType();
- if (literalType->isArrayType()) {
- if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
- diag::err_illegal_decl_array_incomplete_type,
- SourceRange(LParenLoc,
- LiteralExpr->getSourceRange().getEnd())))
- return ExprError();
- if (literalType->isVariableArrayType())
- return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
- << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
- } else if (!literalType->isDependentType() &&
- RequireCompleteType(LParenLoc, literalType,
- diag::err_typecheck_decl_incomplete_type,
- SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
- return ExprError();
- InitializedEntity Entity
- = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
- InitializationKind Kind
- = InitializationKind::CreateCStyleCast(LParenLoc,
- SourceRange(LParenLoc, RParenLoc),
- /*InitList=*/true);
- InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
- ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
- &literalType);
- if (Result.isInvalid())
- return ExprError();
- LiteralExpr = Result.get();
- bool isFileScope = !CurContext->isFunctionOrMethod();
- // In C, compound literals are l-values for some reason.
- // For GCC compatibility, in C++, file-scope array compound literals with
- // constant initializers are also l-values, and compound literals are
- // otherwise prvalues.
- //
- // (GCC also treats C++ list-initialized file-scope array prvalues with
- // constant initializers as l-values, but that's non-conforming, so we don't
- // follow it there.)
- //
- // FIXME: It would be better to handle the lvalue cases as materializing and
- // lifetime-extending a temporary object, but our materialized temporaries
- // representation only supports lifetime extension from a variable, not "out
- // of thin air".
- // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
- // is bound to the result of applying array-to-pointer decay to the compound
- // literal.
- // FIXME: GCC supports compound literals of reference type, which should
- // obviously have a value kind derived from the kind of reference involved.
- ExprValueKind VK =
- (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
- ? VK_RValue
- : VK_LValue;
- if (isFileScope)
- if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
- for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
- Expr *Init = ILE->getInit(i);
- ILE->setInit(i, ConstantExpr::Create(Context, Init));
- }
- Expr *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
- VK, LiteralExpr, isFileScope);
- if (isFileScope) {
- if (!LiteralExpr->isTypeDependent() &&
- !LiteralExpr->isValueDependent() &&
- !literalType->isDependentType()) // C99 6.5.2.5p3
- if (CheckForConstantInitializer(LiteralExpr, literalType))
- return ExprError();
- } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
- literalType.getAddressSpace() != LangAS::Default) {
- // Embedded-C extensions to C99 6.5.2.5:
- // "If the compound literal occurs inside the body of a function, the
- // type name shall not be qualified by an address-space qualifier."
- Diag(LParenLoc, diag::err_compound_literal_with_address_space)
- << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
- return ExprError();
- }
- return MaybeBindToTemporary(E);
- }
- ExprResult
- Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
- SourceLocation RBraceLoc) {
- // Only produce each kind of designated initialization diagnostic once.
- SourceLocation FirstDesignator;
- bool DiagnosedArrayDesignator = false;
- bool DiagnosedNestedDesignator = false;
- bool DiagnosedMixedDesignator = false;
- // Check that any designated initializers are syntactically valid in the
- // current language mode.
- for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
- if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
- if (FirstDesignator.isInvalid())
- FirstDesignator = DIE->getBeginLoc();
- if (!getLangOpts().CPlusPlus)
- break;
- if (!DiagnosedNestedDesignator && DIE->size() > 1) {
- DiagnosedNestedDesignator = true;
- Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
- << DIE->getDesignatorsSourceRange();
- }
- for (auto &Desig : DIE->designators()) {
- if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
- DiagnosedArrayDesignator = true;
- Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
- << Desig.getSourceRange();
- }
- }
- if (!DiagnosedMixedDesignator &&
- !isa<DesignatedInitExpr>(InitArgList[0])) {
- DiagnosedMixedDesignator = true;
- Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
- << DIE->getSourceRange();
- Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
- << InitArgList[0]->getSourceRange();
- }
- } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
- isa<DesignatedInitExpr>(InitArgList[0])) {
- DiagnosedMixedDesignator = true;
- auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
- Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
- << DIE->getSourceRange();
- Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
- << InitArgList[I]->getSourceRange();
- }
- }
- if (FirstDesignator.isValid()) {
- // Only diagnose designated initiaization as a C++20 extension if we didn't
- // already diagnose use of (non-C++20) C99 designator syntax.
- if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
- !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
- Diag(FirstDesignator, getLangOpts().CPlusPlus2a
- ? diag::warn_cxx17_compat_designated_init
- : diag::ext_cxx_designated_init);
- } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
- Diag(FirstDesignator, diag::ext_designated_init);
- }
- }
- return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
- }
- ExprResult
- Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
- SourceLocation RBraceLoc) {
- // Semantic analysis for initializers is done by ActOnDeclarator() and
- // CheckInitializer() - it requires knowledge of the object being initialized.
- // Immediately handle non-overload placeholders. Overloads can be
- // resolved contextually, but everything else here can't.
- for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
- if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
- // Ignore failures; dropping the entire initializer list because
- // of one failure would be terrible for indexing/etc.
- if (result.isInvalid()) continue;
- InitArgList[I] = result.get();
- }
- }
- InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
- RBraceLoc);
- E->setType(Context.VoidTy); // FIXME: just a place holder for now.
- return E;
- }
- /// Do an explicit extend of the given block pointer if we're in ARC.
- void Sema::maybeExtendBlockObject(ExprResult &E) {
- assert(E.get()->getType()->isBlockPointerType());
- assert(E.get()->isRValue());
- // Only do this in an r-value context.
- if (!getLangOpts().ObjCAutoRefCount) return;
- E = ImplicitCastExpr::Create(Context, E.get()->getType(),
- CK_ARCExtendBlockObject, E.get(),
- /*base path*/ nullptr, VK_RValue);
- Cleanup.setExprNeedsCleanups(true);
- }
- /// Prepare a conversion of the given expression to an ObjC object
- /// pointer type.
- CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
- QualType type = E.get()->getType();
- if (type->isObjCObjectPointerType()) {
- return CK_BitCast;
- } else if (type->isBlockPointerType()) {
- maybeExtendBlockObject(E);
- return CK_BlockPointerToObjCPointerCast;
- } else {
- assert(type->isPointerType());
- return CK_CPointerToObjCPointerCast;
- }
- }
- /// Prepares for a scalar cast, performing all the necessary stages
- /// except the final cast and returning the kind required.
- CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
- // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
- // Also, callers should have filtered out the invalid cases with
- // pointers. Everything else should be possible.
- QualType SrcTy = Src.get()->getType();
- if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
- return CK_NoOp;
- switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- case Type::STK_CPointer:
- case Type::STK_BlockPointer:
- case Type::STK_ObjCObjectPointer:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_CPointer: {
- LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
- LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
- if (SrcAS != DestAS)
- return CK_AddressSpaceConversion;
- if (Context.hasCvrSimilarType(SrcTy, DestTy))
- return CK_NoOp;
- return CK_BitCast;
- }
- case Type::STK_BlockPointer:
- return (SrcKind == Type::STK_BlockPointer
- ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
- case Type::STK_ObjCObjectPointer:
- if (SrcKind == Type::STK_ObjCObjectPointer)
- return CK_BitCast;
- if (SrcKind == Type::STK_CPointer)
- return CK_CPointerToObjCPointerCast;
- maybeExtendBlockObject(Src);
- return CK_BlockPointerToObjCPointerCast;
- case Type::STK_Bool:
- return CK_PointerToBoolean;
- case Type::STK_Integral:
- return CK_PointerToIntegral;
- case Type::STK_Floating:
- case Type::STK_FloatingComplex:
- case Type::STK_IntegralComplex:
- case Type::STK_MemberPointer:
- case Type::STK_FixedPoint:
- llvm_unreachable("illegal cast from pointer");
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_FixedPoint:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_FixedPoint:
- return CK_FixedPointCast;
- case Type::STK_Bool:
- return CK_FixedPointToBoolean;
- case Type::STK_Integral:
- return CK_FixedPointToIntegral;
- case Type::STK_Floating:
- case Type::STK_IntegralComplex:
- case Type::STK_FloatingComplex:
- Diag(Src.get()->getExprLoc(),
- diag::err_unimplemented_conversion_with_fixed_point_type)
- << DestTy;
- return CK_IntegralCast;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- case Type::STK_MemberPointer:
- llvm_unreachable("illegal cast to pointer type");
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_Bool: // casting from bool is like casting from an integer
- case Type::STK_Integral:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- if (Src.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull))
- return CK_NullToPointer;
- return CK_IntegralToPointer;
- case Type::STK_Bool:
- return CK_IntegralToBoolean;
- case Type::STK_Integral:
- return CK_IntegralCast;
- case Type::STK_Floating:
- return CK_IntegralToFloating;
- case Type::STK_IntegralComplex:
- Src = ImpCastExprToType(Src.get(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_IntegralCast);
- return CK_IntegralRealToComplex;
- case Type::STK_FloatingComplex:
- Src = ImpCastExprToType(Src.get(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_IntegralToFloating);
- return CK_FloatingRealToComplex;
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- case Type::STK_FixedPoint:
- return CK_IntegralToFixedPoint;
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_Floating:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_Floating:
- return CK_FloatingCast;
- case Type::STK_Bool:
- return CK_FloatingToBoolean;
- case Type::STK_Integral:
- return CK_FloatingToIntegral;
- case Type::STK_FloatingComplex:
- Src = ImpCastExprToType(Src.get(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_FloatingCast);
- return CK_FloatingRealToComplex;
- case Type::STK_IntegralComplex:
- Src = ImpCastExprToType(Src.get(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_FloatingToIntegral);
- return CK_IntegralRealToComplex;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- llvm_unreachable("valid float->pointer cast?");
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- case Type::STK_FixedPoint:
- Diag(Src.get()->getExprLoc(),
- diag::err_unimplemented_conversion_with_fixed_point_type)
- << SrcTy;
- return CK_IntegralCast;
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_FloatingComplex:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_FloatingComplex:
- return CK_FloatingComplexCast;
- case Type::STK_IntegralComplex:
- return CK_FloatingComplexToIntegralComplex;
- case Type::STK_Floating: {
- QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
- if (Context.hasSameType(ET, DestTy))
- return CK_FloatingComplexToReal;
- Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
- return CK_FloatingCast;
- }
- case Type::STK_Bool:
- return CK_FloatingComplexToBoolean;
- case Type::STK_Integral:
- Src = ImpCastExprToType(Src.get(),
- SrcTy->castAs<ComplexType>()->getElementType(),
- CK_FloatingComplexToReal);
- return CK_FloatingToIntegral;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- llvm_unreachable("valid complex float->pointer cast?");
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- case Type::STK_FixedPoint:
- Diag(Src.get()->getExprLoc(),
- diag::err_unimplemented_conversion_with_fixed_point_type)
- << SrcTy;
- return CK_IntegralCast;
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_IntegralComplex:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_FloatingComplex:
- return CK_IntegralComplexToFloatingComplex;
- case Type::STK_IntegralComplex:
- return CK_IntegralComplexCast;
- case Type::STK_Integral: {
- QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
- if (Context.hasSameType(ET, DestTy))
- return CK_IntegralComplexToReal;
- Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
- return CK_IntegralCast;
- }
- case Type::STK_Bool:
- return CK_IntegralComplexToBoolean;
- case Type::STK_Floating:
- Src = ImpCastExprToType(Src.get(),
- SrcTy->castAs<ComplexType>()->getElementType(),
- CK_IntegralComplexToReal);
- return CK_IntegralToFloating;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- llvm_unreachable("valid complex int->pointer cast?");
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- case Type::STK_FixedPoint:
- Diag(Src.get()->getExprLoc(),
- diag::err_unimplemented_conversion_with_fixed_point_type)
- << SrcTy;
- return CK_IntegralCast;
- }
- llvm_unreachable("Should have returned before this");
- }
- llvm_unreachable("Unhandled scalar cast");
- }
- static bool breakDownVectorType(QualType type, uint64_t &len,
- QualType &eltType) {
- // Vectors are simple.
- if (const VectorType *vecType = type->getAs<VectorType>()) {
- len = vecType->getNumElements();
- eltType = vecType->getElementType();
- assert(eltType->isScalarType());
- return true;
- }
- // We allow lax conversion to and from non-vector types, but only if
- // they're real types (i.e. non-complex, non-pointer scalar types).
- if (!type->isRealType()) return false;
- len = 1;
- eltType = type;
- return true;
- }
- /// Are the two types lax-compatible vector types? That is, given
- /// that one of them is a vector, do they have equal storage sizes,
- /// where the storage size is the number of elements times the element
- /// size?
- ///
- /// This will also return false if either of the types is neither a
- /// vector nor a real type.
- bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
- assert(destTy->isVectorType() || srcTy->isVectorType());
- // Disallow lax conversions between scalars and ExtVectors (these
- // conversions are allowed for other vector types because common headers
- // depend on them). Most scalar OP ExtVector cases are handled by the
- // splat path anyway, which does what we want (convert, not bitcast).
- // What this rules out for ExtVectors is crazy things like char4*float.
- if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
- if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
- uint64_t srcLen, destLen;
- QualType srcEltTy, destEltTy;
- if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
- if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
- // ASTContext::getTypeSize will return the size rounded up to a
- // power of 2, so instead of using that, we need to use the raw
- // element size multiplied by the element count.
- uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
- uint64_t destEltSize = Context.getTypeSize(destEltTy);
- return (srcLen * srcEltSize == destLen * destEltSize);
- }
- /// Is this a legal conversion between two types, one of which is
- /// known to be a vector type?
- bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
- assert(destTy->isVectorType() || srcTy->isVectorType());
- if (!Context.getLangOpts().LaxVectorConversions)
- return false;
- return areLaxCompatibleVectorTypes(srcTy, destTy);
- }
- bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
- CastKind &Kind) {
- assert(VectorTy->isVectorType() && "Not a vector type!");
- if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
- if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
- return Diag(R.getBegin(),
- Ty->isVectorType() ?
- diag::err_invalid_conversion_between_vectors :
- diag::err_invalid_conversion_between_vector_and_integer)
- << VectorTy << Ty << R;
- } else
- return Diag(R.getBegin(),
- diag::err_invalid_conversion_between_vector_and_scalar)
- << VectorTy << Ty << R;
- Kind = CK_BitCast;
- return false;
- }
- ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
- QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
- if (DestElemTy == SplattedExpr->getType())
- return SplattedExpr;
- assert(DestElemTy->isFloatingType() ||
- DestElemTy->isIntegralOrEnumerationType());
- CastKind CK;
- if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
- // OpenCL requires that we convert `true` boolean expressions to -1, but
- // only when splatting vectors.
- if (DestElemTy->isFloatingType()) {
- // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
- // in two steps: boolean to signed integral, then to floating.
- ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
- CK_BooleanToSignedIntegral);
- SplattedExpr = CastExprRes.get();
- CK = CK_IntegralToFloating;
- } else {
- CK = CK_BooleanToSignedIntegral;
- }
- } else {
- ExprResult CastExprRes = SplattedExpr;
- CK = PrepareScalarCast(CastExprRes, DestElemTy);
- if (CastExprRes.isInvalid())
- return ExprError();
- SplattedExpr = CastExprRes.get();
- }
- return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
- }
- ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
- Expr *CastExpr, CastKind &Kind) {
- assert(DestTy->isExtVectorType() && "Not an extended vector type!");
- QualType SrcTy = CastExpr->getType();
- // If SrcTy is a VectorType, the total size must match to explicitly cast to
- // an ExtVectorType.
- // In OpenCL, casts between vectors of different types are not allowed.
- // (See OpenCL 6.2).
- if (SrcTy->isVectorType()) {
- if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
- (getLangOpts().OpenCL &&
- !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
- Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
- << DestTy << SrcTy << R;
- return ExprError();
- }
- Kind = CK_BitCast;
- return CastExpr;
- }
- // All non-pointer scalars can be cast to ExtVector type. The appropriate
- // conversion will take place first from scalar to elt type, and then
- // splat from elt type to vector.
- if (SrcTy->isPointerType())
- return Diag(R.getBegin(),
- diag::err_invalid_conversion_between_vector_and_scalar)
- << DestTy << SrcTy << R;
- Kind = CK_VectorSplat;
- return prepareVectorSplat(DestTy, CastExpr);
- }
- ExprResult
- Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
- Declarator &D, ParsedType &Ty,
- SourceLocation RParenLoc, Expr *CastExpr) {
- assert(!D.isInvalidType() && (CastExpr != nullptr) &&
- "ActOnCastExpr(): missing type or expr");
- TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
- if (D.isInvalidType())
- return ExprError();
- if (getLangOpts().CPlusPlus) {
- // Check that there are no default arguments (C++ only).
- CheckExtraCXXDefaultArguments(D);
- } else {
- // Make sure any TypoExprs have been dealt with.
- ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
- if (!Res.isUsable())
- return ExprError();
- CastExpr = Res.get();
- }
- checkUnusedDeclAttributes(D);
- QualType castType = castTInfo->getType();
- Ty = CreateParsedType(castType, castTInfo);
- bool isVectorLiteral = false;
- // Check for an altivec or OpenCL literal,
- // i.e. all the elements are integer constants.
- ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
- ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
- if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
- && castType->isVectorType() && (PE || PLE)) {
- if (PLE && PLE->getNumExprs() == 0) {
- Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
- return ExprError();
- }
- if (PE || PLE->getNumExprs() == 1) {
- Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
- if (!E->getType()->isVectorType())
- isVectorLiteral = true;
- }
- else
- isVectorLiteral = true;
- }
- // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
- // then handle it as such.
- if (isVectorLiteral)
- return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
- // If the Expr being casted is a ParenListExpr, handle it specially.
- // This is not an AltiVec-style cast, so turn the ParenListExpr into a
- // sequence of BinOp comma operators.
- if (isa<ParenListExpr>(CastExpr)) {
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
- if (Result.isInvalid()) return ExprError();
- CastExpr = Result.get();
- }
- if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
- !getSourceManager().isInSystemMacro(LParenLoc))
- Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
- CheckTollFreeBridgeCast(castType, CastExpr);
- CheckObjCBridgeRelatedCast(castType, CastExpr);
- DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
- return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
- }
- ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
- SourceLocation RParenLoc, Expr *E,
- TypeSourceInfo *TInfo) {
- assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
- "Expected paren or paren list expression");
- Expr **exprs;
- unsigned numExprs;
- Expr *subExpr;
- SourceLocation LiteralLParenLoc, LiteralRParenLoc;
- if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
- LiteralLParenLoc = PE->getLParenLoc();
- LiteralRParenLoc = PE->getRParenLoc();
- exprs = PE->getExprs();
- numExprs = PE->getNumExprs();
- } else { // isa<ParenExpr> by assertion at function entrance
- LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
- LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
- subExpr = cast<ParenExpr>(E)->getSubExpr();
- exprs = &subExpr;
- numExprs = 1;
- }
- QualType Ty = TInfo->getType();
- assert(Ty->isVectorType() && "Expected vector type");
- SmallVector<Expr *, 8> initExprs;
- const VectorType *VTy = Ty->getAs<VectorType>();
- unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
- // '(...)' form of vector initialization in AltiVec: the number of
- // initializers must be one or must match the size of the vector.
- // If a single value is specified in the initializer then it will be
- // replicated to all the components of the vector
- if (VTy->getVectorKind() == VectorType::AltiVecVector) {
- // The number of initializers must be one or must match the size of the
- // vector. If a single value is specified in the initializer then it will
- // be replicated to all the components of the vector
- if (numExprs == 1) {
- QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
- ExprResult Literal = DefaultLvalueConversion(exprs[0]);
- if (Literal.isInvalid())
- return ExprError();
- Literal = ImpCastExprToType(Literal.get(), ElemTy,
- PrepareScalarCast(Literal, ElemTy));
- return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
- }
- else if (numExprs < numElems) {
- Diag(E->getExprLoc(),
- diag::err_incorrect_number_of_vector_initializers);
- return ExprError();
- }
- else
- initExprs.append(exprs, exprs + numExprs);
- }
- else {
- // For OpenCL, when the number of initializers is a single value,
- // it will be replicated to all components of the vector.
- if (getLangOpts().OpenCL &&
- VTy->getVectorKind() == VectorType::GenericVector &&
- numExprs == 1) {
- QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
- ExprResult Literal = DefaultLvalueConversion(exprs[0]);
- if (Literal.isInvalid())
- return ExprError();
- Literal = ImpCastExprToType(Literal.get(), ElemTy,
- PrepareScalarCast(Literal, ElemTy));
- return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
- }
- initExprs.append(exprs, exprs + numExprs);
- }
- // FIXME: This means that pretty-printing the final AST will produce curly
- // braces instead of the original commas.
- InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
- initExprs, LiteralRParenLoc);
- initE->setType(Ty);
- return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
- }
- /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
- /// the ParenListExpr into a sequence of comma binary operators.
- ExprResult
- Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
- ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
- if (!E)
- return OrigExpr;
- ExprResult Result(E->getExpr(0));
- for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
- Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
- E->getExpr(i));
- if (Result.isInvalid()) return ExprError();
- return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
- }
- ExprResult Sema::ActOnParenListExpr(SourceLocation L,
- SourceLocation R,
- MultiExprArg Val) {
- return ParenListExpr::Create(Context, L, Val, R);
- }
- /// Emit a specialized diagnostic when one expression is a null pointer
- /// constant and the other is not a pointer. Returns true if a diagnostic is
- /// emitted.
- bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation QuestionLoc) {
- Expr *NullExpr = LHSExpr;
- Expr *NonPointerExpr = RHSExpr;
- Expr::NullPointerConstantKind NullKind =
- NullExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull);
- if (NullKind == Expr::NPCK_NotNull) {
- NullExpr = RHSExpr;
- NonPointerExpr = LHSExpr;
- NullKind =
- NullExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull);
- }
- if (NullKind == Expr::NPCK_NotNull)
- return false;
- if (NullKind == Expr::NPCK_ZeroExpression)
- return false;
- if (NullKind == Expr::NPCK_ZeroLiteral) {
- // In this case, check to make sure that we got here from a "NULL"
- // string in the source code.
- NullExpr = NullExpr->IgnoreParenImpCasts();
- SourceLocation loc = NullExpr->getExprLoc();
- if (!findMacroSpelling(loc, "NULL"))
- return false;
- }
- int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
- << NonPointerExpr->getType() << DiagType
- << NonPointerExpr->getSourceRange();
- return true;
- }
- /// Return false if the condition expression is valid, true otherwise.
- static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
- QualType CondTy = Cond->getType();
- // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
- if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
- S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
- << CondTy << Cond->getSourceRange();
- return true;
- }
- // C99 6.5.15p2
- if (CondTy->isScalarType()) return false;
- S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
- << CondTy << Cond->getSourceRange();
- return true;
- }
- /// Handle when one or both operands are void type.
- static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
- ExprResult &RHS) {
- Expr *LHSExpr = LHS.get();
- Expr *RHSExpr = RHS.get();
- if (!LHSExpr->getType()->isVoidType())
- S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
- << RHSExpr->getSourceRange();
- if (!RHSExpr->getType()->isVoidType())
- S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
- << LHSExpr->getSourceRange();
- LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
- RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
- return S.Context.VoidTy;
- }
- /// Return false if the NullExpr can be promoted to PointerTy,
- /// true otherwise.
- static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
- QualType PointerTy) {
- if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
- !NullExpr.get()->isNullPointerConstant(S.Context,
- Expr::NPC_ValueDependentIsNull))
- return true;
- NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
- return false;
- }
- /// Checks compatibility between two pointers and return the resulting
- /// type.
- static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- if (S.Context.hasSameType(LHSTy, RHSTy)) {
- // Two identical pointers types are always compatible.
- return LHSTy;
- }
- QualType lhptee, rhptee;
- // Get the pointee types.
- bool IsBlockPointer = false;
- if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
- lhptee = LHSBTy->getPointeeType();
- rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
- IsBlockPointer = true;
- } else {
- lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
- rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
- }
- // C99 6.5.15p6: If both operands are pointers to compatible types or to
- // differently qualified versions of compatible types, the result type is
- // a pointer to an appropriately qualified version of the composite
- // type.
- // Only CVR-qualifiers exist in the standard, and the differently-qualified
- // clause doesn't make sense for our extensions. E.g. address space 2 should
- // be incompatible with address space 3: they may live on different devices or
- // anything.
- Qualifiers lhQual = lhptee.getQualifiers();
- Qualifiers rhQual = rhptee.getQualifiers();
- LangAS ResultAddrSpace = LangAS::Default;
- LangAS LAddrSpace = lhQual.getAddressSpace();
- LangAS RAddrSpace = rhQual.getAddressSpace();
- // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
- // spaces is disallowed.
- if (lhQual.isAddressSpaceSupersetOf(rhQual))
- ResultAddrSpace = LAddrSpace;
- else if (rhQual.isAddressSpaceSupersetOf(lhQual))
- ResultAddrSpace = RAddrSpace;
- else {
- S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
- << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return QualType();
- }
- unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
- auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
- lhQual.removeCVRQualifiers();
- rhQual.removeCVRQualifiers();
- // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
- // (C99 6.7.3) for address spaces. We assume that the check should behave in
- // the same manner as it's defined for CVR qualifiers, so for OpenCL two
- // qual types are compatible iff
- // * corresponded types are compatible
- // * CVR qualifiers are equal
- // * address spaces are equal
- // Thus for conditional operator we merge CVR and address space unqualified
- // pointees and if there is a composite type we return a pointer to it with
- // merged qualifiers.
- LHSCastKind =
- LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
- RHSCastKind =
- RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
- lhQual.removeAddressSpace();
- rhQual.removeAddressSpace();
- lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
- rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
- QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
- if (CompositeTy.isNull()) {
- // In this situation, we assume void* type. No especially good
- // reason, but this is what gcc does, and we do have to pick
- // to get a consistent AST.
- QualType incompatTy;
- incompatTy = S.Context.getPointerType(
- S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
- LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
- RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
- // FIXME: For OpenCL the warning emission and cast to void* leaves a room
- // for casts between types with incompatible address space qualifiers.
- // For the following code the compiler produces casts between global and
- // local address spaces of the corresponded innermost pointees:
- // local int *global *a;
- // global int *global *b;
- // a = (0 ? a : b); // see C99 6.5.16.1.p1.
- S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
- << LHSTy << RHSTy << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return incompatTy;
- }
- // The pointer types are compatible.
- // In case of OpenCL ResultTy should have the address space qualifier
- // which is a superset of address spaces of both the 2nd and the 3rd
- // operands of the conditional operator.
- QualType ResultTy = [&, ResultAddrSpace]() {
- if (S.getLangOpts().OpenCL) {
- Qualifiers CompositeQuals = CompositeTy.getQualifiers();
- CompositeQuals.setAddressSpace(ResultAddrSpace);
- return S.Context
- .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
- .withCVRQualifiers(MergedCVRQual);
- }
- return CompositeTy.withCVRQualifiers(MergedCVRQual);
- }();
- if (IsBlockPointer)
- ResultTy = S.Context.getBlockPointerType(ResultTy);
- else
- ResultTy = S.Context.getPointerType(ResultTy);
- LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
- RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
- return ResultTy;
- }
- /// Return the resulting type when the operands are both block pointers.
- static QualType checkConditionalBlockPointerCompatibility(Sema &S,
- ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
- if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
- QualType destType = S.Context.getPointerType(S.Context.VoidTy);
- LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
- RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
- return destType;
- }
- S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return QualType();
- }
- // We have 2 block pointer types.
- return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
- }
- /// Return the resulting type when the operands are both pointers.
- static QualType
- checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- // get the pointer types
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- // get the "pointed to" types
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
- // ignore qualifiers on void (C99 6.5.15p3, clause 6)
- if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
- // Figure out necessary qualifiers (C99 6.5.15p6)
- QualType destPointee
- = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = S.Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
- // Promote to void*.
- RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
- return destType;
- }
- if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
- QualType destPointee
- = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = S.Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
- // Promote to void*.
- LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
- return destType;
- }
- return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
- }
- /// Return false if the first expression is not an integer and the second
- /// expression is not a pointer, true otherwise.
- static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
- Expr* PointerExpr, SourceLocation Loc,
- bool IsIntFirstExpr) {
- if (!PointerExpr->getType()->isPointerType() ||
- !Int.get()->getType()->isIntegerType())
- return false;
- Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
- Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
- S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
- << Expr1->getType() << Expr2->getType()
- << Expr1->getSourceRange() << Expr2->getSourceRange();
- Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
- CK_IntegralToPointer);
- return true;
- }
- /// Simple conversion between integer and floating point types.
- ///
- /// Used when handling the OpenCL conditional operator where the
- /// condition is a vector while the other operands are scalar.
- ///
- /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
- /// types are either integer or floating type. Between the two
- /// operands, the type with the higher rank is defined as the "result
- /// type". The other operand needs to be promoted to the same type. No
- /// other type promotion is allowed. We cannot use
- /// UsualArithmeticConversions() for this purpose, since it always
- /// promotes promotable types.
- static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation QuestionLoc) {
- LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType LHSType =
- S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
- QualType RHSType =
- S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
- if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
- S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
- << LHSType << LHS.get()->getSourceRange();
- return QualType();
- }
- if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
- S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
- << RHSType << RHS.get()->getSourceRange();
- return QualType();
- }
- // If both types are identical, no conversion is needed.
- if (LHSType == RHSType)
- return LHSType;
- // Now handle "real" floating types (i.e. float, double, long double).
- if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
- return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
- /*IsCompAssign = */ false);
- // Finally, we have two differing integer types.
- return handleIntegerConversion<doIntegralCast, doIntegralCast>
- (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
- }
- /// Convert scalar operands to a vector that matches the
- /// condition in length.
- ///
- /// Used when handling the OpenCL conditional operator where the
- /// condition is a vector while the other operands are scalar.
- ///
- /// We first compute the "result type" for the scalar operands
- /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
- /// into a vector of that type where the length matches the condition
- /// vector type. s6.11.6 requires that the element types of the result
- /// and the condition must have the same number of bits.
- static QualType
- OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
- QualType CondTy, SourceLocation QuestionLoc) {
- QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
- if (ResTy.isNull()) return QualType();
- const VectorType *CV = CondTy->getAs<VectorType>();
- assert(CV);
- // Determine the vector result type
- unsigned NumElements = CV->getNumElements();
- QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
- // Ensure that all types have the same number of bits
- if (S.Context.getTypeSize(CV->getElementType())
- != S.Context.getTypeSize(ResTy)) {
- // Since VectorTy is created internally, it does not pretty print
- // with an OpenCL name. Instead, we just print a description.
- std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
- SmallString<64> Str;
- llvm::raw_svector_ostream OS(Str);
- OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
- S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
- << CondTy << OS.str();
- return QualType();
- }
- // Convert operands to the vector result type
- LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
- RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
- return VectorTy;
- }
- /// Return false if this is a valid OpenCL condition vector
- static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
- SourceLocation QuestionLoc) {
- // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
- // integral type.
- const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
- assert(CondTy);
- QualType EleTy = CondTy->getElementType();
- if (EleTy->isIntegerType()) return false;
- S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
- << Cond->getType() << Cond->getSourceRange();
- return true;
- }
- /// Return false if the vector condition type and the vector
- /// result type are compatible.
- ///
- /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
- /// number of elements, and their element types have the same number
- /// of bits.
- static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
- SourceLocation QuestionLoc) {
- const VectorType *CV = CondTy->getAs<VectorType>();
- const VectorType *RV = VecResTy->getAs<VectorType>();
- assert(CV && RV);
- if (CV->getNumElements() != RV->getNumElements()) {
- S.Diag(QuestionLoc, diag::err_conditional_vector_size)
- << CondTy << VecResTy;
- return true;
- }
- QualType CVE = CV->getElementType();
- QualType RVE = RV->getElementType();
- if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
- S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
- << CondTy << VecResTy;
- return true;
- }
- return false;
- }
- /// Return the resulting type for the conditional operator in
- /// OpenCL (aka "ternary selection operator", OpenCL v1.1
- /// s6.3.i) when the condition is a vector type.
- static QualType
- OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
- ExprResult &LHS, ExprResult &RHS,
- SourceLocation QuestionLoc) {
- Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
- if (Cond.isInvalid())
- return QualType();
- QualType CondTy = Cond.get()->getType();
- if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
- return QualType();
- // If either operand is a vector then find the vector type of the
- // result as specified in OpenCL v1.1 s6.3.i.
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
- /*isCompAssign*/false,
- /*AllowBothBool*/true,
- /*AllowBoolConversions*/false);
- if (VecResTy.isNull()) return QualType();
- // The result type must match the condition type as specified in
- // OpenCL v1.1 s6.11.6.
- if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
- return QualType();
- return VecResTy;
- }
- // Both operands are scalar.
- return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
- }
- /// Return true if the Expr is block type
- static bool checkBlockType(Sema &S, const Expr *E) {
- if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
- QualType Ty = CE->getCallee()->getType();
- if (Ty->isBlockPointerType()) {
- S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
- return true;
- }
- }
- return false;
- }
- /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
- /// In that case, LHS = cond.
- /// C99 6.5.15
- QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
- ExprResult &RHS, ExprValueKind &VK,
- ExprObjectKind &OK,
- SourceLocation QuestionLoc) {
- ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
- if (!LHSResult.isUsable()) return QualType();
- LHS = LHSResult;
- ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
- if (!RHSResult.isUsable()) return QualType();
- RHS = RHSResult;
- // C++ is sufficiently different to merit its own checker.
- if (getLangOpts().CPlusPlus)
- return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
- VK = VK_RValue;
- OK = OK_Ordinary;
- // The OpenCL operator with a vector condition is sufficiently
- // different to merit its own checker.
- if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
- return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
- // First, check the condition.
- Cond = UsualUnaryConversions(Cond.get());
- if (Cond.isInvalid())
- return QualType();
- if (checkCondition(*this, Cond.get(), QuestionLoc))
- return QualType();
- // Now check the two expressions.
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType())
- return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
- /*AllowBothBool*/true,
- /*AllowBoolConversions*/false);
- QualType ResTy = UsualArithmeticConversions(LHS, RHS);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- // Diagnose attempts to convert between __float128 and long double where
- // such conversions currently can't be handled.
- if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
- Diag(QuestionLoc,
- diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
- // selection operator (?:).
- if (getLangOpts().OpenCL &&
- (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
- return QualType();
- }
- // If both operands have arithmetic type, do the usual arithmetic conversions
- // to find a common type: C99 6.5.15p3,5.
- if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
- LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
- RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
- return ResTy;
- }
- // If both operands are the same structure or union type, the result is that
- // type.
- if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
- if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
- if (LHSRT->getDecl() == RHSRT->getDecl())
- // "If both the operands have structure or union type, the result has
- // that type." This implies that CV qualifiers are dropped.
- return LHSTy.getUnqualifiedType();
- // FIXME: Type of conditional expression must be complete in C mode.
- }
- // C99 6.5.15p5: "If both operands have void type, the result has void type."
- // The following || allows only one side to be void (a GCC-ism).
- if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
- return checkConditionalVoidType(*this, LHS, RHS);
- }
- // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
- // the type of the other operand."
- if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
- if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
- // All objective-c pointer type analysis is done here.
- QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
- QuestionLoc);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (!compositeType.isNull())
- return compositeType;
- // Handle block pointer types.
- if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
- return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
- QuestionLoc);
- // Check constraints for C object pointers types (C99 6.5.15p3,6).
- if (LHSTy->isPointerType() && RHSTy->isPointerType())
- return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
- QuestionLoc);
- // GCC compatibility: soften pointer/integer mismatch. Note that
- // null pointers have been filtered out by this point.
- if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
- /*IsIntFirstExpr=*/true))
- return RHSTy;
- if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
- /*IsIntFirstExpr=*/false))
- return LHSTy;
- // Emit a better diagnostic if one of the expressions is a null pointer
- // constant and the other is not a pointer type. In this case, the user most
- // likely forgot to take the address of the other expression.
- if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
- return QualType();
- // Otherwise, the operands are not compatible.
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return QualType();
- }
- /// FindCompositeObjCPointerType - Helper method to find composite type of
- /// two objective-c pointer types of the two input expressions.
- QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
- SourceLocation QuestionLoc) {
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- // Handle things like Class and struct objc_class*. Here we case the result
- // to the pseudo-builtin, because that will be implicitly cast back to the
- // redefinition type if an attempt is made to access its fields.
- if (LHSTy->isObjCClassType() &&
- (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
- RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
- return LHSTy;
- }
- if (RHSTy->isObjCClassType() &&
- (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
- LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
- return RHSTy;
- }
- // And the same for struct objc_object* / id
- if (LHSTy->isObjCIdType() &&
- (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
- RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
- return LHSTy;
- }
- if (RHSTy->isObjCIdType() &&
- (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
- LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
- return RHSTy;
- }
- // And the same for struct objc_selector* / SEL
- if (Context.isObjCSelType(LHSTy) &&
- (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
- RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
- return LHSTy;
- }
- if (Context.isObjCSelType(RHSTy) &&
- (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
- LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
- return RHSTy;
- }
- // Check constraints for Objective-C object pointers types.
- if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical object pointer types are always compatible.
- return LHSTy;
- }
- const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
- QualType compositeType = LHSTy;
- // If both operands are interfaces and either operand can be
- // assigned to the other, use that type as the composite
- // type. This allows
- // xxx ? (A*) a : (B*) b
- // where B is a subclass of A.
- //
- // Additionally, as for assignment, if either type is 'id'
- // allow silent coercion. Finally, if the types are
- // incompatible then make sure to use 'id' as the composite
- // type so the result is acceptable for sending messages to.
- // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
- // It could return the composite type.
- if (!(compositeType =
- Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
- // Nothing more to do.
- } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
- compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
- } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
- compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
- } else if ((LHSTy->isObjCQualifiedIdType() ||
- RHSTy->isObjCQualifiedIdType()) &&
- Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
- // Need to handle "id<xx>" explicitly.
- // GCC allows qualified id and any Objective-C type to devolve to
- // id. Currently localizing to here until clear this should be
- // part of ObjCQualifiedIdTypesAreCompatible.
- compositeType = Context.getObjCIdType();
- } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
- compositeType = Context.getObjCIdType();
- } else {
- Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- QualType incompatTy = Context.getObjCIdType();
- LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
- RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
- return incompatTy;
- }
- // The object pointer types are compatible.
- LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
- RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
- return compositeType;
- }
- // Check Objective-C object pointer types and 'void *'
- if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
- if (getLangOpts().ObjCAutoRefCount) {
- // ARC forbids the implicit conversion of object pointers to 'void *',
- // so these types are not compatible.
- Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- LHS = RHS = true;
- return QualType();
- }
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType destPointee
- = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
- // Promote to void*.
- RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
- return destType;
- }
- if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
- if (getLangOpts().ObjCAutoRefCount) {
- // ARC forbids the implicit conversion of object pointers to 'void *',
- // so these types are not compatible.
- Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- LHS = RHS = true;
- return QualType();
- }
- QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
- QualType destPointee
- = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
- // Promote to void*.
- LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
- return destType;
- }
- return QualType();
- }
- /// SuggestParentheses - Emit a note with a fixit hint that wraps
- /// ParenRange in parentheses.
- static void SuggestParentheses(Sema &Self, SourceLocation Loc,
- const PartialDiagnostic &Note,
- SourceRange ParenRange) {
- SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
- if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
- EndLoc.isValid()) {
- Self.Diag(Loc, Note)
- << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
- << FixItHint::CreateInsertion(EndLoc, ")");
- } else {
- // We can't display the parentheses, so just show the bare note.
- Self.Diag(Loc, Note) << ParenRange;
- }
- }
- static bool IsArithmeticOp(BinaryOperatorKind Opc) {
- return BinaryOperator::isAdditiveOp(Opc) ||
- BinaryOperator::isMultiplicativeOp(Opc) ||
- BinaryOperator::isShiftOp(Opc);
- }
- /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
- /// expression, either using a built-in or overloaded operator,
- /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
- /// expression.
- static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
- Expr **RHSExprs) {
- // Don't strip parenthesis: we should not warn if E is in parenthesis.
- E = E->IgnoreImpCasts();
- E = E->IgnoreConversionOperator();
- E = E->IgnoreImpCasts();
- if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
- E = MTE->GetTemporaryExpr();
- E = E->IgnoreImpCasts();
- }
- // Built-in binary operator.
- if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
- if (IsArithmeticOp(OP->getOpcode())) {
- *Opcode = OP->getOpcode();
- *RHSExprs = OP->getRHS();
- return true;
- }
- }
- // Overloaded operator.
- if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
- if (Call->getNumArgs() != 2)
- return false;
- // Make sure this is really a binary operator that is safe to pass into
- // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
- OverloadedOperatorKind OO = Call->getOperator();
- if (OO < OO_Plus || OO > OO_Arrow ||
- OO == OO_PlusPlus || OO == OO_MinusMinus)
- return false;
- BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
- if (IsArithmeticOp(OpKind)) {
- *Opcode = OpKind;
- *RHSExprs = Call->getArg(1);
- return true;
- }
- }
- return false;
- }
- /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
- /// or is a logical expression such as (x==y) which has int type, but is
- /// commonly interpreted as boolean.
- static bool ExprLooksBoolean(Expr *E) {
- E = E->IgnoreParenImpCasts();
- if (E->getType()->isBooleanType())
- return true;
- if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
- return OP->isComparisonOp() || OP->isLogicalOp();
- if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
- return OP->getOpcode() == UO_LNot;
- if (E->getType()->isPointerType())
- return true;
- // FIXME: What about overloaded operator calls returning "unspecified boolean
- // type"s (commonly pointer-to-members)?
- return false;
- }
- /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
- /// and binary operator are mixed in a way that suggests the programmer assumed
- /// the conditional operator has higher precedence, for example:
- /// "int x = a + someBinaryCondition ? 1 : 2".
- static void DiagnoseConditionalPrecedence(Sema &Self,
- SourceLocation OpLoc,
- Expr *Condition,
- Expr *LHSExpr,
- Expr *RHSExpr) {
- BinaryOperatorKind CondOpcode;
- Expr *CondRHS;
- if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
- return;
- if (!ExprLooksBoolean(CondRHS))
- return;
- // The condition is an arithmetic binary expression, with a right-
- // hand side that looks boolean, so warn.
- Self.Diag(OpLoc, diag::warn_precedence_conditional)
- << Condition->getSourceRange()
- << BinaryOperator::getOpcodeStr(CondOpcode);
- SuggestParentheses(
- Self, OpLoc,
- Self.PDiag(diag::note_precedence_silence)
- << BinaryOperator::getOpcodeStr(CondOpcode),
- SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_conditional_first),
- SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
- }
- /// Compute the nullability of a conditional expression.
- static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
- QualType LHSTy, QualType RHSTy,
- ASTContext &Ctx) {
- if (!ResTy->isAnyPointerType())
- return ResTy;
- auto GetNullability = [&Ctx](QualType Ty) {
- Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
- if (Kind)
- return *Kind;
- return NullabilityKind::Unspecified;
- };
- auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
- NullabilityKind MergedKind;
- // Compute nullability of a binary conditional expression.
- if (IsBin) {
- if (LHSKind == NullabilityKind::NonNull)
- MergedKind = NullabilityKind::NonNull;
- else
- MergedKind = RHSKind;
- // Compute nullability of a normal conditional expression.
- } else {
- if (LHSKind == NullabilityKind::Nullable ||
- RHSKind == NullabilityKind::Nullable)
- MergedKind = NullabilityKind::Nullable;
- else if (LHSKind == NullabilityKind::NonNull)
- MergedKind = RHSKind;
- else if (RHSKind == NullabilityKind::NonNull)
- MergedKind = LHSKind;
- else
- MergedKind = NullabilityKind::Unspecified;
- }
- // Return if ResTy already has the correct nullability.
- if (GetNullability(ResTy) == MergedKind)
- return ResTy;
- // Strip all nullability from ResTy.
- while (ResTy->getNullability(Ctx))
- ResTy = ResTy.getSingleStepDesugaredType(Ctx);
- // Create a new AttributedType with the new nullability kind.
- auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
- return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
- }
- /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
- /// in the case of a the GNU conditional expr extension.
- ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
- SourceLocation ColonLoc,
- Expr *CondExpr, Expr *LHSExpr,
- Expr *RHSExpr) {
- if (!getLangOpts().CPlusPlus) {
- // C cannot handle TypoExpr nodes in the condition because it
- // doesn't handle dependent types properly, so make sure any TypoExprs have
- // been dealt with before checking the operands.
- ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
- ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
- ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
- if (!CondResult.isUsable())
- return ExprError();
- if (LHSExpr) {
- if (!LHSResult.isUsable())
- return ExprError();
- }
- if (!RHSResult.isUsable())
- return ExprError();
- CondExpr = CondResult.get();
- LHSExpr = LHSResult.get();
- RHSExpr = RHSResult.get();
- }
- // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
- // was the condition.
- OpaqueValueExpr *opaqueValue = nullptr;
- Expr *commonExpr = nullptr;
- if (!LHSExpr) {
- commonExpr = CondExpr;
- // Lower out placeholder types first. This is important so that we don't
- // try to capture a placeholder. This happens in few cases in C++; such
- // as Objective-C++'s dictionary subscripting syntax.
- if (commonExpr->hasPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(commonExpr);
- if (!result.isUsable()) return ExprError();
- commonExpr = result.get();
- }
- // We usually want to apply unary conversions *before* saving, except
- // in the special case of a C++ l-value conditional.
- if (!(getLangOpts().CPlusPlus
- && !commonExpr->isTypeDependent()
- && commonExpr->getValueKind() == RHSExpr->getValueKind()
- && commonExpr->isGLValue()
- && commonExpr->isOrdinaryOrBitFieldObject()
- && RHSExpr->isOrdinaryOrBitFieldObject()
- && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
- ExprResult commonRes = UsualUnaryConversions(commonExpr);
- if (commonRes.isInvalid())
- return ExprError();
- commonExpr = commonRes.get();
- }
- // If the common expression is a class or array prvalue, materialize it
- // so that we can safely refer to it multiple times.
- if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
- commonExpr->getType()->isArrayType())) {
- ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
- if (MatExpr.isInvalid())
- return ExprError();
- commonExpr = MatExpr.get();
- }
- opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
- commonExpr->getType(),
- commonExpr->getValueKind(),
- commonExpr->getObjectKind(),
- commonExpr);
- LHSExpr = CondExpr = opaqueValue;
- }
- QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
- QualType result = CheckConditionalOperands(Cond, LHS, RHS,
- VK, OK, QuestionLoc);
- if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
- RHS.isInvalid())
- return ExprError();
- DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
- RHS.get());
- CheckBoolLikeConversion(Cond.get(), QuestionLoc);
- result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
- Context);
- if (!commonExpr)
- return new (Context)
- ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
- RHS.get(), result, VK, OK);
- return new (Context) BinaryConditionalOperator(
- commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
- ColonLoc, result, VK, OK);
- }
- // checkPointerTypesForAssignment - This is a very tricky routine (despite
- // being closely modeled after the C99 spec:-). The odd characteristic of this
- // routine is it effectively iqnores the qualifiers on the top level pointee.
- // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
- // FIXME: add a couple examples in this comment.
- static Sema::AssignConvertType
- checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
- assert(LHSType.isCanonical() && "LHS not canonicalized!");
- assert(RHSType.isCanonical() && "RHS not canonicalized!");
- // get the "pointed to" type (ignoring qualifiers at the top level)
- const Type *lhptee, *rhptee;
- Qualifiers lhq, rhq;
- std::tie(lhptee, lhq) =
- cast<PointerType>(LHSType)->getPointeeType().split().asPair();
- std::tie(rhptee, rhq) =
- cast<PointerType>(RHSType)->getPointeeType().split().asPair();
- Sema::AssignConvertType ConvTy = Sema::Compatible;
- // C99 6.5.16.1p1: This following citation is common to constraints
- // 3 & 4 (below). ...and the type *pointed to* by the left has all the
- // qualifiers of the type *pointed to* by the right;
- // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
- if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
- lhq.compatiblyIncludesObjCLifetime(rhq)) {
- // Ignore lifetime for further calculation.
- lhq.removeObjCLifetime();
- rhq.removeObjCLifetime();
- }
- if (!lhq.compatiblyIncludes(rhq)) {
- // Treat address-space mismatches as fatal.
- if (!lhq.isAddressSpaceSupersetOf(rhq))
- return Sema::IncompatiblePointerDiscardsQualifiers;
- // It's okay to add or remove GC or lifetime qualifiers when converting to
- // and from void*.
- else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
- .compatiblyIncludes(
- rhq.withoutObjCGCAttr().withoutObjCLifetime())
- && (lhptee->isVoidType() || rhptee->isVoidType()))
- ; // keep old
- // Treat lifetime mismatches as fatal.
- else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
- ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
- // For GCC/MS compatibility, other qualifier mismatches are treated
- // as still compatible in C.
- else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
- }
- // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
- // incomplete type and the other is a pointer to a qualified or unqualified
- // version of void...
- if (lhptee->isVoidType()) {
- if (rhptee->isIncompleteOrObjectType())
- return ConvTy;
- // As an extension, we allow cast to/from void* to function pointer.
- assert(rhptee->isFunctionType());
- return Sema::FunctionVoidPointer;
- }
- if (rhptee->isVoidType()) {
- if (lhptee->isIncompleteOrObjectType())
- return ConvTy;
- // As an extension, we allow cast to/from void* to function pointer.
- assert(lhptee->isFunctionType());
- return Sema::FunctionVoidPointer;
- }
- // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
- // unqualified versions of compatible types, ...
- QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
- if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
- // Check if the pointee types are compatible ignoring the sign.
- // We explicitly check for char so that we catch "char" vs
- // "unsigned char" on systems where "char" is unsigned.
- if (lhptee->isCharType())
- ltrans = S.Context.UnsignedCharTy;
- else if (lhptee->hasSignedIntegerRepresentation())
- ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
- if (rhptee->isCharType())
- rtrans = S.Context.UnsignedCharTy;
- else if (rhptee->hasSignedIntegerRepresentation())
- rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
- if (ltrans == rtrans) {
- // Types are compatible ignoring the sign. Qualifier incompatibility
- // takes priority over sign incompatibility because the sign
- // warning can be disabled.
- if (ConvTy != Sema::Compatible)
- return ConvTy;
- return Sema::IncompatiblePointerSign;
- }
- // If we are a multi-level pointer, it's possible that our issue is simply
- // one of qualification - e.g. char ** -> const char ** is not allowed. If
- // the eventual target type is the same and the pointers have the same
- // level of indirection, this must be the issue.
- if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
- do {
- std::tie(lhptee, lhq) =
- cast<PointerType>(lhptee)->getPointeeType().split().asPair();
- std::tie(rhptee, rhq) =
- cast<PointerType>(rhptee)->getPointeeType().split().asPair();
- // Inconsistent address spaces at this point is invalid, even if the
- // address spaces would be compatible.
- // FIXME: This doesn't catch address space mismatches for pointers of
- // different nesting levels, like:
- // __local int *** a;
- // int ** b = a;
- // It's not clear how to actually determine when such pointers are
- // invalidly incompatible.
- if (lhq.getAddressSpace() != rhq.getAddressSpace())
- return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
- } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
- if (lhptee == rhptee)
- return Sema::IncompatibleNestedPointerQualifiers;
- }
- // General pointer incompatibility takes priority over qualifiers.
- return Sema::IncompatiblePointer;
- }
- if (!S.getLangOpts().CPlusPlus &&
- S.IsFunctionConversion(ltrans, rtrans, ltrans))
- return Sema::IncompatiblePointer;
- return ConvTy;
- }
- /// checkBlockPointerTypesForAssignment - This routine determines whether two
- /// block pointer types are compatible or whether a block and normal pointer
- /// are compatible. It is more restrict than comparing two function pointer
- // types.
- static Sema::AssignConvertType
- checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
- QualType RHSType) {
- assert(LHSType.isCanonical() && "LHS not canonicalized!");
- assert(RHSType.isCanonical() && "RHS not canonicalized!");
- QualType lhptee, rhptee;
- // get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
- rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
- // In C++, the types have to match exactly.
- if (S.getLangOpts().CPlusPlus)
- return Sema::IncompatibleBlockPointer;
- Sema::AssignConvertType ConvTy = Sema::Compatible;
- // For blocks we enforce that qualifiers are identical.
- Qualifiers LQuals = lhptee.getLocalQualifiers();
- Qualifiers RQuals = rhptee.getLocalQualifiers();
- if (S.getLangOpts().OpenCL) {
- LQuals.removeAddressSpace();
- RQuals.removeAddressSpace();
- }
- if (LQuals != RQuals)
- ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
- // FIXME: OpenCL doesn't define the exact compile time semantics for a block
- // assignment.
- // The current behavior is similar to C++ lambdas. A block might be
- // assigned to a variable iff its return type and parameters are compatible
- // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
- // an assignment. Presumably it should behave in way that a function pointer
- // assignment does in C, so for each parameter and return type:
- // * CVR and address space of LHS should be a superset of CVR and address
- // space of RHS.
- // * unqualified types should be compatible.
- if (S.getLangOpts().OpenCL) {
- if (!S.Context.typesAreBlockPointerCompatible(
- S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
- S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
- return Sema::IncompatibleBlockPointer;
- } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
- return Sema::IncompatibleBlockPointer;
- return ConvTy;
- }
- /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
- /// for assignment compatibility.
- static Sema::AssignConvertType
- checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
- QualType RHSType) {
- assert(LHSType.isCanonical() && "LHS was not canonicalized!");
- assert(RHSType.isCanonical() && "RHS was not canonicalized!");
- if (LHSType->isObjCBuiltinType()) {
- // Class is not compatible with ObjC object pointers.
- if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
- !RHSType->isObjCQualifiedClassType())
- return Sema::IncompatiblePointer;
- return Sema::Compatible;
- }
- if (RHSType->isObjCBuiltinType()) {
- if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
- !LHSType->isObjCQualifiedClassType())
- return Sema::IncompatiblePointer;
- return Sema::Compatible;
- }
- QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
- if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
- // make an exception for id<P>
- !LHSType->isObjCQualifiedIdType())
- return Sema::CompatiblePointerDiscardsQualifiers;
- if (S.Context.typesAreCompatible(LHSType, RHSType))
- return Sema::Compatible;
- if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
- return Sema::IncompatibleObjCQualifiedId;
- return Sema::IncompatiblePointer;
- }
- Sema::AssignConvertType
- Sema::CheckAssignmentConstraints(SourceLocation Loc,
- QualType LHSType, QualType RHSType) {
- // Fake up an opaque expression. We don't actually care about what
- // cast operations are required, so if CheckAssignmentConstraints
- // adds casts to this they'll be wasted, but fortunately that doesn't
- // usually happen on valid code.
- OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
- ExprResult RHSPtr = &RHSExpr;
- CastKind K;
- return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
- }
- /// This helper function returns true if QT is a vector type that has element
- /// type ElementType.
- static bool isVector(QualType QT, QualType ElementType) {
- if (const VectorType *VT = QT->getAs<VectorType>())
- return VT->getElementType() == ElementType;
- return false;
- }
- /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
- /// has code to accommodate several GCC extensions when type checking
- /// pointers. Here are some objectionable examples that GCC considers warnings:
- ///
- /// int a, *pint;
- /// short *pshort;
- /// struct foo *pfoo;
- ///
- /// pint = pshort; // warning: assignment from incompatible pointer type
- /// a = pint; // warning: assignment makes integer from pointer without a cast
- /// pint = a; // warning: assignment makes pointer from integer without a cast
- /// pint = pfoo; // warning: assignment from incompatible pointer type
- ///
- /// As a result, the code for dealing with pointers is more complex than the
- /// C99 spec dictates.
- ///
- /// Sets 'Kind' for any result kind except Incompatible.
- Sema::AssignConvertType
- Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
- CastKind &Kind, bool ConvertRHS) {
- QualType RHSType = RHS.get()->getType();
- QualType OrigLHSType = LHSType;
- // Get canonical types. We're not formatting these types, just comparing
- // them.
- LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
- RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
- // Common case: no conversion required.
- if (LHSType == RHSType) {
- Kind = CK_NoOp;
- return Compatible;
- }
- // If we have an atomic type, try a non-atomic assignment, then just add an
- // atomic qualification step.
- if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
- Sema::AssignConvertType result =
- CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
- if (result != Compatible)
- return result;
- if (Kind != CK_NoOp && ConvertRHS)
- RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
- Kind = CK_NonAtomicToAtomic;
- return Compatible;
- }
- // If the left-hand side is a reference type, then we are in a
- // (rare!) case where we've allowed the use of references in C,
- // e.g., as a parameter type in a built-in function. In this case,
- // just make sure that the type referenced is compatible with the
- // right-hand side type. The caller is responsible for adjusting
- // LHSType so that the resulting expression does not have reference
- // type.
- if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
- if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
- Kind = CK_LValueBitCast;
- return Compatible;
- }
- return Incompatible;
- }
- // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
- // to the same ExtVector type.
- if (LHSType->isExtVectorType()) {
- if (RHSType->isExtVectorType())
- return Incompatible;
- if (RHSType->isArithmeticType()) {
- // CK_VectorSplat does T -> vector T, so first cast to the element type.
- if (ConvertRHS)
- RHS = prepareVectorSplat(LHSType, RHS.get());
- Kind = CK_VectorSplat;
- return Compatible;
- }
- }
- // Conversions to or from vector type.
- if (LHSType->isVectorType() || RHSType->isVectorType()) {
- if (LHSType->isVectorType() && RHSType->isVectorType()) {
- // Allow assignments of an AltiVec vector type to an equivalent GCC
- // vector type and vice versa
- if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
- Kind = CK_BitCast;
- return Compatible;
- }
- // If we are allowing lax vector conversions, and LHS and RHS are both
- // vectors, the total size only needs to be the same. This is a bitcast;
- // no bits are changed but the result type is different.
- if (isLaxVectorConversion(RHSType, LHSType)) {
- Kind = CK_BitCast;
- return IncompatibleVectors;
- }
- }
- // When the RHS comes from another lax conversion (e.g. binops between
- // scalars and vectors) the result is canonicalized as a vector. When the
- // LHS is also a vector, the lax is allowed by the condition above. Handle
- // the case where LHS is a scalar.
- if (LHSType->isScalarType()) {
- const VectorType *VecType = RHSType->getAs<VectorType>();
- if (VecType && VecType->getNumElements() == 1 &&
- isLaxVectorConversion(RHSType, LHSType)) {
- ExprResult *VecExpr = &RHS;
- *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
- Kind = CK_BitCast;
- return Compatible;
- }
- }
- return Incompatible;
- }
- // Diagnose attempts to convert between __float128 and long double where
- // such conversions currently can't be handled.
- if (unsupportedTypeConversion(*this, LHSType, RHSType))
- return Incompatible;
- // Disallow assigning a _Complex to a real type in C++ mode since it simply
- // discards the imaginary part.
- if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
- !LHSType->getAs<ComplexType>())
- return Incompatible;
- // Arithmetic conversions.
- if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
- !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
- if (ConvertRHS)
- Kind = PrepareScalarCast(RHS, LHSType);
- return Compatible;
- }
- // Conversions to normal pointers.
- if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
- // U* -> T*
- if (isa<PointerType>(RHSType)) {
- LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
- LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
- if (AddrSpaceL != AddrSpaceR)
- Kind = CK_AddressSpaceConversion;
- else if (Context.hasCvrSimilarType(RHSType, LHSType))
- Kind = CK_NoOp;
- else
- Kind = CK_BitCast;
- return checkPointerTypesForAssignment(*this, LHSType, RHSType);
- }
- // int -> T*
- if (RHSType->isIntegerType()) {
- Kind = CK_IntegralToPointer; // FIXME: null?
- return IntToPointer;
- }
- // C pointers are not compatible with ObjC object pointers,
- // with two exceptions:
- if (isa<ObjCObjectPointerType>(RHSType)) {
- // - conversions to void*
- if (LHSPointer->getPointeeType()->isVoidType()) {
- Kind = CK_BitCast;
- return Compatible;
- }
- // - conversions from 'Class' to the redefinition type
- if (RHSType->isObjCClassType() &&
- Context.hasSameType(LHSType,
- Context.getObjCClassRedefinitionType())) {
- Kind = CK_BitCast;
- return Compatible;
- }
- Kind = CK_BitCast;
- return IncompatiblePointer;
- }
- // U^ -> void*
- if (RHSType->getAs<BlockPointerType>()) {
- if (LHSPointer->getPointeeType()->isVoidType()) {
- LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
- LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
- ->getPointeeType()
- .getAddressSpace();
- Kind =
- AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
- return Compatible;
- }
- }
- return Incompatible;
- }
- // Conversions to block pointers.
- if (isa<BlockPointerType>(LHSType)) {
- // U^ -> T^
- if (RHSType->isBlockPointerType()) {
- LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
- ->getPointeeType()
- .getAddressSpace();
- LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
- ->getPointeeType()
- .getAddressSpace();
- Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
- return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
- }
- // int or null -> T^
- if (RHSType->isIntegerType()) {
- Kind = CK_IntegralToPointer; // FIXME: null
- return IntToBlockPointer;
- }
- // id -> T^
- if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
- Kind = CK_AnyPointerToBlockPointerCast;
- return Compatible;
- }
- // void* -> T^
- if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
- if (RHSPT->getPointeeType()->isVoidType()) {
- Kind = CK_AnyPointerToBlockPointerCast;
- return Compatible;
- }
- return Incompatible;
- }
- // Conversions to Objective-C pointers.
- if (isa<ObjCObjectPointerType>(LHSType)) {
- // A* -> B*
- if (RHSType->isObjCObjectPointerType()) {
- Kind = CK_BitCast;
- Sema::AssignConvertType result =
- checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
- if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
- result == Compatible &&
- !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
- result = IncompatibleObjCWeakRef;
- return result;
- }
- // int or null -> A*
- if (RHSType->isIntegerType()) {
- Kind = CK_IntegralToPointer; // FIXME: null
- return IntToPointer;
- }
- // In general, C pointers are not compatible with ObjC object pointers,
- // with two exceptions:
- if (isa<PointerType>(RHSType)) {
- Kind = CK_CPointerToObjCPointerCast;
- // - conversions from 'void*'
- if (RHSType->isVoidPointerType()) {
- return Compatible;
- }
- // - conversions to 'Class' from its redefinition type
- if (LHSType->isObjCClassType() &&
- Context.hasSameType(RHSType,
- Context.getObjCClassRedefinitionType())) {
- return Compatible;
- }
- return IncompatiblePointer;
- }
- // Only under strict condition T^ is compatible with an Objective-C pointer.
- if (RHSType->isBlockPointerType() &&
- LHSType->isBlockCompatibleObjCPointerType(Context)) {
- if (ConvertRHS)
- maybeExtendBlockObject(RHS);
- Kind = CK_BlockPointerToObjCPointerCast;
- return Compatible;
- }
- return Incompatible;
- }
- // Conversions from pointers that are not covered by the above.
- if (isa<PointerType>(RHSType)) {
- // T* -> _Bool
- if (LHSType == Context.BoolTy) {
- Kind = CK_PointerToBoolean;
- return Compatible;
- }
- // T* -> int
- if (LHSType->isIntegerType()) {
- Kind = CK_PointerToIntegral;
- return PointerToInt;
- }
- return Incompatible;
- }
- // Conversions from Objective-C pointers that are not covered by the above.
- if (isa<ObjCObjectPointerType>(RHSType)) {
- // T* -> _Bool
- if (LHSType == Context.BoolTy) {
- Kind = CK_PointerToBoolean;
- return Compatible;
- }
- // T* -> int
- if (LHSType->isIntegerType()) {
- Kind = CK_PointerToIntegral;
- return PointerToInt;
- }
- return Incompatible;
- }
- // struct A -> struct B
- if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
- if (Context.typesAreCompatible(LHSType, RHSType)) {
- Kind = CK_NoOp;
- return Compatible;
- }
- }
- if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
- Kind = CK_IntToOCLSampler;
- return Compatible;
- }
- return Incompatible;
- }
- /// Constructs a transparent union from an expression that is
- /// used to initialize the transparent union.
- static void ConstructTransparentUnion(Sema &S, ASTContext &C,
- ExprResult &EResult, QualType UnionType,
- FieldDecl *Field) {
- // Build an initializer list that designates the appropriate member
- // of the transparent union.
- Expr *E = EResult.get();
- InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
- E, SourceLocation());
- Initializer->setType(UnionType);
- Initializer->setInitializedFieldInUnion(Field);
- // Build a compound literal constructing a value of the transparent
- // union type from this initializer list.
- TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
- EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
- VK_RValue, Initializer, false);
- }
- Sema::AssignConvertType
- Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
- ExprResult &RHS) {
- QualType RHSType = RHS.get()->getType();
- // If the ArgType is a Union type, we want to handle a potential
- // transparent_union GCC extension.
- const RecordType *UT = ArgType->getAsUnionType();
- if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
- return Incompatible;
- // The field to initialize within the transparent union.
- RecordDecl *UD = UT->getDecl();
- FieldDecl *InitField = nullptr;
- // It's compatible if the expression matches any of the fields.
- for (auto *it : UD->fields()) {
- if (it->getType()->isPointerType()) {
- // If the transparent union contains a pointer type, we allow:
- // 1) void pointer
- // 2) null pointer constant
- if (RHSType->isPointerType())
- if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
- RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
- InitField = it;
- break;
- }
- if (RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- RHS = ImpCastExprToType(RHS.get(), it->getType(),
- CK_NullToPointer);
- InitField = it;
- break;
- }
- }
- CastKind Kind;
- if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
- == Compatible) {
- RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
- InitField = it;
- break;
- }
- }
- if (!InitField)
- return Incompatible;
- ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
- return Compatible;
- }
- Sema::AssignConvertType
- Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
- bool Diagnose,
- bool DiagnoseCFAudited,
- bool ConvertRHS) {
- // We need to be able to tell the caller whether we diagnosed a problem, if
- // they ask us to issue diagnostics.
- assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
- // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
- // we can't avoid *all* modifications at the moment, so we need some somewhere
- // to put the updated value.
- ExprResult LocalRHS = CallerRHS;
- ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
- if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
- if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
- if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
- !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
- Diag(RHS.get()->getExprLoc(),
- diag::warn_noderef_to_dereferenceable_pointer)
- << RHS.get()->getSourceRange();
- }
- }
- }
- if (getLangOpts().CPlusPlus) {
- if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
- // C++ 5.17p3: If the left operand is not of class type, the
- // expression is implicitly converted (C++ 4) to the
- // cv-unqualified type of the left operand.
- QualType RHSType = RHS.get()->getType();
- if (Diagnose) {
- RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
- AA_Assigning);
- } else {
- ImplicitConversionSequence ICS =
- TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
- /*SuppressUserConversions=*/false,
- /*AllowExplicit=*/false,
- /*InOverloadResolution=*/false,
- /*CStyle=*/false,
- /*AllowObjCWritebackConversion=*/false);
- if (ICS.isFailure())
- return Incompatible;
- RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
- ICS, AA_Assigning);
- }
- if (RHS.isInvalid())
- return Incompatible;
- Sema::AssignConvertType result = Compatible;
- if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
- !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
- result = IncompatibleObjCWeakRef;
- return result;
- }
- // FIXME: Currently, we fall through and treat C++ classes like C
- // structures.
- // FIXME: We also fall through for atomics; not sure what should
- // happen there, though.
- } else if (RHS.get()->getType() == Context.OverloadTy) {
- // As a set of extensions to C, we support overloading on functions. These
- // functions need to be resolved here.
- DeclAccessPair DAP;
- if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
- RHS.get(), LHSType, /*Complain=*/false, DAP))
- RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
- else
- return Incompatible;
- }
- // C99 6.5.16.1p1: the left operand is a pointer and the right is
- // a null pointer constant.
- if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
- LHSType->isBlockPointerType()) &&
- RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- if (Diagnose || ConvertRHS) {
- CastKind Kind;
- CXXCastPath Path;
- CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
- /*IgnoreBaseAccess=*/false, Diagnose);
- if (ConvertRHS)
- RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
- }
- return Compatible;
- }
- // OpenCL queue_t type assignment.
- if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
- Context, Expr::NPC_ValueDependentIsNull)) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
- return Compatible;
- }
- // This check seems unnatural, however it is necessary to ensure the proper
- // conversion of functions/arrays. If the conversion were done for all
- // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
- // expressions that suppress this implicit conversion (&, sizeof).
- //
- // Suppress this for references: C++ 8.5.3p5.
- if (!LHSType->isReferenceType()) {
- // FIXME: We potentially allocate here even if ConvertRHS is false.
- RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
- if (RHS.isInvalid())
- return Incompatible;
- }
- CastKind Kind;
- Sema::AssignConvertType result =
- CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
- // C99 6.5.16.1p2: The value of the right operand is converted to the
- // type of the assignment expression.
- // CheckAssignmentConstraints allows the left-hand side to be a reference,
- // so that we can use references in built-in functions even in C.
- // The getNonReferenceType() call makes sure that the resulting expression
- // does not have reference type.
- if (result != Incompatible && RHS.get()->getType() != LHSType) {
- QualType Ty = LHSType.getNonLValueExprType(Context);
- Expr *E = RHS.get();
- // Check for various Objective-C errors. If we are not reporting
- // diagnostics and just checking for errors, e.g., during overload
- // resolution, return Incompatible to indicate the failure.
- if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
- CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
- Diagnose, DiagnoseCFAudited) != ACR_okay) {
- if (!Diagnose)
- return Incompatible;
- }
- if (getLangOpts().ObjC &&
- (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
- E->getType(), E, Diagnose) ||
- ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
- if (!Diagnose)
- return Incompatible;
- // Replace the expression with a corrected version and continue so we
- // can find further errors.
- RHS = E;
- return Compatible;
- }
- if (ConvertRHS)
- RHS = ImpCastExprToType(E, Ty, Kind);
- }
- return result;
- }
- namespace {
- /// The original operand to an operator, prior to the application of the usual
- /// arithmetic conversions and converting the arguments of a builtin operator
- /// candidate.
- struct OriginalOperand {
- explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
- if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
- Op = MTE->GetTemporaryExpr();
- if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
- Op = BTE->getSubExpr();
- if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
- Orig = ICE->getSubExprAsWritten();
- Conversion = ICE->getConversionFunction();
- }
- }
- QualType getType() const { return Orig->getType(); }
- Expr *Orig;
- NamedDecl *Conversion;
- };
- }
- QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
- ExprResult &RHS) {
- OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
- Diag(Loc, diag::err_typecheck_invalid_operands)
- << OrigLHS.getType() << OrigRHS.getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- // If a user-defined conversion was applied to either of the operands prior
- // to applying the built-in operator rules, tell the user about it.
- if (OrigLHS.Conversion) {
- Diag(OrigLHS.Conversion->getLocation(),
- diag::note_typecheck_invalid_operands_converted)
- << 0 << LHS.get()->getType();
- }
- if (OrigRHS.Conversion) {
- Diag(OrigRHS.Conversion->getLocation(),
- diag::note_typecheck_invalid_operands_converted)
- << 1 << RHS.get()->getType();
- }
- return QualType();
- }
- // Diagnose cases where a scalar was implicitly converted to a vector and
- // diagnose the underlying types. Otherwise, diagnose the error
- // as invalid vector logical operands for non-C++ cases.
- QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
- ExprResult &RHS) {
- QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
- QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
- bool LHSNatVec = LHSType->isVectorType();
- bool RHSNatVec = RHSType->isVectorType();
- if (!(LHSNatVec && RHSNatVec)) {
- Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
- Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
- Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
- << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
- << Vector->getSourceRange();
- return QualType();
- }
- Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
- << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return QualType();
- }
- /// Try to convert a value of non-vector type to a vector type by converting
- /// the type to the element type of the vector and then performing a splat.
- /// If the language is OpenCL, we only use conversions that promote scalar
- /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
- /// for float->int.
- ///
- /// OpenCL V2.0 6.2.6.p2:
- /// An error shall occur if any scalar operand type has greater rank
- /// than the type of the vector element.
- ///
- /// \param scalar - if non-null, actually perform the conversions
- /// \return true if the operation fails (but without diagnosing the failure)
- static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
- QualType scalarTy,
- QualType vectorEltTy,
- QualType vectorTy,
- unsigned &DiagID) {
- // The conversion to apply to the scalar before splatting it,
- // if necessary.
- CastKind scalarCast = CK_NoOp;
- if (vectorEltTy->isIntegralType(S.Context)) {
- if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
- (scalarTy->isIntegerType() &&
- S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
- DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
- return true;
- }
- if (!scalarTy->isIntegralType(S.Context))
- return true;
- scalarCast = CK_IntegralCast;
- } else if (vectorEltTy->isRealFloatingType()) {
- if (scalarTy->isRealFloatingType()) {
- if (S.getLangOpts().OpenCL &&
- S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
- DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
- return true;
- }
- scalarCast = CK_FloatingCast;
- }
- else if (scalarTy->isIntegralType(S.Context))
- scalarCast = CK_IntegralToFloating;
- else
- return true;
- } else {
- return true;
- }
- // Adjust scalar if desired.
- if (scalar) {
- if (scalarCast != CK_NoOp)
- *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
- *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
- }
- return false;
- }
- /// Convert vector E to a vector with the same number of elements but different
- /// element type.
- static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
- const auto *VecTy = E->getType()->getAs<VectorType>();
- assert(VecTy && "Expression E must be a vector");
- QualType NewVecTy = S.Context.getVectorType(ElementType,
- VecTy->getNumElements(),
- VecTy->getVectorKind());
- // Look through the implicit cast. Return the subexpression if its type is
- // NewVecTy.
- if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
- if (ICE->getSubExpr()->getType() == NewVecTy)
- return ICE->getSubExpr();
- auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
- return S.ImpCastExprToType(E, NewVecTy, Cast);
- }
- /// Test if a (constant) integer Int can be casted to another integer type
- /// IntTy without losing precision.
- static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
- QualType OtherIntTy) {
- QualType IntTy = Int->get()->getType().getUnqualifiedType();
- // Reject cases where the value of the Int is unknown as that would
- // possibly cause truncation, but accept cases where the scalar can be
- // demoted without loss of precision.
- Expr::EvalResult EVResult;
- bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
- int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
- bool IntSigned = IntTy->hasSignedIntegerRepresentation();
- bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
- if (CstInt) {
- // If the scalar is constant and is of a higher order and has more active
- // bits that the vector element type, reject it.
- llvm::APSInt Result = EVResult.Val.getInt();
- unsigned NumBits = IntSigned
- ? (Result.isNegative() ? Result.getMinSignedBits()
- : Result.getActiveBits())
- : Result.getActiveBits();
- if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
- return true;
- // If the signedness of the scalar type and the vector element type
- // differs and the number of bits is greater than that of the vector
- // element reject it.
- return (IntSigned != OtherIntSigned &&
- NumBits > S.Context.getIntWidth(OtherIntTy));
- }
- // Reject cases where the value of the scalar is not constant and it's
- // order is greater than that of the vector element type.
- return (Order < 0);
- }
- /// Test if a (constant) integer Int can be casted to floating point type
- /// FloatTy without losing precision.
- static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
- QualType FloatTy) {
- QualType IntTy = Int->get()->getType().getUnqualifiedType();
- // Determine if the integer constant can be expressed as a floating point
- // number of the appropriate type.
- Expr::EvalResult EVResult;
- bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
- uint64_t Bits = 0;
- if (CstInt) {
- // Reject constants that would be truncated if they were converted to
- // the floating point type. Test by simple to/from conversion.
- // FIXME: Ideally the conversion to an APFloat and from an APFloat
- // could be avoided if there was a convertFromAPInt method
- // which could signal back if implicit truncation occurred.
- llvm::APSInt Result = EVResult.Val.getInt();
- llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
- Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
- llvm::APFloat::rmTowardZero);
- llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
- !IntTy->hasSignedIntegerRepresentation());
- bool Ignored = false;
- Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
- &Ignored);
- if (Result != ConvertBack)
- return true;
- } else {
- // Reject types that cannot be fully encoded into the mantissa of
- // the float.
- Bits = S.Context.getTypeSize(IntTy);
- unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
- S.Context.getFloatTypeSemantics(FloatTy));
- if (Bits > FloatPrec)
- return true;
- }
- return false;
- }
- /// Attempt to convert and splat Scalar into a vector whose types matches
- /// Vector following GCC conversion rules. The rule is that implicit
- /// conversion can occur when Scalar can be casted to match Vector's element
- /// type without causing truncation of Scalar.
- static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
- ExprResult *Vector) {
- QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
- QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
- const VectorType *VT = VectorTy->getAs<VectorType>();
- assert(!isa<ExtVectorType>(VT) &&
- "ExtVectorTypes should not be handled here!");
- QualType VectorEltTy = VT->getElementType();
- // Reject cases where the vector element type or the scalar element type are
- // not integral or floating point types.
- if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
- return true;
- // The conversion to apply to the scalar before splatting it,
- // if necessary.
- CastKind ScalarCast = CK_NoOp;
- // Accept cases where the vector elements are integers and the scalar is
- // an integer.
- // FIXME: Notionally if the scalar was a floating point value with a precise
- // integral representation, we could cast it to an appropriate integer
- // type and then perform the rest of the checks here. GCC will perform
- // this conversion in some cases as determined by the input language.
- // We should accept it on a language independent basis.
- if (VectorEltTy->isIntegralType(S.Context) &&
- ScalarTy->isIntegralType(S.Context) &&
- S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
- if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
- return true;
- ScalarCast = CK_IntegralCast;
- } else if (VectorEltTy->isRealFloatingType()) {
- if (ScalarTy->isRealFloatingType()) {
- // Reject cases where the scalar type is not a constant and has a higher
- // Order than the vector element type.
- llvm::APFloat Result(0.0);
- bool CstScalar = Scalar->get()->EvaluateAsFloat(Result, S.Context);
- int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
- if (!CstScalar && Order < 0)
- return true;
- // If the scalar cannot be safely casted to the vector element type,
- // reject it.
- if (CstScalar) {
- bool Truncated = false;
- Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
- llvm::APFloat::rmNearestTiesToEven, &Truncated);
- if (Truncated)
- return true;
- }
- ScalarCast = CK_FloatingCast;
- } else if (ScalarTy->isIntegralType(S.Context)) {
- if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
- return true;
- ScalarCast = CK_IntegralToFloating;
- } else
- return true;
- }
- // Adjust scalar if desired.
- if (Scalar) {
- if (ScalarCast != CK_NoOp)
- *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
- *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
- }
- return false;
- }
- QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, bool IsCompAssign,
- bool AllowBothBool,
- bool AllowBoolConversions) {
- if (!IsCompAssign) {
- LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- }
- RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType LHSType = LHS.get()->getType().getUnqualifiedType();
- QualType RHSType = RHS.get()->getType().getUnqualifiedType();
- const VectorType *LHSVecType = LHSType->getAs<VectorType>();
- const VectorType *RHSVecType = RHSType->getAs<VectorType>();
- assert(LHSVecType || RHSVecType);
- // AltiVec-style "vector bool op vector bool" combinations are allowed
- // for some operators but not others.
- if (!AllowBothBool &&
- LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
- RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
- return InvalidOperands(Loc, LHS, RHS);
- // If the vector types are identical, return.
- if (Context.hasSameType(LHSType, RHSType))
- return LHSType;
- // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
- if (LHSVecType && RHSVecType &&
- Context.areCompatibleVectorTypes(LHSType, RHSType)) {
- if (isa<ExtVectorType>(LHSVecType)) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
- return LHSType;
- }
- if (!IsCompAssign)
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
- return RHSType;
- }
- // AllowBoolConversions says that bool and non-bool AltiVec vectors
- // can be mixed, with the result being the non-bool type. The non-bool
- // operand must have integer element type.
- if (AllowBoolConversions && LHSVecType && RHSVecType &&
- LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
- (Context.getTypeSize(LHSVecType->getElementType()) ==
- Context.getTypeSize(RHSVecType->getElementType()))) {
- if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
- LHSVecType->getElementType()->isIntegerType() &&
- RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
- return LHSType;
- }
- if (!IsCompAssign &&
- LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
- RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
- RHSVecType->getElementType()->isIntegerType()) {
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
- return RHSType;
- }
- }
- // If there's a vector type and a scalar, try to convert the scalar to
- // the vector element type and splat.
- unsigned DiagID = diag::err_typecheck_vector_not_convertable;
- if (!RHSVecType) {
- if (isa<ExtVectorType>(LHSVecType)) {
- if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
- LHSVecType->getElementType(), LHSType,
- DiagID))
- return LHSType;
- } else {
- if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
- return LHSType;
- }
- }
- if (!LHSVecType) {
- if (isa<ExtVectorType>(RHSVecType)) {
- if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
- LHSType, RHSVecType->getElementType(),
- RHSType, DiagID))
- return RHSType;
- } else {
- if (LHS.get()->getValueKind() == VK_LValue ||
- !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
- return RHSType;
- }
- }
- // FIXME: The code below also handles conversion between vectors and
- // non-scalars, we should break this down into fine grained specific checks
- // and emit proper diagnostics.
- QualType VecType = LHSVecType ? LHSType : RHSType;
- const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
- QualType OtherType = LHSVecType ? RHSType : LHSType;
- ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
- if (isLaxVectorConversion(OtherType, VecType)) {
- // If we're allowing lax vector conversions, only the total (data) size
- // needs to be the same. For non compound assignment, if one of the types is
- // scalar, the result is always the vector type.
- if (!IsCompAssign) {
- *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
- return VecType;
- // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
- // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
- // type. Note that this is already done by non-compound assignments in
- // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
- // <1 x T> -> T. The result is also a vector type.
- } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
- (OtherType->isScalarType() && VT->getNumElements() == 1)) {
- ExprResult *RHSExpr = &RHS;
- *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
- return VecType;
- }
- }
- // Okay, the expression is invalid.
- // If there's a non-vector, non-real operand, diagnose that.
- if ((!RHSVecType && !RHSType->isRealType()) ||
- (!LHSVecType && !LHSType->isRealType())) {
- Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
- << LHSType << RHSType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // OpenCL V1.1 6.2.6.p1:
- // If the operands are of more than one vector type, then an error shall
- // occur. Implicit conversions between vector types are not permitted, per
- // section 6.2.1.
- if (getLangOpts().OpenCL &&
- RHSVecType && isa<ExtVectorType>(RHSVecType) &&
- LHSVecType && isa<ExtVectorType>(LHSVecType)) {
- Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
- << RHSType;
- return QualType();
- }
- // If there is a vector type that is not a ExtVector and a scalar, we reach
- // this point if scalar could not be converted to the vector's element type
- // without truncation.
- if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
- (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
- QualType Scalar = LHSVecType ? RHSType : LHSType;
- QualType Vector = LHSVecType ? LHSType : RHSType;
- unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
- Diag(Loc,
- diag::err_typecheck_vector_not_convertable_implict_truncation)
- << ScalarOrVector << Scalar << Vector;
- return QualType();
- }
- // Otherwise, use the generic diagnostic.
- Diag(Loc, DiagID)
- << LHSType << RHSType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // checkArithmeticNull - Detect when a NULL constant is used improperly in an
- // expression. These are mainly cases where the null pointer is used as an
- // integer instead of a pointer.
- static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, bool IsCompare) {
- // The canonical way to check for a GNU null is with isNullPointerConstant,
- // but we use a bit of a hack here for speed; this is a relatively
- // hot path, and isNullPointerConstant is slow.
- bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
- bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
- QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
- // Avoid analyzing cases where the result will either be invalid (and
- // diagnosed as such) or entirely valid and not something to warn about.
- if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
- NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
- return;
- // Comparison operations would not make sense with a null pointer no matter
- // what the other expression is.
- if (!IsCompare) {
- S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
- << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
- << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
- return;
- }
- // The rest of the operations only make sense with a null pointer
- // if the other expression is a pointer.
- if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
- NonNullType->canDecayToPointerType())
- return;
- S.Diag(Loc, diag::warn_null_in_comparison_operation)
- << LHSNull /* LHS is NULL */ << NonNullType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- static void DiagnoseDivisionSizeofPointer(Sema &S, Expr *LHS, Expr *RHS,
- SourceLocation Loc) {
- const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
- const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
- if (!LUE || !RUE)
- return;
- if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
- RUE->getKind() != UETT_SizeOf)
- return;
- const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
- QualType LHSTy = LHSArg->getType();
- QualType RHSTy;
- if (RUE->isArgumentType())
- RHSTy = RUE->getArgumentType();
- else
- RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
- if (!LHSTy->isPointerType() || RHSTy->isPointerType())
- return;
- if (LHSTy->getPointeeType().getCanonicalType() != RHSTy.getCanonicalType())
- return;
- S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
- if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
- if (const ValueDecl *LHSArgDecl = DRE->getDecl())
- S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
- << LHSArgDecl;
- }
- }
- static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc, bool IsDiv) {
- // Check for division/remainder by zero.
- Expr::EvalResult RHSValue;
- if (!RHS.get()->isValueDependent() &&
- RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
- RHSValue.Val.getInt() == 0)
- S.DiagRuntimeBehavior(Loc, RHS.get(),
- S.PDiag(diag::warn_remainder_division_by_zero)
- << IsDiv << RHS.get()->getSourceRange());
- }
- QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- bool IsCompAssign, bool IsDiv) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
- /*AllowBothBool*/getLangOpts().AltiVec,
- /*AllowBoolConversions*/false);
- QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (compType.isNull() || !compType->isArithmeticType())
- return InvalidOperands(Loc, LHS, RHS);
- if (IsDiv) {
- DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
- DiagnoseDivisionSizeofPointer(*this, LHS.get(), RHS.get(), Loc);
- }
- return compType;
- }
- QualType Sema::CheckRemainderOperands(
- ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- if (LHS.get()->getType()->hasIntegerRepresentation() &&
- RHS.get()->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
- /*AllowBothBool*/getLangOpts().AltiVec,
- /*AllowBoolConversions*/false);
- return InvalidOperands(Loc, LHS, RHS);
- }
- QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (compType.isNull() || !compType->isIntegerType())
- return InvalidOperands(Loc, LHS, RHS);
- DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
- return compType;
- }
- /// Diagnose invalid arithmetic on two void pointers.
- static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
- Expr *LHSExpr, Expr *RHSExpr) {
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_void_type
- : diag::ext_gnu_void_ptr)
- << 1 /* two pointers */ << LHSExpr->getSourceRange()
- << RHSExpr->getSourceRange();
- }
- /// Diagnose invalid arithmetic on a void pointer.
- static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
- Expr *Pointer) {
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_void_type
- : diag::ext_gnu_void_ptr)
- << 0 /* one pointer */ << Pointer->getSourceRange();
- }
- /// Diagnose invalid arithmetic on a null pointer.
- ///
- /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
- /// idiom, which we recognize as a GNU extension.
- ///
- static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
- Expr *Pointer, bool IsGNUIdiom) {
- if (IsGNUIdiom)
- S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
- << Pointer->getSourceRange();
- else
- S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
- << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
- }
- /// Diagnose invalid arithmetic on two function pointers.
- static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
- Expr *LHS, Expr *RHS) {
- assert(LHS->getType()->isAnyPointerType());
- assert(RHS->getType()->isAnyPointerType());
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_function_type
- : diag::ext_gnu_ptr_func_arith)
- << 1 /* two pointers */ << LHS->getType()->getPointeeType()
- // We only show the second type if it differs from the first.
- << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
- RHS->getType())
- << RHS->getType()->getPointeeType()
- << LHS->getSourceRange() << RHS->getSourceRange();
- }
- /// Diagnose invalid arithmetic on a function pointer.
- static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
- Expr *Pointer) {
- assert(Pointer->getType()->isAnyPointerType());
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_function_type
- : diag::ext_gnu_ptr_func_arith)
- << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
- << 0 /* one pointer, so only one type */
- << Pointer->getSourceRange();
- }
- /// Emit error if Operand is incomplete pointer type
- ///
- /// \returns True if pointer has incomplete type
- static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
- Expr *Operand) {
- QualType ResType = Operand->getType();
- if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
- ResType = ResAtomicType->getValueType();
- assert(ResType->isAnyPointerType() && !ResType->isDependentType());
- QualType PointeeTy = ResType->getPointeeType();
- return S.RequireCompleteType(Loc, PointeeTy,
- diag::err_typecheck_arithmetic_incomplete_type,
- PointeeTy, Operand->getSourceRange());
- }
- /// Check the validity of an arithmetic pointer operand.
- ///
- /// If the operand has pointer type, this code will check for pointer types
- /// which are invalid in arithmetic operations. These will be diagnosed
- /// appropriately, including whether or not the use is supported as an
- /// extension.
- ///
- /// \returns True when the operand is valid to use (even if as an extension).
- static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
- Expr *Operand) {
- QualType ResType = Operand->getType();
- if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
- ResType = ResAtomicType->getValueType();
- if (!ResType->isAnyPointerType()) return true;
- QualType PointeeTy = ResType->getPointeeType();
- if (PointeeTy->isVoidType()) {
- diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
- return !S.getLangOpts().CPlusPlus;
- }
- if (PointeeTy->isFunctionType()) {
- diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
- return !S.getLangOpts().CPlusPlus;
- }
- if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
- return true;
- }
- /// Check the validity of a binary arithmetic operation w.r.t. pointer
- /// operands.
- ///
- /// This routine will diagnose any invalid arithmetic on pointer operands much
- /// like \see checkArithmeticOpPointerOperand. However, it has special logic
- /// for emitting a single diagnostic even for operations where both LHS and RHS
- /// are (potentially problematic) pointers.
- ///
- /// \returns True when the operand is valid to use (even if as an extension).
- static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
- Expr *LHSExpr, Expr *RHSExpr) {
- bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
- bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
- if (!isLHSPointer && !isRHSPointer) return true;
- QualType LHSPointeeTy, RHSPointeeTy;
- if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
- if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
- // if both are pointers check if operation is valid wrt address spaces
- if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
- const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
- const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
- if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
- S.Diag(Loc,
- diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
- << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
- << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
- return false;
- }
- }
- // Check for arithmetic on pointers to incomplete types.
- bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
- bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
- if (isLHSVoidPtr || isRHSVoidPtr) {
- if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
- else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
- else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
- return !S.getLangOpts().CPlusPlus;
- }
- bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
- bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
- if (isLHSFuncPtr || isRHSFuncPtr) {
- if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
- else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
- RHSExpr);
- else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
- return !S.getLangOpts().CPlusPlus;
- }
- if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
- return false;
- if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
- return false;
- return true;
- }
- /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
- /// literal.
- static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
- Expr* IndexExpr = RHSExpr;
- if (!StrExpr) {
- StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
- IndexExpr = LHSExpr;
- }
- bool IsStringPlusInt = StrExpr &&
- IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
- if (!IsStringPlusInt || IndexExpr->isValueDependent())
- return;
- SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
- Self.Diag(OpLoc, diag::warn_string_plus_int)
- << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
- // Only print a fixit for "str" + int, not for int + "str".
- if (IndexExpr == RHSExpr) {
- SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
- Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
- << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
- << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
- << FixItHint::CreateInsertion(EndLoc, "]");
- } else
- Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
- }
- /// Emit a warning when adding a char literal to a string.
- static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- const Expr *StringRefExpr = LHSExpr;
- const CharacterLiteral *CharExpr =
- dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
- if (!CharExpr) {
- CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
- StringRefExpr = RHSExpr;
- }
- if (!CharExpr || !StringRefExpr)
- return;
- const QualType StringType = StringRefExpr->getType();
- // Return if not a PointerType.
- if (!StringType->isAnyPointerType())
- return;
- // Return if not a CharacterType.
- if (!StringType->getPointeeType()->isAnyCharacterType())
- return;
- ASTContext &Ctx = Self.getASTContext();
- SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
- const QualType CharType = CharExpr->getType();
- if (!CharType->isAnyCharacterType() &&
- CharType->isIntegerType() &&
- llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
- Self.Diag(OpLoc, diag::warn_string_plus_char)
- << DiagRange << Ctx.CharTy;
- } else {
- Self.Diag(OpLoc, diag::warn_string_plus_char)
- << DiagRange << CharExpr->getType();
- }
- // Only print a fixit for str + char, not for char + str.
- if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
- SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
- Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
- << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
- << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
- << FixItHint::CreateInsertion(EndLoc, "]");
- } else {
- Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
- }
- }
- /// Emit error when two pointers are incompatible.
- static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
- Expr *LHSExpr, Expr *RHSExpr) {
- assert(LHSExpr->getType()->isAnyPointerType());
- assert(RHSExpr->getType()->isAnyPointerType());
- S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
- << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
- << RHSExpr->getSourceRange();
- }
- // C99 6.5.6
- QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, BinaryOperatorKind Opc,
- QualType* CompLHSTy) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(
- LHS, RHS, Loc, CompLHSTy,
- /*AllowBothBool*/getLangOpts().AltiVec,
- /*AllowBoolConversions*/getLangOpts().ZVector);
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- // Diagnose "string literal" '+' int and string '+' "char literal".
- if (Opc == BO_Add) {
- diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
- diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
- }
- // handle the common case first (both operands are arithmetic).
- if (!compType.isNull() && compType->isArithmeticType()) {
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- // Type-checking. Ultimately the pointer's going to be in PExp;
- // note that we bias towards the LHS being the pointer.
- Expr *PExp = LHS.get(), *IExp = RHS.get();
- bool isObjCPointer;
- if (PExp->getType()->isPointerType()) {
- isObjCPointer = false;
- } else if (PExp->getType()->isObjCObjectPointerType()) {
- isObjCPointer = true;
- } else {
- std::swap(PExp, IExp);
- if (PExp->getType()->isPointerType()) {
- isObjCPointer = false;
- } else if (PExp->getType()->isObjCObjectPointerType()) {
- isObjCPointer = true;
- } else {
- return InvalidOperands(Loc, LHS, RHS);
- }
- }
- assert(PExp->getType()->isAnyPointerType());
- if (!IExp->getType()->isIntegerType())
- return InvalidOperands(Loc, LHS, RHS);
- // Adding to a null pointer results in undefined behavior.
- if (PExp->IgnoreParenCasts()->isNullPointerConstant(
- Context, Expr::NPC_ValueDependentIsNotNull)) {
- // In C++ adding zero to a null pointer is defined.
- Expr::EvalResult KnownVal;
- if (!getLangOpts().CPlusPlus ||
- (!IExp->isValueDependent() &&
- (!IExp->EvaluateAsInt(KnownVal, Context) ||
- KnownVal.Val.getInt() != 0))) {
- // Check the conditions to see if this is the 'p = nullptr + n' idiom.
- bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
- Context, BO_Add, PExp, IExp);
- diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
- }
- }
- if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
- return QualType();
- if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
- return QualType();
- // Check array bounds for pointer arithemtic
- CheckArrayAccess(PExp, IExp);
- if (CompLHSTy) {
- QualType LHSTy = Context.isPromotableBitField(LHS.get());
- if (LHSTy.isNull()) {
- LHSTy = LHS.get()->getType();
- if (LHSTy->isPromotableIntegerType())
- LHSTy = Context.getPromotedIntegerType(LHSTy);
- }
- *CompLHSTy = LHSTy;
- }
- return PExp->getType();
- }
- // C99 6.5.6
- QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- QualType* CompLHSTy) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(
- LHS, RHS, Loc, CompLHSTy,
- /*AllowBothBool*/getLangOpts().AltiVec,
- /*AllowBoolConversions*/getLangOpts().ZVector);
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- // Enforce type constraints: C99 6.5.6p3.
- // Handle the common case first (both operands are arithmetic).
- if (!compType.isNull() && compType->isArithmeticType()) {
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- // Either ptr - int or ptr - ptr.
- if (LHS.get()->getType()->isAnyPointerType()) {
- QualType lpointee = LHS.get()->getType()->getPointeeType();
- // Diagnose bad cases where we step over interface counts.
- if (LHS.get()->getType()->isObjCObjectPointerType() &&
- checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
- return QualType();
- // The result type of a pointer-int computation is the pointer type.
- if (RHS.get()->getType()->isIntegerType()) {
- // Subtracting from a null pointer should produce a warning.
- // The last argument to the diagnose call says this doesn't match the
- // GNU int-to-pointer idiom.
- if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull)) {
- // In C++ adding zero to a null pointer is defined.
- Expr::EvalResult KnownVal;
- if (!getLangOpts().CPlusPlus ||
- (!RHS.get()->isValueDependent() &&
- (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
- KnownVal.Val.getInt() != 0))) {
- diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
- }
- }
- if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
- return QualType();
- // Check array bounds for pointer arithemtic
- CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
- /*AllowOnePastEnd*/true, /*IndexNegated*/true);
- if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
- return LHS.get()->getType();
- }
- // Handle pointer-pointer subtractions.
- if (const PointerType *RHSPTy
- = RHS.get()->getType()->getAs<PointerType>()) {
- QualType rpointee = RHSPTy->getPointeeType();
- if (getLangOpts().CPlusPlus) {
- // Pointee types must be the same: C++ [expr.add]
- if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
- diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
- }
- } else {
- // Pointee types must be compatible C99 6.5.6p3
- if (!Context.typesAreCompatible(
- Context.getCanonicalType(lpointee).getUnqualifiedType(),
- Context.getCanonicalType(rpointee).getUnqualifiedType())) {
- diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
- return QualType();
- }
- }
- if (!checkArithmeticBinOpPointerOperands(*this, Loc,
- LHS.get(), RHS.get()))
- return QualType();
- // FIXME: Add warnings for nullptr - ptr.
- // The pointee type may have zero size. As an extension, a structure or
- // union may have zero size or an array may have zero length. In this
- // case subtraction does not make sense.
- if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
- CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
- if (ElementSize.isZero()) {
- Diag(Loc,diag::warn_sub_ptr_zero_size_types)
- << rpointee.getUnqualifiedType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- }
- if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
- return Context.getPointerDiffType();
- }
- }
- return InvalidOperands(Loc, LHS, RHS);
- }
- static bool isScopedEnumerationType(QualType T) {
- if (const EnumType *ET = T->getAs<EnumType>())
- return ET->getDecl()->isScoped();
- return false;
- }
- static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, BinaryOperatorKind Opc,
- QualType LHSType) {
- // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
- // so skip remaining warnings as we don't want to modify values within Sema.
- if (S.getLangOpts().OpenCL)
- return;
- // Check right/shifter operand
- Expr::EvalResult RHSResult;
- if (RHS.get()->isValueDependent() ||
- !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
- return;
- llvm::APSInt Right = RHSResult.Val.getInt();
- if (Right.isNegative()) {
- S.DiagRuntimeBehavior(Loc, RHS.get(),
- S.PDiag(diag::warn_shift_negative)
- << RHS.get()->getSourceRange());
- return;
- }
- llvm::APInt LeftBits(Right.getBitWidth(),
- S.Context.getTypeSize(LHS.get()->getType()));
- if (Right.uge(LeftBits)) {
- S.DiagRuntimeBehavior(Loc, RHS.get(),
- S.PDiag(diag::warn_shift_gt_typewidth)
- << RHS.get()->getSourceRange());
- return;
- }
- if (Opc != BO_Shl)
- return;
- // When left shifting an ICE which is signed, we can check for overflow which
- // according to C++ standards prior to C++2a has undefined behavior
- // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
- // more than the maximum value representable in the result type, so never
- // warn for those. (FIXME: Unsigned left-shift overflow in a constant
- // expression is still probably a bug.)
- Expr::EvalResult LHSResult;
- if (LHS.get()->isValueDependent() ||
- LHSType->hasUnsignedIntegerRepresentation() ||
- !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
- return;
- llvm::APSInt Left = LHSResult.Val.getInt();
- // If LHS does not have a signed type and non-negative value
- // then, the behavior is undefined before C++2a. Warn about it.
- if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
- !S.getLangOpts().CPlusPlus2a) {
- S.DiagRuntimeBehavior(Loc, LHS.get(),
- S.PDiag(diag::warn_shift_lhs_negative)
- << LHS.get()->getSourceRange());
- return;
- }
- llvm::APInt ResultBits =
- static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
- if (LeftBits.uge(ResultBits))
- return;
- llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
- Result = Result.shl(Right);
- // Print the bit representation of the signed integer as an unsigned
- // hexadecimal number.
- SmallString<40> HexResult;
- Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
- // If we are only missing a sign bit, this is less likely to result in actual
- // bugs -- if the result is cast back to an unsigned type, it will have the
- // expected value. Thus we place this behind a different warning that can be
- // turned off separately if needed.
- if (LeftBits == ResultBits - 1) {
- S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
- << HexResult << LHSType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return;
- }
- S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
- << HexResult.str() << Result.getMinSignedBits() << LHSType
- << Left.getBitWidth() << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- /// Return the resulting type when a vector is shifted
- /// by a scalar or vector shift amount.
- static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, bool IsCompAssign) {
- // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
- if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
- !LHS.get()->getType()->isVectorType()) {
- S.Diag(Loc, diag::err_shift_rhs_only_vector)
- << RHS.get()->getType() << LHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- if (!IsCompAssign) {
- LHS = S.UsualUnaryConversions(LHS.get());
- if (LHS.isInvalid()) return QualType();
- }
- RHS = S.UsualUnaryConversions(RHS.get());
- if (RHS.isInvalid()) return QualType();
- QualType LHSType = LHS.get()->getType();
- // Note that LHS might be a scalar because the routine calls not only in
- // OpenCL case.
- const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
- QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
- // Note that RHS might not be a vector.
- QualType RHSType = RHS.get()->getType();
- const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
- QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
- // The operands need to be integers.
- if (!LHSEleType->isIntegerType()) {
- S.Diag(Loc, diag::err_typecheck_expect_int)
- << LHS.get()->getType() << LHS.get()->getSourceRange();
- return QualType();
- }
- if (!RHSEleType->isIntegerType()) {
- S.Diag(Loc, diag::err_typecheck_expect_int)
- << RHS.get()->getType() << RHS.get()->getSourceRange();
- return QualType();
- }
- if (!LHSVecTy) {
- assert(RHSVecTy);
- if (IsCompAssign)
- return RHSType;
- if (LHSEleType != RHSEleType) {
- LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
- LHSEleType = RHSEleType;
- }
- QualType VecTy =
- S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
- LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
- LHSType = VecTy;
- } else if (RHSVecTy) {
- // OpenCL v1.1 s6.3.j says that for vector types, the operators
- // are applied component-wise. So if RHS is a vector, then ensure
- // that the number of elements is the same as LHS...
- if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
- S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
- const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
- const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
- if (LHSBT != RHSBT &&
- S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
- S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- }
- } else {
- // ...else expand RHS to match the number of elements in LHS.
- QualType VecTy =
- S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
- RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
- }
- return LHSType;
- }
- // C99 6.5.7
- QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, BinaryOperatorKind Opc,
- bool IsCompAssign) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
- // Vector shifts promote their scalar inputs to vector type.
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- if (LangOpts.ZVector) {
- // The shift operators for the z vector extensions work basically
- // like general shifts, except that neither the LHS nor the RHS is
- // allowed to be a "vector bool".
- if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
- if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
- return InvalidOperands(Loc, LHS, RHS);
- if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
- if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
- return InvalidOperands(Loc, LHS, RHS);
- }
- return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
- }
- // Shifts don't perform usual arithmetic conversions, they just do integer
- // promotions on each operand. C99 6.5.7p3
- // For the LHS, do usual unary conversions, but then reset them away
- // if this is a compound assignment.
- ExprResult OldLHS = LHS;
- LHS = UsualUnaryConversions(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- QualType LHSType = LHS.get()->getType();
- if (IsCompAssign) LHS = OldLHS;
- // The RHS is simpler.
- RHS = UsualUnaryConversions(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- QualType RHSType = RHS.get()->getType();
- // C99 6.5.7p2: Each of the operands shall have integer type.
- if (!LHSType->hasIntegerRepresentation() ||
- !RHSType->hasIntegerRepresentation())
- return InvalidOperands(Loc, LHS, RHS);
- // C++0x: Don't allow scoped enums. FIXME: Use something better than
- // hasIntegerRepresentation() above instead of this.
- if (isScopedEnumerationType(LHSType) ||
- isScopedEnumerationType(RHSType)) {
- return InvalidOperands(Loc, LHS, RHS);
- }
- // Sanity-check shift operands
- DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
- // "The type of the result is that of the promoted left operand."
- return LHSType;
- }
- /// If two different enums are compared, raise a warning.
- static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
- Expr *RHS) {
- QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
- QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
- const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
- if (!LHSEnumType)
- return;
- const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
- if (!RHSEnumType)
- return;
- // Ignore anonymous enums.
- if (!LHSEnumType->getDecl()->getIdentifier() &&
- !LHSEnumType->getDecl()->getTypedefNameForAnonDecl())
- return;
- if (!RHSEnumType->getDecl()->getIdentifier() &&
- !RHSEnumType->getDecl()->getTypedefNameForAnonDecl())
- return;
- if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
- return;
- S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
- << LHSStrippedType << RHSStrippedType
- << LHS->getSourceRange() << RHS->getSourceRange();
- }
- /// Diagnose bad pointer comparisons.
- static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
- ExprResult &LHS, ExprResult &RHS,
- bool IsError) {
- S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
- : diag::ext_typecheck_comparison_of_distinct_pointers)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- /// Returns false if the pointers are converted to a composite type,
- /// true otherwise.
- static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
- ExprResult &LHS, ExprResult &RHS) {
- // C++ [expr.rel]p2:
- // [...] Pointer conversions (4.10) and qualification
- // conversions (4.4) are performed on pointer operands (or on
- // a pointer operand and a null pointer constant) to bring
- // them to their composite pointer type. [...]
- //
- // C++ [expr.eq]p1 uses the same notion for (in)equality
- // comparisons of pointers.
- QualType LHSType = LHS.get()->getType();
- QualType RHSType = RHS.get()->getType();
- assert(LHSType->isPointerType() || RHSType->isPointerType() ||
- LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
- QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
- if (T.isNull()) {
- if ((LHSType->isPointerType() || LHSType->isMemberPointerType()) &&
- (RHSType->isPointerType() || RHSType->isMemberPointerType()))
- diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
- else
- S.InvalidOperands(Loc, LHS, RHS);
- return true;
- }
- LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
- RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
- return false;
- }
- static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
- ExprResult &LHS,
- ExprResult &RHS,
- bool IsError) {
- S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
- : diag::ext_typecheck_comparison_of_fptr_to_void)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- static bool isObjCObjectLiteral(ExprResult &E) {
- switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
- case Stmt::ObjCArrayLiteralClass:
- case Stmt::ObjCDictionaryLiteralClass:
- case Stmt::ObjCStringLiteralClass:
- case Stmt::ObjCBoxedExprClass:
- return true;
- default:
- // Note that ObjCBoolLiteral is NOT an object literal!
- return false;
- }
- }
- static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
- const ObjCObjectPointerType *Type =
- LHS->getType()->getAs<ObjCObjectPointerType>();
- // If this is not actually an Objective-C object, bail out.
- if (!Type)
- return false;
- // Get the LHS object's interface type.
- QualType InterfaceType = Type->getPointeeType();
- // If the RHS isn't an Objective-C object, bail out.
- if (!RHS->getType()->isObjCObjectPointerType())
- return false;
- // Try to find the -isEqual: method.
- Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
- ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
- InterfaceType,
- /*IsInstance=*/true);
- if (!Method) {
- if (Type->isObjCIdType()) {
- // For 'id', just check the global pool.
- Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
- /*receiverId=*/true);
- } else {
- // Check protocols.
- Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
- /*IsInstance=*/true);
- }
- }
- if (!Method)
- return false;
- QualType T = Method->parameters()[0]->getType();
- if (!T->isObjCObjectPointerType())
- return false;
- QualType R = Method->getReturnType();
- if (!R->isScalarType())
- return false;
- return true;
- }
- Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
- FromE = FromE->IgnoreParenImpCasts();
- switch (FromE->getStmtClass()) {
- default:
- break;
- case Stmt::ObjCStringLiteralClass:
- // "string literal"
- return LK_String;
- case Stmt::ObjCArrayLiteralClass:
- // "array literal"
- return LK_Array;
- case Stmt::ObjCDictionaryLiteralClass:
- // "dictionary literal"
- return LK_Dictionary;
- case Stmt::BlockExprClass:
- return LK_Block;
- case Stmt::ObjCBoxedExprClass: {
- Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
- switch (Inner->getStmtClass()) {
- case Stmt::IntegerLiteralClass:
- case Stmt::FloatingLiteralClass:
- case Stmt::CharacterLiteralClass:
- case Stmt::ObjCBoolLiteralExprClass:
- case Stmt::CXXBoolLiteralExprClass:
- // "numeric literal"
- return LK_Numeric;
- case Stmt::ImplicitCastExprClass: {
- CastKind CK = cast<CastExpr>(Inner)->getCastKind();
- // Boolean literals can be represented by implicit casts.
- if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
- return LK_Numeric;
- break;
- }
- default:
- break;
- }
- return LK_Boxed;
- }
- }
- return LK_None;
- }
- static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
- ExprResult &LHS, ExprResult &RHS,
- BinaryOperator::Opcode Opc){
- Expr *Literal;
- Expr *Other;
- if (isObjCObjectLiteral(LHS)) {
- Literal = LHS.get();
- Other = RHS.get();
- } else {
- Literal = RHS.get();
- Other = LHS.get();
- }
- // Don't warn on comparisons against nil.
- Other = Other->IgnoreParenCasts();
- if (Other->isNullPointerConstant(S.getASTContext(),
- Expr::NPC_ValueDependentIsNotNull))
- return;
- // This should be kept in sync with warn_objc_literal_comparison.
- // LK_String should always be after the other literals, since it has its own
- // warning flag.
- Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
- assert(LiteralKind != Sema::LK_Block);
- if (LiteralKind == Sema::LK_None) {
- llvm_unreachable("Unknown Objective-C object literal kind");
- }
- if (LiteralKind == Sema::LK_String)
- S.Diag(Loc, diag::warn_objc_string_literal_comparison)
- << Literal->getSourceRange();
- else
- S.Diag(Loc, diag::warn_objc_literal_comparison)
- << LiteralKind << Literal->getSourceRange();
- if (BinaryOperator::isEqualityOp(Opc) &&
- hasIsEqualMethod(S, LHS.get(), RHS.get())) {
- SourceLocation Start = LHS.get()->getBeginLoc();
- SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
- CharSourceRange OpRange =
- CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
- S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
- << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
- << FixItHint::CreateReplacement(OpRange, " isEqual:")
- << FixItHint::CreateInsertion(End, "]");
- }
- }
- /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
- static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
- ExprResult &RHS, SourceLocation Loc,
- BinaryOperatorKind Opc) {
- // Check that left hand side is !something.
- UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
- if (!UO || UO->getOpcode() != UO_LNot) return;
- // Only check if the right hand side is non-bool arithmetic type.
- if (RHS.get()->isKnownToHaveBooleanValue()) return;
- // Make sure that the something in !something is not bool.
- Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
- if (SubExpr->isKnownToHaveBooleanValue()) return;
- // Emit warning.
- bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
- S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
- << Loc << IsBitwiseOp;
- // First note suggest !(x < y)
- SourceLocation FirstOpen = SubExpr->getBeginLoc();
- SourceLocation FirstClose = RHS.get()->getEndLoc();
- FirstClose = S.getLocForEndOfToken(FirstClose);
- if (FirstClose.isInvalid())
- FirstOpen = SourceLocation();
- S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
- << IsBitwiseOp
- << FixItHint::CreateInsertion(FirstOpen, "(")
- << FixItHint::CreateInsertion(FirstClose, ")");
- // Second note suggests (!x) < y
- SourceLocation SecondOpen = LHS.get()->getBeginLoc();
- SourceLocation SecondClose = LHS.get()->getEndLoc();
- SecondClose = S.getLocForEndOfToken(SecondClose);
- if (SecondClose.isInvalid())
- SecondOpen = SourceLocation();
- S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
- << FixItHint::CreateInsertion(SecondOpen, "(")
- << FixItHint::CreateInsertion(SecondClose, ")");
- }
- // Get the decl for a simple expression: a reference to a variable,
- // an implicit C++ field reference, or an implicit ObjC ivar reference.
- static ValueDecl *getCompareDecl(Expr *E) {
- if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
- return DR->getDecl();
- if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
- if (Ivar->isFreeIvar())
- return Ivar->getDecl();
- }
- if (MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
- if (Mem->isImplicitAccess())
- return Mem->getMemberDecl();
- }
- return nullptr;
- }
- /// Diagnose some forms of syntactically-obvious tautological comparison.
- static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
- Expr *LHS, Expr *RHS,
- BinaryOperatorKind Opc) {
- Expr *LHSStripped = LHS->IgnoreParenImpCasts();
- Expr *RHSStripped = RHS->IgnoreParenImpCasts();
- QualType LHSType = LHS->getType();
- QualType RHSType = RHS->getType();
- if (LHSType->hasFloatingRepresentation() ||
- (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
- LHS->getBeginLoc().isMacroID() || RHS->getBeginLoc().isMacroID() ||
- S.inTemplateInstantiation())
- return;
- // Comparisons between two array types are ill-formed for operator<=>, so
- // we shouldn't emit any additional warnings about it.
- if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
- return;
- // For non-floating point types, check for self-comparisons of the form
- // x == x, x != x, x < x, etc. These always evaluate to a constant, and
- // often indicate logic errors in the program.
- //
- // NOTE: Don't warn about comparison expressions resulting from macro
- // expansion. Also don't warn about comparisons which are only self
- // comparisons within a template instantiation. The warnings should catch
- // obvious cases in the definition of the template anyways. The idea is to
- // warn when the typed comparison operator will always evaluate to the same
- // result.
- ValueDecl *DL = getCompareDecl(LHSStripped);
- ValueDecl *DR = getCompareDecl(RHSStripped);
- // Used for indexing into %select in warn_comparison_always
- enum {
- AlwaysConstant,
- AlwaysTrue,
- AlwaysFalse,
- AlwaysEqual, // std::strong_ordering::equal from operator<=>
- };
- if (DL && DR && declaresSameEntity(DL, DR)) {
- unsigned Result;
- switch (Opc) {
- case BO_EQ: case BO_LE: case BO_GE:
- Result = AlwaysTrue;
- break;
- case BO_NE: case BO_LT: case BO_GT:
- Result = AlwaysFalse;
- break;
- case BO_Cmp:
- Result = AlwaysEqual;
- break;
- default:
- Result = AlwaysConstant;
- break;
- }
- S.DiagRuntimeBehavior(Loc, nullptr,
- S.PDiag(diag::warn_comparison_always)
- << 0 /*self-comparison*/
- << Result);
- } else if (DL && DR &&
- DL->getType()->isArrayType() && DR->getType()->isArrayType() &&
- !DL->isWeak() && !DR->isWeak()) {
- // What is it always going to evaluate to?
- unsigned Result;
- switch(Opc) {
- case BO_EQ: // e.g. array1 == array2
- Result = AlwaysFalse;
- break;
- case BO_NE: // e.g. array1 != array2
- Result = AlwaysTrue;
- break;
- default: // e.g. array1 <= array2
- // The best we can say is 'a constant'
- Result = AlwaysConstant;
- break;
- }
- S.DiagRuntimeBehavior(Loc, nullptr,
- S.PDiag(diag::warn_comparison_always)
- << 1 /*array comparison*/
- << Result);
- }
- if (isa<CastExpr>(LHSStripped))
- LHSStripped = LHSStripped->IgnoreParenCasts();
- if (isa<CastExpr>(RHSStripped))
- RHSStripped = RHSStripped->IgnoreParenCasts();
- // Warn about comparisons against a string constant (unless the other
- // operand is null); the user probably wants strcmp.
- Expr *LiteralString = nullptr;
- Expr *LiteralStringStripped = nullptr;
- if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
- !RHSStripped->isNullPointerConstant(S.Context,
- Expr::NPC_ValueDependentIsNull)) {
- LiteralString = LHS;
- LiteralStringStripped = LHSStripped;
- } else if ((isa<StringLiteral>(RHSStripped) ||
- isa<ObjCEncodeExpr>(RHSStripped)) &&
- !LHSStripped->isNullPointerConstant(S.Context,
- Expr::NPC_ValueDependentIsNull)) {
- LiteralString = RHS;
- LiteralStringStripped = RHSStripped;
- }
- if (LiteralString) {
- S.DiagRuntimeBehavior(Loc, nullptr,
- S.PDiag(diag::warn_stringcompare)
- << isa<ObjCEncodeExpr>(LiteralStringStripped)
- << LiteralString->getSourceRange());
- }
- }
- static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
- switch (CK) {
- default: {
- #ifndef NDEBUG
- llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
- << "\n";
- #endif
- llvm_unreachable("unhandled cast kind");
- }
- case CK_UserDefinedConversion:
- return ICK_Identity;
- case CK_LValueToRValue:
- return ICK_Lvalue_To_Rvalue;
- case CK_ArrayToPointerDecay:
- return ICK_Array_To_Pointer;
- case CK_FunctionToPointerDecay:
- return ICK_Function_To_Pointer;
- case CK_IntegralCast:
- return ICK_Integral_Conversion;
- case CK_FloatingCast:
- return ICK_Floating_Conversion;
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- return ICK_Floating_Integral;
- case CK_IntegralComplexCast:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralComplexToFloatingComplex:
- return ICK_Complex_Conversion;
- case CK_FloatingComplexToReal:
- case CK_FloatingRealToComplex:
- case CK_IntegralComplexToReal:
- case CK_IntegralRealToComplex:
- return ICK_Complex_Real;
- }
- }
- static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
- QualType FromType,
- SourceLocation Loc) {
- // Check for a narrowing implicit conversion.
- StandardConversionSequence SCS;
- SCS.setAsIdentityConversion();
- SCS.setToType(0, FromType);
- SCS.setToType(1, ToType);
- if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
- SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
- APValue PreNarrowingValue;
- QualType PreNarrowingType;
- switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
- PreNarrowingType,
- /*IgnoreFloatToIntegralConversion*/ true)) {
- case NK_Dependent_Narrowing:
- // Implicit conversion to a narrower type, but the expression is
- // value-dependent so we can't tell whether it's actually narrowing.
- case NK_Not_Narrowing:
- return false;
- case NK_Constant_Narrowing:
- // Implicit conversion to a narrower type, and the value is not a constant
- // expression.
- S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
- << /*Constant*/ 1
- << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
- return true;
- case NK_Variable_Narrowing:
- // Implicit conversion to a narrower type, and the value is not a constant
- // expression.
- case NK_Type_Narrowing:
- S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
- << /*Constant*/ 0 << FromType << ToType;
- // TODO: It's not a constant expression, but what if the user intended it
- // to be? Can we produce notes to help them figure out why it isn't?
- return true;
- }
- llvm_unreachable("unhandled case in switch");
- }
- static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
- ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- using CCT = ComparisonCategoryType;
- QualType LHSType = LHS.get()->getType();
- QualType RHSType = RHS.get()->getType();
- // Dig out the original argument type and expression before implicit casts
- // were applied. These are the types/expressions we need to check the
- // [expr.spaceship] requirements against.
- ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
- ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
- QualType LHSStrippedType = LHSStripped.get()->getType();
- QualType RHSStrippedType = RHSStripped.get()->getType();
- // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
- // other is not, the program is ill-formed.
- if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
- S.InvalidOperands(Loc, LHSStripped, RHSStripped);
- return QualType();
- }
- int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
- RHSStrippedType->isEnumeralType();
- if (NumEnumArgs == 1) {
- bool LHSIsEnum = LHSStrippedType->isEnumeralType();
- QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
- if (OtherTy->hasFloatingRepresentation()) {
- S.InvalidOperands(Loc, LHSStripped, RHSStripped);
- return QualType();
- }
- }
- if (NumEnumArgs == 2) {
- // C++2a [expr.spaceship]p5: If both operands have the same enumeration
- // type E, the operator yields the result of converting the operands
- // to the underlying type of E and applying <=> to the converted operands.
- if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
- S.InvalidOperands(Loc, LHS, RHS);
- return QualType();
- }
- QualType IntType =
- LHSStrippedType->getAs<EnumType>()->getDecl()->getIntegerType();
- assert(IntType->isArithmeticType());
- // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
- // promote the boolean type, and all other promotable integer types, to
- // avoid this.
- if (IntType->isPromotableIntegerType())
- IntType = S.Context.getPromotedIntegerType(IntType);
- LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
- RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
- LHSType = RHSType = IntType;
- }
- // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
- // usual arithmetic conversions are applied to the operands.
- QualType Type = S.UsualArithmeticConversions(LHS, RHS);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (Type.isNull())
- return S.InvalidOperands(Loc, LHS, RHS);
- assert(Type->isArithmeticType() || Type->isEnumeralType());
- bool HasNarrowing = checkThreeWayNarrowingConversion(
- S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
- HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
- RHS.get()->getBeginLoc());
- if (HasNarrowing)
- return QualType();
- assert(!Type.isNull() && "composite type for <=> has not been set");
- auto TypeKind = [&]() {
- if (const ComplexType *CT = Type->getAs<ComplexType>()) {
- if (CT->getElementType()->hasFloatingRepresentation())
- return CCT::WeakEquality;
- return CCT::StrongEquality;
- }
- if (Type->isIntegralOrEnumerationType())
- return CCT::StrongOrdering;
- if (Type->hasFloatingRepresentation())
- return CCT::PartialOrdering;
- llvm_unreachable("other types are unimplemented");
- }();
- return S.CheckComparisonCategoryType(TypeKind, Loc);
- }
- static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc,
- BinaryOperatorKind Opc) {
- if (Opc == BO_Cmp)
- return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
- // C99 6.5.8p3 / C99 6.5.9p4
- QualType Type = S.UsualArithmeticConversions(LHS, RHS);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (Type.isNull())
- return S.InvalidOperands(Loc, LHS, RHS);
- assert(Type->isArithmeticType() || Type->isEnumeralType());
- checkEnumComparison(S, Loc, LHS.get(), RHS.get());
- if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
- return S.InvalidOperands(Loc, LHS, RHS);
- // Check for comparisons of floating point operands using != and ==.
- if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
- S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
- // The result of comparisons is 'bool' in C++, 'int' in C.
- return S.Context.getLogicalOperationType();
- }
- void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
- if (!NullE.get()->getType()->isAnyPointerType())
- return;
- int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
- if (!E.get()->getType()->isAnyPointerType() &&
- E.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull) ==
- Expr::NPCK_ZeroExpression) {
- if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
- if (CL->getValue() == 0)
- Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
- << NullValue
- << FixItHint::CreateReplacement(E.get()->getExprLoc(),
- NullValue ? "NULL" : "(void *)0");
- } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
- TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
- QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
- if (T == Context.CharTy)
- Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
- << NullValue
- << FixItHint::CreateReplacement(E.get()->getExprLoc(),
- NullValue ? "NULL" : "(void *)0");
- }
- }
- }
- // C99 6.5.8, C++ [expr.rel]
- QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- BinaryOperatorKind Opc) {
- bool IsRelational = BinaryOperator::isRelationalOp(Opc);
- bool IsThreeWay = Opc == BO_Cmp;
- auto IsAnyPointerType = [](ExprResult E) {
- QualType Ty = E.get()->getType();
- return Ty->isPointerType() || Ty->isMemberPointerType();
- };
- // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
- // type, array-to-pointer, ..., conversions are performed on both operands to
- // bring them to their composite type.
- // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
- // any type-related checks.
- if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
- LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- } else {
- LHS = DefaultLvalueConversion(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- RHS = DefaultLvalueConversion(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- }
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
- if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
- CheckPtrComparisonWithNullChar(LHS, RHS);
- CheckPtrComparisonWithNullChar(RHS, LHS);
- }
- // Handle vector comparisons separately.
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType())
- return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
- diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
- diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
- QualType LHSType = LHS.get()->getType();
- QualType RHSType = RHS.get()->getType();
- if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
- (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
- return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
- const Expr::NullPointerConstantKind LHSNullKind =
- LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
- const Expr::NullPointerConstantKind RHSNullKind =
- RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
- bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
- bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
- auto computeResultTy = [&]() {
- if (Opc != BO_Cmp)
- return Context.getLogicalOperationType();
- assert(getLangOpts().CPlusPlus);
- assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
- QualType CompositeTy = LHS.get()->getType();
- assert(!CompositeTy->isReferenceType());
- auto buildResultTy = [&](ComparisonCategoryType Kind) {
- return CheckComparisonCategoryType(Kind, Loc);
- };
- // C++2a [expr.spaceship]p7: If the composite pointer type is a function
- // pointer type, a pointer-to-member type, or std::nullptr_t, the
- // result is of type std::strong_equality
- if (CompositeTy->isFunctionPointerType() ||
- CompositeTy->isMemberPointerType() || CompositeTy->isNullPtrType())
- // FIXME: consider making the function pointer case produce
- // strong_ordering not strong_equality, per P0946R0-Jax18 discussion
- // and direction polls
- return buildResultTy(ComparisonCategoryType::StrongEquality);
- // C++2a [expr.spaceship]p8: If the composite pointer type is an object
- // pointer type, p <=> q is of type std::strong_ordering.
- if (CompositeTy->isPointerType()) {
- // P0946R0: Comparisons between a null pointer constant and an object
- // pointer result in std::strong_equality
- if (LHSIsNull != RHSIsNull)
- return buildResultTy(ComparisonCategoryType::StrongEquality);
- return buildResultTy(ComparisonCategoryType::StrongOrdering);
- }
- // C++2a [expr.spaceship]p9: Otherwise, the program is ill-formed.
- // TODO: Extend support for operator<=> to ObjC types.
- return InvalidOperands(Loc, LHS, RHS);
- };
- if (!IsRelational && LHSIsNull != RHSIsNull) {
- bool IsEquality = Opc == BO_EQ;
- if (RHSIsNull)
- DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
- RHS.get()->getSourceRange());
- else
- DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
- LHS.get()->getSourceRange());
- }
- if ((LHSType->isIntegerType() && !LHSIsNull) ||
- (RHSType->isIntegerType() && !RHSIsNull)) {
- // Skip normal pointer conversion checks in this case; we have better
- // diagnostics for this below.
- } else if (getLangOpts().CPlusPlus) {
- // Equality comparison of a function pointer to a void pointer is invalid,
- // but we allow it as an extension.
- // FIXME: If we really want to allow this, should it be part of composite
- // pointer type computation so it works in conditionals too?
- if (!IsRelational &&
- ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
- (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
- // This is a gcc extension compatibility comparison.
- // In a SFINAE context, we treat this as a hard error to maintain
- // conformance with the C++ standard.
- diagnoseFunctionPointerToVoidComparison(
- *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
- if (isSFINAEContext())
- return QualType();
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
- return computeResultTy();
- }
- // C++ [expr.eq]p2:
- // If at least one operand is a pointer [...] bring them to their
- // composite pointer type.
- // C++ [expr.spaceship]p6
- // If at least one of the operands is of pointer type, [...] bring them
- // to their composite pointer type.
- // C++ [expr.rel]p2:
- // If both operands are pointers, [...] bring them to their composite
- // pointer type.
- if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
- (IsRelational ? 2 : 1) &&
- (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
- RHSType->isObjCObjectPointerType()))) {
- if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
- return QualType();
- return computeResultTy();
- }
- } else if (LHSType->isPointerType() &&
- RHSType->isPointerType()) { // C99 6.5.8p2
- // All of the following pointer-related warnings are GCC extensions, except
- // when handling null pointer constants.
- QualType LCanPointeeTy =
- LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
- QualType RCanPointeeTy =
- RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
- // C99 6.5.9p2 and C99 6.5.8p2
- if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
- RCanPointeeTy.getUnqualifiedType())) {
- // Valid unless a relational comparison of function pointers
- if (IsRelational && LCanPointeeTy->isFunctionType()) {
- Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- } else if (!IsRelational &&
- (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
- // Valid unless comparison between non-null pointer and function pointer
- if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
- && !LHSIsNull && !RHSIsNull)
- diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
- /*isError*/false);
- } else {
- // Invalid
- diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
- }
- if (LCanPointeeTy != RCanPointeeTy) {
- // Treat NULL constant as a special case in OpenCL.
- if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
- const PointerType *LHSPtr = LHSType->getAs<PointerType>();
- if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
- Diag(Loc,
- diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
- << LHSType << RHSType << 0 /* comparison */
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- }
- LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
- LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
- CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
- : CK_BitCast;
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
- else
- RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
- }
- return computeResultTy();
- }
- if (getLangOpts().CPlusPlus) {
- // C++ [expr.eq]p4:
- // Two operands of type std::nullptr_t or one operand of type
- // std::nullptr_t and the other a null pointer constant compare equal.
- if (!IsRelational && LHSIsNull && RHSIsNull) {
- if (LHSType->isNullPtrType()) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
- return computeResultTy();
- }
- if (RHSType->isNullPtrType()) {
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
- return computeResultTy();
- }
- }
- // Comparison of Objective-C pointers and block pointers against nullptr_t.
- // These aren't covered by the composite pointer type rules.
- if (!IsRelational && RHSType->isNullPtrType() &&
- (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
- return computeResultTy();
- }
- if (!IsRelational && LHSType->isNullPtrType() &&
- (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
- return computeResultTy();
- }
- if (IsRelational &&
- ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
- (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
- // HACK: Relational comparison of nullptr_t against a pointer type is
- // invalid per DR583, but we allow it within std::less<> and friends,
- // since otherwise common uses of it break.
- // FIXME: Consider removing this hack once LWG fixes std::less<> and
- // friends to have std::nullptr_t overload candidates.
- DeclContext *DC = CurContext;
- if (isa<FunctionDecl>(DC))
- DC = DC->getParent();
- if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
- if (CTSD->isInStdNamespace() &&
- llvm::StringSwitch<bool>(CTSD->getName())
- .Cases("less", "less_equal", "greater", "greater_equal", true)
- .Default(false)) {
- if (RHSType->isNullPtrType())
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
- else
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
- return computeResultTy();
- }
- }
- }
- // C++ [expr.eq]p2:
- // If at least one operand is a pointer to member, [...] bring them to
- // their composite pointer type.
- if (!IsRelational &&
- (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
- if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
- return QualType();
- else
- return computeResultTy();
- }
- }
- // Handle block pointer types.
- if (!IsRelational && LHSType->isBlockPointerType() &&
- RHSType->isBlockPointerType()) {
- QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
- QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
- if (!LHSIsNull && !RHSIsNull &&
- !Context.typesAreCompatible(lpointee, rpointee)) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
- return computeResultTy();
- }
- // Allow block pointers to be compared with null pointer constants.
- if (!IsRelational
- && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
- || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
- if (!LHSIsNull && !RHSIsNull) {
- if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
- ->getPointeeType()->isVoidType())
- || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
- ->getPointeeType()->isVoidType())))
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.get(), RHSType,
- RHSType->isPointerType() ? CK_BitCast
- : CK_AnyPointerToBlockPointerCast);
- else
- RHS = ImpCastExprToType(RHS.get(), LHSType,
- LHSType->isPointerType() ? CK_BitCast
- : CK_AnyPointerToBlockPointerCast);
- return computeResultTy();
- }
- if (LHSType->isObjCObjectPointerType() ||
- RHSType->isObjCObjectPointerType()) {
- const PointerType *LPT = LHSType->getAs<PointerType>();
- const PointerType *RPT = RHSType->getAs<PointerType>();
- if (LPT || RPT) {
- bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
- bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
- if (!LPtrToVoid && !RPtrToVoid &&
- !Context.typesAreCompatible(LHSType, RHSType)) {
- diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
- /*isError*/false);
- }
- if (LHSIsNull && !RHSIsNull) {
- Expr *E = LHS.get();
- if (getLangOpts().ObjCAutoRefCount)
- CheckObjCConversion(SourceRange(), RHSType, E,
- CCK_ImplicitConversion);
- LHS = ImpCastExprToType(E, RHSType,
- RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
- }
- else {
- Expr *E = RHS.get();
- if (getLangOpts().ObjCAutoRefCount)
- CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
- /*Diagnose=*/true,
- /*DiagnoseCFAudited=*/false, Opc);
- RHS = ImpCastExprToType(E, LHSType,
- LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
- }
- return computeResultTy();
- }
- if (LHSType->isObjCObjectPointerType() &&
- RHSType->isObjCObjectPointerType()) {
- if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
- diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
- /*isError*/false);
- if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
- diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
- else
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
- return computeResultTy();
- }
- if (!IsRelational && LHSType->isBlockPointerType() &&
- RHSType->isBlockCompatibleObjCPointerType(Context)) {
- LHS = ImpCastExprToType(LHS.get(), RHSType,
- CK_BlockPointerToObjCPointerCast);
- return computeResultTy();
- } else if (!IsRelational &&
- LHSType->isBlockCompatibleObjCPointerType(Context) &&
- RHSType->isBlockPointerType()) {
- RHS = ImpCastExprToType(RHS.get(), LHSType,
- CK_BlockPointerToObjCPointerCast);
- return computeResultTy();
- }
- }
- if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
- (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
- unsigned DiagID = 0;
- bool isError = false;
- if (LangOpts.DebuggerSupport) {
- // Under a debugger, allow the comparison of pointers to integers,
- // since users tend to want to compare addresses.
- } else if ((LHSIsNull && LHSType->isIntegerType()) ||
- (RHSIsNull && RHSType->isIntegerType())) {
- if (IsRelational) {
- isError = getLangOpts().CPlusPlus;
- DiagID =
- isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
- : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
- }
- } else if (getLangOpts().CPlusPlus) {
- DiagID = diag::err_typecheck_comparison_of_pointer_integer;
- isError = true;
- } else if (IsRelational)
- DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
- else
- DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
- if (DiagID) {
- Diag(Loc, DiagID)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- if (isError)
- return QualType();
- }
- if (LHSType->isIntegerType())
- LHS = ImpCastExprToType(LHS.get(), RHSType,
- LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
- else
- RHS = ImpCastExprToType(RHS.get(), LHSType,
- RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
- return computeResultTy();
- }
- // Handle block pointers.
- if (!IsRelational && RHSIsNull
- && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
- return computeResultTy();
- }
- if (!IsRelational && LHSIsNull
- && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
- return computeResultTy();
- }
- if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
- if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
- return computeResultTy();
- }
- if (LHSType->isQueueT() && RHSType->isQueueT()) {
- return computeResultTy();
- }
- if (LHSIsNull && RHSType->isQueueT()) {
- LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
- return computeResultTy();
- }
- if (LHSType->isQueueT() && RHSIsNull) {
- RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
- return computeResultTy();
- }
- }
- return InvalidOperands(Loc, LHS, RHS);
- }
- // Return a signed ext_vector_type that is of identical size and number of
- // elements. For floating point vectors, return an integer type of identical
- // size and number of elements. In the non ext_vector_type case, search from
- // the largest type to the smallest type to avoid cases where long long == long,
- // where long gets picked over long long.
- QualType Sema::GetSignedVectorType(QualType V) {
- const VectorType *VTy = V->getAs<VectorType>();
- unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
- if (isa<ExtVectorType>(VTy)) {
- if (TypeSize == Context.getTypeSize(Context.CharTy))
- return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.ShortTy))
- return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.IntTy))
- return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.LongTy))
- return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
- assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
- "Unhandled vector element size in vector compare");
- return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
- }
- if (TypeSize == Context.getTypeSize(Context.LongLongTy))
- return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
- VectorType::GenericVector);
- else if (TypeSize == Context.getTypeSize(Context.LongTy))
- return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
- VectorType::GenericVector);
- else if (TypeSize == Context.getTypeSize(Context.IntTy))
- return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
- VectorType::GenericVector);
- else if (TypeSize == Context.getTypeSize(Context.ShortTy))
- return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
- VectorType::GenericVector);
- assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
- "Unhandled vector element size in vector compare");
- return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
- VectorType::GenericVector);
- }
- /// CheckVectorCompareOperands - vector comparisons are a clang extension that
- /// operates on extended vector types. Instead of producing an IntTy result,
- /// like a scalar comparison, a vector comparison produces a vector of integer
- /// types.
- QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- BinaryOperatorKind Opc) {
- // Check to make sure we're operating on vectors of the same type and width,
- // Allowing one side to be a scalar of element type.
- QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
- /*AllowBothBool*/true,
- /*AllowBoolConversions*/getLangOpts().ZVector);
- if (vType.isNull())
- return vType;
- QualType LHSType = LHS.get()->getType();
- // If AltiVec, the comparison results in a numeric type, i.e.
- // bool for C++, int for C
- if (getLangOpts().AltiVec &&
- vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
- return Context.getLogicalOperationType();
- // For non-floating point types, check for self-comparisons of the form
- // x == x, x != x, x < x, etc. These always evaluate to a constant, and
- // often indicate logic errors in the program.
- diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
- // Check for comparisons of floating point operands using != and ==.
- if (BinaryOperator::isEqualityOp(Opc) &&
- LHSType->hasFloatingRepresentation()) {
- assert(RHS.get()->getType()->hasFloatingRepresentation());
- CheckFloatComparison(Loc, LHS.get(), RHS.get());
- }
- // Return a signed type for the vector.
- return GetSignedVectorType(vType);
- }
- static void diagnoseXorMisusedAsPow(Sema &S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc) {
- // Do not diagnose macros.
- if (Loc.isMacroID())
- return;
- bool Negative = false;
- const auto *LHSInt = dyn_cast<IntegerLiteral>(LHS.get());
- const auto *RHSInt = dyn_cast<IntegerLiteral>(RHS.get());
- if (!LHSInt)
- return;
- if (!RHSInt) {
- // Check negative literals.
- if (const auto *UO = dyn_cast<UnaryOperator>(RHS.get())) {
- if (UO->getOpcode() != UO_Minus)
- return;
- RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
- if (!RHSInt)
- return;
- Negative = true;
- } else {
- return;
- }
- }
- if (LHSInt->getValue().getBitWidth() != RHSInt->getValue().getBitWidth())
- return;
- CharSourceRange ExprRange = CharSourceRange::getCharRange(
- LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
- llvm::StringRef ExprStr =
- Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
- CharSourceRange XorRange =
- CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
- llvm::StringRef XorStr =
- Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
- // Do not diagnose if xor keyword/macro is used.
- if (XorStr == "xor")
- return;
- const llvm::APInt &LeftSideValue = LHSInt->getValue();
- const llvm::APInt &RightSideValue = RHSInt->getValue();
- const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
- std::string LHSStr = Lexer::getSourceText(
- CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
- S.getSourceManager(), S.getLangOpts());
- std::string RHSStr = Lexer::getSourceText(
- CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
- S.getSourceManager(), S.getLangOpts());
- int64_t RightSideIntValue = RightSideValue.getSExtValue();
- if (Negative) {
- RightSideIntValue = -RightSideIntValue;
- RHSStr = "-" + RHSStr;
- }
- StringRef LHSStrRef = LHSStr;
- StringRef RHSStrRef = RHSStr;
- // Do not diagnose binary, hexadecimal, octal literals.
- if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
- RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
- LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
- RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
- (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
- (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")))
- return;
- if (LeftSideValue == 2 && RightSideIntValue >= 0) {
- std::string SuggestedExpr = "1 << " + RHSStr;
- bool Overflow = false;
- llvm::APInt One = (LeftSideValue - 1);
- llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
- if (Overflow) {
- if (RightSideIntValue < 64)
- S.Diag(Loc, diag::warn_xor_used_as_pow_base)
- << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
- << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
- else
- // TODO: 2 ^ 64 - 1
- return;
- } else {
- S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
- << ExprStr << XorValue.toString(10, true) << SuggestedExpr
- << PowValue.toString(10, true)
- << FixItHint::CreateReplacement(
- ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
- }
- S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr);
- } else if (LeftSideValue == 10) {
- std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
- S.Diag(Loc, diag::warn_xor_used_as_pow_base)
- << ExprStr << XorValue.toString(10, true) << SuggestedValue
- << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
- S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr);
- }
- }
- QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc) {
- // Ensure that either both operands are of the same vector type, or
- // one operand is of a vector type and the other is of its element type.
- QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
- /*AllowBothBool*/true,
- /*AllowBoolConversions*/false);
- if (vType.isNull())
- return InvalidOperands(Loc, LHS, RHS);
- if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
- !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
- return InvalidOperands(Loc, LHS, RHS);
- // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
- // usage of the logical operators && and || with vectors in C. This
- // check could be notionally dropped.
- if (!getLangOpts().CPlusPlus &&
- !(isa<ExtVectorType>(vType->getAs<VectorType>())))
- return InvalidLogicalVectorOperands(Loc, LHS, RHS);
- return GetSignedVectorType(LHS.get()->getType());
- }
- inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- BinaryOperatorKind Opc) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
- bool IsCompAssign =
- Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- if (LHS.get()->getType()->hasIntegerRepresentation() &&
- RHS.get()->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
- /*AllowBothBool*/true,
- /*AllowBoolConversions*/getLangOpts().ZVector);
- return InvalidOperands(Loc, LHS, RHS);
- }
- if (Opc == BO_And)
- diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
- if (Opc == BO_Xor)
- diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
- ExprResult LHSResult = LHS, RHSResult = RHS;
- QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
- IsCompAssign);
- if (LHSResult.isInvalid() || RHSResult.isInvalid())
- return QualType();
- LHS = LHSResult.get();
- RHS = RHSResult.get();
- if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
- return compType;
- return InvalidOperands(Loc, LHS, RHS);
- }
- // C99 6.5.[13,14]
- inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- BinaryOperatorKind Opc) {
- // Check vector operands differently.
- if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
- return CheckVectorLogicalOperands(LHS, RHS, Loc);
- // Diagnose cases where the user write a logical and/or but probably meant a
- // bitwise one. We do this when the LHS is a non-bool integer and the RHS
- // is a constant.
- if (LHS.get()->getType()->isIntegerType() &&
- !LHS.get()->getType()->isBooleanType() &&
- RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
- // Don't warn in macros or template instantiations.
- !Loc.isMacroID() && !inTemplateInstantiation()) {
- // If the RHS can be constant folded, and if it constant folds to something
- // that isn't 0 or 1 (which indicate a potential logical operation that
- // happened to fold to true/false) then warn.
- // Parens on the RHS are ignored.
- Expr::EvalResult EVResult;
- if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
- llvm::APSInt Result = EVResult.Val.getInt();
- if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
- !RHS.get()->getExprLoc().isMacroID()) ||
- (Result != 0 && Result != 1)) {
- Diag(Loc, diag::warn_logical_instead_of_bitwise)
- << RHS.get()->getSourceRange()
- << (Opc == BO_LAnd ? "&&" : "||");
- // Suggest replacing the logical operator with the bitwise version
- Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
- << (Opc == BO_LAnd ? "&" : "|")
- << FixItHint::CreateReplacement(SourceRange(
- Loc, getLocForEndOfToken(Loc)),
- Opc == BO_LAnd ? "&" : "|");
- if (Opc == BO_LAnd)
- // Suggest replacing "Foo() && kNonZero" with "Foo()"
- Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
- << FixItHint::CreateRemoval(
- SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
- RHS.get()->getEndLoc()));
- }
- }
- }
- if (!Context.getLangOpts().CPlusPlus) {
- // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
- // not operate on the built-in scalar and vector float types.
- if (Context.getLangOpts().OpenCL &&
- Context.getLangOpts().OpenCLVersion < 120) {
- if (LHS.get()->getType()->isFloatingType() ||
- RHS.get()->getType()->isFloatingType())
- return InvalidOperands(Loc, LHS, RHS);
- }
- LHS = UsualUnaryConversions(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- RHS = UsualUnaryConversions(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- if (!LHS.get()->getType()->isScalarType() ||
- !RHS.get()->getType()->isScalarType())
- return InvalidOperands(Loc, LHS, RHS);
- return Context.IntTy;
- }
- // The following is safe because we only use this method for
- // non-overloadable operands.
- // C++ [expr.log.and]p1
- // C++ [expr.log.or]p1
- // The operands are both contextually converted to type bool.
- ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
- if (LHSRes.isInvalid())
- return InvalidOperands(Loc, LHS, RHS);
- LHS = LHSRes;
- ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
- if (RHSRes.isInvalid())
- return InvalidOperands(Loc, LHS, RHS);
- RHS = RHSRes;
- // C++ [expr.log.and]p2
- // C++ [expr.log.or]p2
- // The result is a bool.
- return Context.BoolTy;
- }
- static bool IsReadonlyMessage(Expr *E, Sema &S) {
- const MemberExpr *ME = dyn_cast<MemberExpr>(E);
- if (!ME) return false;
- if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
- ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
- ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
- if (!Base) return false;
- return Base->getMethodDecl() != nullptr;
- }
- /// Is the given expression (which must be 'const') a reference to a
- /// variable which was originally non-const, but which has become
- /// 'const' due to being captured within a block?
- enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
- static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
- assert(E->isLValue() && E->getType().isConstQualified());
- E = E->IgnoreParens();
- // Must be a reference to a declaration from an enclosing scope.
- DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
- if (!DRE) return NCCK_None;
- if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
- // The declaration must be a variable which is not declared 'const'.
- VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
- if (!var) return NCCK_None;
- if (var->getType().isConstQualified()) return NCCK_None;
- assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
- // Decide whether the first capture was for a block or a lambda.
- DeclContext *DC = S.CurContext, *Prev = nullptr;
- // Decide whether the first capture was for a block or a lambda.
- while (DC) {
- // For init-capture, it is possible that the variable belongs to the
- // template pattern of the current context.
- if (auto *FD = dyn_cast<FunctionDecl>(DC))
- if (var->isInitCapture() &&
- FD->getTemplateInstantiationPattern() == var->getDeclContext())
- break;
- if (DC == var->getDeclContext())
- break;
- Prev = DC;
- DC = DC->getParent();
- }
- // Unless we have an init-capture, we've gone one step too far.
- if (!var->isInitCapture())
- DC = Prev;
- return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
- }
- static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
- Ty = Ty.getNonReferenceType();
- if (IsDereference && Ty->isPointerType())
- Ty = Ty->getPointeeType();
- return !Ty.isConstQualified();
- }
- // Update err_typecheck_assign_const and note_typecheck_assign_const
- // when this enum is changed.
- enum {
- ConstFunction,
- ConstVariable,
- ConstMember,
- ConstMethod,
- NestedConstMember,
- ConstUnknown, // Keep as last element
- };
- /// Emit the "read-only variable not assignable" error and print notes to give
- /// more information about why the variable is not assignable, such as pointing
- /// to the declaration of a const variable, showing that a method is const, or
- /// that the function is returning a const reference.
- static void DiagnoseConstAssignment(Sema &S, const Expr *E,
- SourceLocation Loc) {
- SourceRange ExprRange = E->getSourceRange();
- // Only emit one error on the first const found. All other consts will emit
- // a note to the error.
- bool DiagnosticEmitted = false;
- // Track if the current expression is the result of a dereference, and if the
- // next checked expression is the result of a dereference.
- bool IsDereference = false;
- bool NextIsDereference = false;
- // Loop to process MemberExpr chains.
- while (true) {
- IsDereference = NextIsDereference;
- E = E->IgnoreImplicit()->IgnoreParenImpCasts();
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
- NextIsDereference = ME->isArrow();
- const ValueDecl *VD = ME->getMemberDecl();
- if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
- // Mutable fields can be modified even if the class is const.
- if (Field->isMutable()) {
- assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
- break;
- }
- if (!IsTypeModifiable(Field->getType(), IsDereference)) {
- if (!DiagnosticEmitted) {
- S.Diag(Loc, diag::err_typecheck_assign_const)
- << ExprRange << ConstMember << false /*static*/ << Field
- << Field->getType();
- DiagnosticEmitted = true;
- }
- S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
- << ConstMember << false /*static*/ << Field << Field->getType()
- << Field->getSourceRange();
- }
- E = ME->getBase();
- continue;
- } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
- if (VDecl->getType().isConstQualified()) {
- if (!DiagnosticEmitted) {
- S.Diag(Loc, diag::err_typecheck_assign_const)
- << ExprRange << ConstMember << true /*static*/ << VDecl
- << VDecl->getType();
- DiagnosticEmitted = true;
- }
- S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
- << ConstMember << true /*static*/ << VDecl << VDecl->getType()
- << VDecl->getSourceRange();
- }
- // Static fields do not inherit constness from parents.
- break;
- }
- break; // End MemberExpr
- } else if (const ArraySubscriptExpr *ASE =
- dyn_cast<ArraySubscriptExpr>(E)) {
- E = ASE->getBase()->IgnoreParenImpCasts();
- continue;
- } else if (const ExtVectorElementExpr *EVE =
- dyn_cast<ExtVectorElementExpr>(E)) {
- E = EVE->getBase()->IgnoreParenImpCasts();
- continue;
- }
- break;
- }
- if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
- // Function calls
- const FunctionDecl *FD = CE->getDirectCallee();
- if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
- if (!DiagnosticEmitted) {
- S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
- << ConstFunction << FD;
- DiagnosticEmitted = true;
- }
- S.Diag(FD->getReturnTypeSourceRange().getBegin(),
- diag::note_typecheck_assign_const)
- << ConstFunction << FD << FD->getReturnType()
- << FD->getReturnTypeSourceRange();
- }
- } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
- // Point to variable declaration.
- if (const ValueDecl *VD = DRE->getDecl()) {
- if (!IsTypeModifiable(VD->getType(), IsDereference)) {
- if (!DiagnosticEmitted) {
- S.Diag(Loc, diag::err_typecheck_assign_const)
- << ExprRange << ConstVariable << VD << VD->getType();
- DiagnosticEmitted = true;
- }
- S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
- << ConstVariable << VD << VD->getType() << VD->getSourceRange();
- }
- }
- } else if (isa<CXXThisExpr>(E)) {
- if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
- if (MD->isConst()) {
- if (!DiagnosticEmitted) {
- S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
- << ConstMethod << MD;
- DiagnosticEmitted = true;
- }
- S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
- << ConstMethod << MD << MD->getSourceRange();
- }
- }
- }
- }
- if (DiagnosticEmitted)
- return;
- // Can't determine a more specific message, so display the generic error.
- S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
- }
- enum OriginalExprKind {
- OEK_Variable,
- OEK_Member,
- OEK_LValue
- };
- static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
- const RecordType *Ty,
- SourceLocation Loc, SourceRange Range,
- OriginalExprKind OEK,
- bool &DiagnosticEmitted) {
- std::vector<const RecordType *> RecordTypeList;
- RecordTypeList.push_back(Ty);
- unsigned NextToCheckIndex = 0;
- // We walk the record hierarchy breadth-first to ensure that we print
- // diagnostics in field nesting order.
- while (RecordTypeList.size() > NextToCheckIndex) {
- bool IsNested = NextToCheckIndex > 0;
- for (const FieldDecl *Field :
- RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
- // First, check every field for constness.
- QualType FieldTy = Field->getType();
- if (FieldTy.isConstQualified()) {
- if (!DiagnosticEmitted) {
- S.Diag(Loc, diag::err_typecheck_assign_const)
- << Range << NestedConstMember << OEK << VD
- << IsNested << Field;
- DiagnosticEmitted = true;
- }
- S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
- << NestedConstMember << IsNested << Field
- << FieldTy << Field->getSourceRange();
- }
- // Then we append it to the list to check next in order.
- FieldTy = FieldTy.getCanonicalType();
- if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
- if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
- RecordTypeList.push_back(FieldRecTy);
- }
- }
- ++NextToCheckIndex;
- }
- }
- /// Emit an error for the case where a record we are trying to assign to has a
- /// const-qualified field somewhere in its hierarchy.
- static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
- SourceLocation Loc) {
- QualType Ty = E->getType();
- assert(Ty->isRecordType() && "lvalue was not record?");
- SourceRange Range = E->getSourceRange();
- const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
- bool DiagEmitted = false;
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
- DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
- Range, OEK_Member, DiagEmitted);
- else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
- Range, OEK_Variable, DiagEmitted);
- else
- DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
- Range, OEK_LValue, DiagEmitted);
- if (!DiagEmitted)
- DiagnoseConstAssignment(S, E, Loc);
- }
- /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
- /// emit an error and return true. If so, return false.
- static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
- assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
- S.CheckShadowingDeclModification(E, Loc);
- SourceLocation OrigLoc = Loc;
- Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
- &Loc);
- if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
- IsLV = Expr::MLV_InvalidMessageExpression;
- if (IsLV == Expr::MLV_Valid)
- return false;
- unsigned DiagID = 0;
- bool NeedType = false;
- switch (IsLV) { // C99 6.5.16p2
- case Expr::MLV_ConstQualified:
- // Use a specialized diagnostic when we're assigning to an object
- // from an enclosing function or block.
- if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
- if (NCCK == NCCK_Block)
- DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
- else
- DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
- break;
- }
- // In ARC, use some specialized diagnostics for occasions where we
- // infer 'const'. These are always pseudo-strong variables.
- if (S.getLangOpts().ObjCAutoRefCount) {
- DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
- if (declRef && isa<VarDecl>(declRef->getDecl())) {
- VarDecl *var = cast<VarDecl>(declRef->getDecl());
- // Use the normal diagnostic if it's pseudo-__strong but the
- // user actually wrote 'const'.
- if (var->isARCPseudoStrong() &&
- (!var->getTypeSourceInfo() ||
- !var->getTypeSourceInfo()->getType().isConstQualified())) {
- // There are three pseudo-strong cases:
- // - self
- ObjCMethodDecl *method = S.getCurMethodDecl();
- if (method && var == method->getSelfDecl()) {
- DiagID = method->isClassMethod()
- ? diag::err_typecheck_arc_assign_self_class_method
- : diag::err_typecheck_arc_assign_self;
- // - Objective-C externally_retained attribute.
- } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
- isa<ParmVarDecl>(var)) {
- DiagID = diag::err_typecheck_arc_assign_externally_retained;
- // - fast enumeration variables
- } else {
- DiagID = diag::err_typecheck_arr_assign_enumeration;
- }
- SourceRange Assign;
- if (Loc != OrigLoc)
- Assign = SourceRange(OrigLoc, OrigLoc);
- S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
- // We need to preserve the AST regardless, so migration tool
- // can do its job.
- return false;
- }
- }
- }
- // If none of the special cases above are triggered, then this is a
- // simple const assignment.
- if (DiagID == 0) {
- DiagnoseConstAssignment(S, E, Loc);
- return true;
- }
- break;
- case Expr::MLV_ConstAddrSpace:
- DiagnoseConstAssignment(S, E, Loc);
- return true;
- case Expr::MLV_ConstQualifiedField:
- DiagnoseRecursiveConstFields(S, E, Loc);
- return true;
- case Expr::MLV_ArrayType:
- case Expr::MLV_ArrayTemporary:
- DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
- NeedType = true;
- break;
- case Expr::MLV_NotObjectType:
- DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
- NeedType = true;
- break;
- case Expr::MLV_LValueCast:
- DiagID = diag::err_typecheck_lvalue_casts_not_supported;
- break;
- case Expr::MLV_Valid:
- llvm_unreachable("did not take early return for MLV_Valid");
- case Expr::MLV_InvalidExpression:
- case Expr::MLV_MemberFunction:
- case Expr::MLV_ClassTemporary:
- DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
- break;
- case Expr::MLV_IncompleteType:
- case Expr::MLV_IncompleteVoidType:
- return S.RequireCompleteType(Loc, E->getType(),
- diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
- case Expr::MLV_DuplicateVectorComponents:
- DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
- break;
- case Expr::MLV_NoSetterProperty:
- llvm_unreachable("readonly properties should be processed differently");
- case Expr::MLV_InvalidMessageExpression:
- DiagID = diag::err_readonly_message_assignment;
- break;
- case Expr::MLV_SubObjCPropertySetting:
- DiagID = diag::err_no_subobject_property_setting;
- break;
- }
- SourceRange Assign;
- if (Loc != OrigLoc)
- Assign = SourceRange(OrigLoc, OrigLoc);
- if (NeedType)
- S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
- else
- S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
- return true;
- }
- static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation Loc,
- Sema &Sema) {
- if (Sema.inTemplateInstantiation())
- return;
- if (Sema.isUnevaluatedContext())
- return;
- if (Loc.isInvalid() || Loc.isMacroID())
- return;
- if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
- return;
- // C / C++ fields
- MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
- MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
- if (ML && MR) {
- if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
- return;
- const ValueDecl *LHSDecl =
- cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
- const ValueDecl *RHSDecl =
- cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
- if (LHSDecl != RHSDecl)
- return;
- if (LHSDecl->getType().isVolatileQualified())
- return;
- if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
- if (RefTy->getPointeeType().isVolatileQualified())
- return;
- Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
- }
- // Objective-C instance variables
- ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
- ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
- if (OL && OR && OL->getDecl() == OR->getDecl()) {
- DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
- DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
- if (RL && RR && RL->getDecl() == RR->getDecl())
- Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
- }
- }
- // C99 6.5.16.1
- QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
- SourceLocation Loc,
- QualType CompoundType) {
- assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
- // Verify that LHS is a modifiable lvalue, and emit error if not.
- if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
- return QualType();
- QualType LHSType = LHSExpr->getType();
- QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
- CompoundType;
- // OpenCL v1.2 s6.1.1.1 p2:
- // The half data type can only be used to declare a pointer to a buffer that
- // contains half values
- if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
- LHSType->isHalfType()) {
- Diag(Loc, diag::err_opencl_half_load_store) << 1
- << LHSType.getUnqualifiedType();
- return QualType();
- }
- AssignConvertType ConvTy;
- if (CompoundType.isNull()) {
- Expr *RHSCheck = RHS.get();
- CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
- QualType LHSTy(LHSType);
- ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
- if (RHS.isInvalid())
- return QualType();
- // Special case of NSObject attributes on c-style pointer types.
- if (ConvTy == IncompatiblePointer &&
- ((Context.isObjCNSObjectType(LHSType) &&
- RHSType->isObjCObjectPointerType()) ||
- (Context.isObjCNSObjectType(RHSType) &&
- LHSType->isObjCObjectPointerType())))
- ConvTy = Compatible;
- if (ConvTy == Compatible &&
- LHSType->isObjCObjectType())
- Diag(Loc, diag::err_objc_object_assignment)
- << LHSType;
- // If the RHS is a unary plus or minus, check to see if they = and + are
- // right next to each other. If so, the user may have typo'd "x =+ 4"
- // instead of "x += 4".
- if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
- RHSCheck = ICE->getSubExpr();
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
- if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
- Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
- // Only if the two operators are exactly adjacent.
- Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
- // And there is a space or other character before the subexpr of the
- // unary +/-. We don't want to warn on "x=-1".
- Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
- UO->getSubExpr()->getBeginLoc().isFileID()) {
- Diag(Loc, diag::warn_not_compound_assign)
- << (UO->getOpcode() == UO_Plus ? "+" : "-")
- << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
- }
- }
- if (ConvTy == Compatible) {
- if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
- // Warn about retain cycles where a block captures the LHS, but
- // not if the LHS is a simple variable into which the block is
- // being stored...unless that variable can be captured by reference!
- const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
- const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
- if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
- checkRetainCycles(LHSExpr, RHS.get());
- }
- if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
- LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
- // It is safe to assign a weak reference into a strong variable.
- // Although this code can still have problems:
- // id x = self.weakProp;
- // id y = self.weakProp;
- // we do not warn to warn spuriously when 'x' and 'y' are on separate
- // paths through the function. This should be revisited if
- // -Wrepeated-use-of-weak is made flow-sensitive.
- // For ObjCWeak only, we do not warn if the assign is to a non-weak
- // variable, which will be valid for the current autorelease scope.
- if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
- RHS.get()->getBeginLoc()))
- getCurFunction()->markSafeWeakUse(RHS.get());
- } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
- checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
- }
- }
- } else {
- // Compound assignment "x += y"
- ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
- }
- if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
- RHS.get(), AA_Assigning))
- return QualType();
- CheckForNullPointerDereference(*this, LHSExpr);
- // C99 6.5.16p3: The type of an assignment expression is the type of the
- // left operand unless the left operand has qualified type, in which case
- // it is the unqualified version of the type of the left operand.
- // C99 6.5.16.1p2: In simple assignment, the value of the right operand
- // is converted to the type of the assignment expression (above).
- // C++ 5.17p1: the type of the assignment expression is that of its left
- // operand.
- return (getLangOpts().CPlusPlus
- ? LHSType : LHSType.getUnqualifiedType());
- }
- // Only ignore explicit casts to void.
- static bool IgnoreCommaOperand(const Expr *E) {
- E = E->IgnoreParens();
- if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
- if (CE->getCastKind() == CK_ToVoid) {
- return true;
- }
- // static_cast<void> on a dependent type will not show up as CK_ToVoid.
- if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
- CE->getSubExpr()->getType()->isDependentType()) {
- return true;
- }
- }
- return false;
- }
- // Look for instances where it is likely the comma operator is confused with
- // another operator. There is a whitelist of acceptable expressions for the
- // left hand side of the comma operator, otherwise emit a warning.
- void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
- // No warnings in macros
- if (Loc.isMacroID())
- return;
- // Don't warn in template instantiations.
- if (inTemplateInstantiation())
- return;
- // Scope isn't fine-grained enough to whitelist the specific cases, so
- // instead, skip more than needed, then call back into here with the
- // CommaVisitor in SemaStmt.cpp.
- // The whitelisted locations are the initialization and increment portions
- // of a for loop. The additional checks are on the condition of
- // if statements, do/while loops, and for loops.
- // Differences in scope flags for C89 mode requires the extra logic.
- const unsigned ForIncrementFlags =
- getLangOpts().C99 || getLangOpts().CPlusPlus
- ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
- : Scope::ContinueScope | Scope::BreakScope;
- const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
- const unsigned ScopeFlags = getCurScope()->getFlags();
- if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
- (ScopeFlags & ForInitFlags) == ForInitFlags)
- return;
- // If there are multiple comma operators used together, get the RHS of the
- // of the comma operator as the LHS.
- while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
- if (BO->getOpcode() != BO_Comma)
- break;
- LHS = BO->getRHS();
- }
- // Only allow some expressions on LHS to not warn.
- if (IgnoreCommaOperand(LHS))
- return;
- Diag(Loc, diag::warn_comma_operator);
- Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
- << LHS->getSourceRange()
- << FixItHint::CreateInsertion(LHS->getBeginLoc(),
- LangOpts.CPlusPlus ? "static_cast<void>("
- : "(void)(")
- << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
- ")");
- }
- // C99 6.5.17
- static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc) {
- LHS = S.CheckPlaceholderExpr(LHS.get());
- RHS = S.CheckPlaceholderExpr(RHS.get());
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
- // operands, but not unary promotions.
- // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
- // So we treat the LHS as a ignored value, and in C++ we allow the
- // containing site to determine what should be done with the RHS.
- LHS = S.IgnoredValueConversions(LHS.get());
- if (LHS.isInvalid())
- return QualType();
- S.DiagnoseUnusedExprResult(LHS.get());
- if (!S.getLangOpts().CPlusPlus) {
- RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
- if (RHS.isInvalid())
- return QualType();
- if (!RHS.get()->getType()->isVoidType())
- S.RequireCompleteType(Loc, RHS.get()->getType(),
- diag::err_incomplete_type);
- }
- if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
- S.DiagnoseCommaOperator(LHS.get(), Loc);
- return RHS.get()->getType();
- }
- /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
- /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
- static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
- ExprValueKind &VK,
- ExprObjectKind &OK,
- SourceLocation OpLoc,
- bool IsInc, bool IsPrefix) {
- if (Op->isTypeDependent())
- return S.Context.DependentTy;
- QualType ResType = Op->getType();
- // Atomic types can be used for increment / decrement where the non-atomic
- // versions can, so ignore the _Atomic() specifier for the purpose of
- // checking.
- if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
- ResType = ResAtomicType->getValueType();
- assert(!ResType.isNull() && "no type for increment/decrement expression");
- if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
- // Decrement of bool is not allowed.
- if (!IsInc) {
- S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
- return QualType();
- }
- // Increment of bool sets it to true, but is deprecated.
- S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
- : diag::warn_increment_bool)
- << Op->getSourceRange();
- } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
- // Error on enum increments and decrements in C++ mode
- S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
- return QualType();
- } else if (ResType->isRealType()) {
- // OK!
- } else if (ResType->isPointerType()) {
- // C99 6.5.2.4p2, 6.5.6p2
- if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
- return QualType();
- } else if (ResType->isObjCObjectPointerType()) {
- // On modern runtimes, ObjC pointer arithmetic is forbidden.
- // Otherwise, we just need a complete type.
- if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
- checkArithmeticOnObjCPointer(S, OpLoc, Op))
- return QualType();
- } else if (ResType->isAnyComplexType()) {
- // C99 does not support ++/-- on complex types, we allow as an extension.
- S.Diag(OpLoc, diag::ext_integer_increment_complex)
- << ResType << Op->getSourceRange();
- } else if (ResType->isPlaceholderType()) {
- ExprResult PR = S.CheckPlaceholderExpr(Op);
- if (PR.isInvalid()) return QualType();
- return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
- IsInc, IsPrefix);
- } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
- // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
- } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
- (ResType->getAs<VectorType>()->getVectorKind() !=
- VectorType::AltiVecBool)) {
- // The z vector extensions allow ++ and -- for non-bool vectors.
- } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
- ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
- // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
- } else {
- S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
- << ResType << int(IsInc) << Op->getSourceRange();
- return QualType();
- }
- // At this point, we know we have a real, complex or pointer type.
- // Now make sure the operand is a modifiable lvalue.
- if (CheckForModifiableLvalue(Op, OpLoc, S))
- return QualType();
- // In C++, a prefix increment is the same type as the operand. Otherwise
- // (in C or with postfix), the increment is the unqualified type of the
- // operand.
- if (IsPrefix && S.getLangOpts().CPlusPlus) {
- VK = VK_LValue;
- OK = Op->getObjectKind();
- return ResType;
- } else {
- VK = VK_RValue;
- return ResType.getUnqualifiedType();
- }
- }
- /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
- /// This routine allows us to typecheck complex/recursive expressions
- /// where the declaration is needed for type checking. We only need to
- /// handle cases when the expression references a function designator
- /// or is an lvalue. Here are some examples:
- /// - &(x) => x
- /// - &*****f => f for f a function designator.
- /// - &s.xx => s
- /// - &s.zz[1].yy -> s, if zz is an array
- /// - *(x + 1) -> x, if x is an array
- /// - &"123"[2] -> 0
- /// - & __real__ x -> x
- static ValueDecl *getPrimaryDecl(Expr *E) {
- switch (E->getStmtClass()) {
- case Stmt::DeclRefExprClass:
- return cast<DeclRefExpr>(E)->getDecl();
- case Stmt::MemberExprClass:
- // If this is an arrow operator, the address is an offset from
- // the base's value, so the object the base refers to is
- // irrelevant.
- if (cast<MemberExpr>(E)->isArrow())
- return nullptr;
- // Otherwise, the expression refers to a part of the base
- return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
- case Stmt::ArraySubscriptExprClass: {
- // FIXME: This code shouldn't be necessary! We should catch the implicit
- // promotion of register arrays earlier.
- Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
- if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
- if (ICE->getSubExpr()->getType()->isArrayType())
- return getPrimaryDecl(ICE->getSubExpr());
- }
- return nullptr;
- }
- case Stmt::UnaryOperatorClass: {
- UnaryOperator *UO = cast<UnaryOperator>(E);
- switch(UO->getOpcode()) {
- case UO_Real:
- case UO_Imag:
- case UO_Extension:
- return getPrimaryDecl(UO->getSubExpr());
- default:
- return nullptr;
- }
- }
- case Stmt::ParenExprClass:
- return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
- case Stmt::ImplicitCastExprClass:
- // If the result of an implicit cast is an l-value, we care about
- // the sub-expression; otherwise, the result here doesn't matter.
- return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
- default:
- return nullptr;
- }
- }
- namespace {
- enum {
- AO_Bit_Field = 0,
- AO_Vector_Element = 1,
- AO_Property_Expansion = 2,
- AO_Register_Variable = 3,
- AO_No_Error = 4
- };
- }
- /// Diagnose invalid operand for address of operations.
- ///
- /// \param Type The type of operand which cannot have its address taken.
- static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
- Expr *E, unsigned Type) {
- S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
- }
- /// CheckAddressOfOperand - The operand of & must be either a function
- /// designator or an lvalue designating an object. If it is an lvalue, the
- /// object cannot be declared with storage class register or be a bit field.
- /// Note: The usual conversions are *not* applied to the operand of the &
- /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
- /// In C++, the operand might be an overloaded function name, in which case
- /// we allow the '&' but retain the overloaded-function type.
- QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
- if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
- if (PTy->getKind() == BuiltinType::Overload) {
- Expr *E = OrigOp.get()->IgnoreParens();
- if (!isa<OverloadExpr>(E)) {
- assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
- Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
- OverloadExpr *Ovl = cast<OverloadExpr>(E);
- if (isa<UnresolvedMemberExpr>(Ovl))
- if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
- Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
- return Context.OverloadTy;
- }
- if (PTy->getKind() == BuiltinType::UnknownAny)
- return Context.UnknownAnyTy;
- if (PTy->getKind() == BuiltinType::BoundMember) {
- Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
- OrigOp = CheckPlaceholderExpr(OrigOp.get());
- if (OrigOp.isInvalid()) return QualType();
- }
- if (OrigOp.get()->isTypeDependent())
- return Context.DependentTy;
- assert(!OrigOp.get()->getType()->isPlaceholderType());
- // Make sure to ignore parentheses in subsequent checks
- Expr *op = OrigOp.get()->IgnoreParens();
- // In OpenCL captures for blocks called as lambda functions
- // are located in the private address space. Blocks used in
- // enqueue_kernel can be located in a different address space
- // depending on a vendor implementation. Thus preventing
- // taking an address of the capture to avoid invalid AS casts.
- if (LangOpts.OpenCL) {
- auto* VarRef = dyn_cast<DeclRefExpr>(op);
- if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
- Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
- return QualType();
- }
- }
- if (getLangOpts().C99) {
- // Implement C99-only parts of addressof rules.
- if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
- if (uOp->getOpcode() == UO_Deref)
- // Per C99 6.5.3.2, the address of a deref always returns a valid result
- // (assuming the deref expression is valid).
- return uOp->getSubExpr()->getType();
- }
- // Technically, there should be a check for array subscript
- // expressions here, but the result of one is always an lvalue anyway.
- }
- ValueDecl *dcl = getPrimaryDecl(op);
- if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
- if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
- op->getBeginLoc()))
- return QualType();
- Expr::LValueClassification lval = op->ClassifyLValue(Context);
- unsigned AddressOfError = AO_No_Error;
- if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
- bool sfinae = (bool)isSFINAEContext();
- Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
- : diag::ext_typecheck_addrof_temporary)
- << op->getType() << op->getSourceRange();
- if (sfinae)
- return QualType();
- // Materialize the temporary as an lvalue so that we can take its address.
- OrigOp = op =
- CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
- } else if (isa<ObjCSelectorExpr>(op)) {
- return Context.getPointerType(op->getType());
- } else if (lval == Expr::LV_MemberFunction) {
- // If it's an instance method, make a member pointer.
- // The expression must have exactly the form &A::foo.
- // If the underlying expression isn't a decl ref, give up.
- if (!isa<DeclRefExpr>(op)) {
- Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
- DeclRefExpr *DRE = cast<DeclRefExpr>(op);
- CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
- // The id-expression was parenthesized.
- if (OrigOp.get() != DRE) {
- Diag(OpLoc, diag::err_parens_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- // The method was named without a qualifier.
- } else if (!DRE->getQualifier()) {
- if (MD->getParent()->getName().empty())
- Diag(OpLoc, diag::err_unqualified_pointer_member_function)
- << op->getSourceRange();
- else {
- SmallString<32> Str;
- StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
- Diag(OpLoc, diag::err_unqualified_pointer_member_function)
- << op->getSourceRange()
- << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
- }
- }
- // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
- if (isa<CXXDestructorDecl>(MD))
- Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
- QualType MPTy = Context.getMemberPointerType(
- op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
- // Under the MS ABI, lock down the inheritance model now.
- if (Context.getTargetInfo().getCXXABI().isMicrosoft())
- (void)isCompleteType(OpLoc, MPTy);
- return MPTy;
- } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
- // C99 6.5.3.2p1
- // The operand must be either an l-value or a function designator
- if (!op->getType()->isFunctionType()) {
- // Use a special diagnostic for loads from property references.
- if (isa<PseudoObjectExpr>(op)) {
- AddressOfError = AO_Property_Expansion;
- } else {
- Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
- << op->getType() << op->getSourceRange();
- return QualType();
- }
- }
- } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
- // The operand cannot be a bit-field
- AddressOfError = AO_Bit_Field;
- } else if (op->getObjectKind() == OK_VectorComponent) {
- // The operand cannot be an element of a vector
- AddressOfError = AO_Vector_Element;
- } else if (dcl) { // C99 6.5.3.2p1
- // We have an lvalue with a decl. Make sure the decl is not declared
- // with the register storage-class specifier.
- if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
- // in C++ it is not error to take address of a register
- // variable (c++03 7.1.1P3)
- if (vd->getStorageClass() == SC_Register &&
- !getLangOpts().CPlusPlus) {
- AddressOfError = AO_Register_Variable;
- }
- } else if (isa<MSPropertyDecl>(dcl)) {
- AddressOfError = AO_Property_Expansion;
- } else if (isa<FunctionTemplateDecl>(dcl)) {
- return Context.OverloadTy;
- } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
- // Okay: we can take the address of a field.
- // Could be a pointer to member, though, if there is an explicit
- // scope qualifier for the class.
- if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
- DeclContext *Ctx = dcl->getDeclContext();
- if (Ctx && Ctx->isRecord()) {
- if (dcl->getType()->isReferenceType()) {
- Diag(OpLoc,
- diag::err_cannot_form_pointer_to_member_of_reference_type)
- << dcl->getDeclName() << dcl->getType();
- return QualType();
- }
- while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
- Ctx = Ctx->getParent();
- QualType MPTy = Context.getMemberPointerType(
- op->getType(),
- Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
- // Under the MS ABI, lock down the inheritance model now.
- if (Context.getTargetInfo().getCXXABI().isMicrosoft())
- (void)isCompleteType(OpLoc, MPTy);
- return MPTy;
- }
- }
- } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
- !isa<BindingDecl>(dcl))
- llvm_unreachable("Unknown/unexpected decl type");
- }
- if (AddressOfError != AO_No_Error) {
- diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
- return QualType();
- }
- if (lval == Expr::LV_IncompleteVoidType) {
- // Taking the address of a void variable is technically illegal, but we
- // allow it in cases which are otherwise valid.
- // Example: "extern void x; void* y = &x;".
- Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
- }
- // If the operand has type "type", the result has type "pointer to type".
- if (op->getType()->isObjCObjectType())
- return Context.getObjCObjectPointerType(op->getType());
- CheckAddressOfPackedMember(op);
- return Context.getPointerType(op->getType());
- }
- static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
- const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
- if (!DRE)
- return;
- const Decl *D = DRE->getDecl();
- if (!D)
- return;
- const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
- if (!Param)
- return;
- if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
- if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
- return;
- if (FunctionScopeInfo *FD = S.getCurFunction())
- if (!FD->ModifiedNonNullParams.count(Param))
- FD->ModifiedNonNullParams.insert(Param);
- }
- /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
- static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
- SourceLocation OpLoc) {
- if (Op->isTypeDependent())
- return S.Context.DependentTy;
- ExprResult ConvResult = S.UsualUnaryConversions(Op);
- if (ConvResult.isInvalid())
- return QualType();
- Op = ConvResult.get();
- QualType OpTy = Op->getType();
- QualType Result;
- if (isa<CXXReinterpretCastExpr>(Op)) {
- QualType OpOrigType = Op->IgnoreParenCasts()->getType();
- S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
- Op->getSourceRange());
- }
- if (const PointerType *PT = OpTy->getAs<PointerType>())
- {
- Result = PT->getPointeeType();
- }
- else if (const ObjCObjectPointerType *OPT =
- OpTy->getAs<ObjCObjectPointerType>())
- Result = OPT->getPointeeType();
- else {
- ExprResult PR = S.CheckPlaceholderExpr(Op);
- if (PR.isInvalid()) return QualType();
- if (PR.get() != Op)
- return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
- }
- if (Result.isNull()) {
- S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
- << OpTy << Op->getSourceRange();
- return QualType();
- }
- // Note that per both C89 and C99, indirection is always legal, even if Result
- // is an incomplete type or void. It would be possible to warn about
- // dereferencing a void pointer, but it's completely well-defined, and such a
- // warning is unlikely to catch any mistakes. In C++, indirection is not valid
- // for pointers to 'void' but is fine for any other pointer type:
- //
- // C++ [expr.unary.op]p1:
- // [...] the expression to which [the unary * operator] is applied shall
- // be a pointer to an object type, or a pointer to a function type
- if (S.getLangOpts().CPlusPlus && Result->isVoidType())
- S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
- << OpTy << Op->getSourceRange();
- // Dereferences are usually l-values...
- VK = VK_LValue;
- // ...except that certain expressions are never l-values in C.
- if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
- VK = VK_RValue;
- return Result;
- }
- BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
- BinaryOperatorKind Opc;
- switch (Kind) {
- default: llvm_unreachable("Unknown binop!");
- case tok::periodstar: Opc = BO_PtrMemD; break;
- case tok::arrowstar: Opc = BO_PtrMemI; break;
- case tok::star: Opc = BO_Mul; break;
- case tok::slash: Opc = BO_Div; break;
- case tok::percent: Opc = BO_Rem; break;
- case tok::plus: Opc = BO_Add; break;
- case tok::minus: Opc = BO_Sub; break;
- case tok::lessless: Opc = BO_Shl; break;
- case tok::greatergreater: Opc = BO_Shr; break;
- case tok::lessequal: Opc = BO_LE; break;
- case tok::less: Opc = BO_LT; break;
- case tok::greaterequal: Opc = BO_GE; break;
- case tok::greater: Opc = BO_GT; break;
- case tok::exclaimequal: Opc = BO_NE; break;
- case tok::equalequal: Opc = BO_EQ; break;
- case tok::spaceship: Opc = BO_Cmp; break;
- case tok::amp: Opc = BO_And; break;
- case tok::caret: Opc = BO_Xor; break;
- case tok::pipe: Opc = BO_Or; break;
- case tok::ampamp: Opc = BO_LAnd; break;
- case tok::pipepipe: Opc = BO_LOr; break;
- case tok::equal: Opc = BO_Assign; break;
- case tok::starequal: Opc = BO_MulAssign; break;
- case tok::slashequal: Opc = BO_DivAssign; break;
- case tok::percentequal: Opc = BO_RemAssign; break;
- case tok::plusequal: Opc = BO_AddAssign; break;
- case tok::minusequal: Opc = BO_SubAssign; break;
- case tok::lesslessequal: Opc = BO_ShlAssign; break;
- case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
- case tok::ampequal: Opc = BO_AndAssign; break;
- case tok::caretequal: Opc = BO_XorAssign; break;
- case tok::pipeequal: Opc = BO_OrAssign; break;
- case tok::comma: Opc = BO_Comma; break;
- }
- return Opc;
- }
- static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
- tok::TokenKind Kind) {
- UnaryOperatorKind Opc;
- switch (Kind) {
- default: llvm_unreachable("Unknown unary op!");
- case tok::plusplus: Opc = UO_PreInc; break;
- case tok::minusminus: Opc = UO_PreDec; break;
- case tok::amp: Opc = UO_AddrOf; break;
- case tok::star: Opc = UO_Deref; break;
- case tok::plus: Opc = UO_Plus; break;
- case tok::minus: Opc = UO_Minus; break;
- case tok::tilde: Opc = UO_Not; break;
- case tok::exclaim: Opc = UO_LNot; break;
- case tok::kw___real: Opc = UO_Real; break;
- case tok::kw___imag: Opc = UO_Imag; break;
- case tok::kw___extension__: Opc = UO_Extension; break;
- }
- return Opc;
- }
- /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
- /// This warning suppressed in the event of macro expansions.
- static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation OpLoc, bool IsBuiltin) {
- if (S.inTemplateInstantiation())
- return;
- if (S.isUnevaluatedContext())
- return;
- if (OpLoc.isInvalid() || OpLoc.isMacroID())
- return;
- LHSExpr = LHSExpr->IgnoreParenImpCasts();
- RHSExpr = RHSExpr->IgnoreParenImpCasts();
- const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
- const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
- if (!LHSDeclRef || !RHSDeclRef ||
- LHSDeclRef->getLocation().isMacroID() ||
- RHSDeclRef->getLocation().isMacroID())
- return;
- const ValueDecl *LHSDecl =
- cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
- const ValueDecl *RHSDecl =
- cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
- if (LHSDecl != RHSDecl)
- return;
- if (LHSDecl->getType().isVolatileQualified())
- return;
- if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
- if (RefTy->getPointeeType().isVolatileQualified())
- return;
- S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
- : diag::warn_self_assignment_overloaded)
- << LHSDeclRef->getType() << LHSExpr->getSourceRange()
- << RHSExpr->getSourceRange();
- }
- /// Check if a bitwise-& is performed on an Objective-C pointer. This
- /// is usually indicative of introspection within the Objective-C pointer.
- static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
- SourceLocation OpLoc) {
- if (!S.getLangOpts().ObjC)
- return;
- const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
- const Expr *LHS = L.get();
- const Expr *RHS = R.get();
- if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
- ObjCPointerExpr = LHS;
- OtherExpr = RHS;
- }
- else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
- ObjCPointerExpr = RHS;
- OtherExpr = LHS;
- }
- // This warning is deliberately made very specific to reduce false
- // positives with logic that uses '&' for hashing. This logic mainly
- // looks for code trying to introspect into tagged pointers, which
- // code should generally never do.
- if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
- unsigned Diag = diag::warn_objc_pointer_masking;
- // Determine if we are introspecting the result of performSelectorXXX.
- const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
- // Special case messages to -performSelector and friends, which
- // can return non-pointer values boxed in a pointer value.
- // Some clients may wish to silence warnings in this subcase.
- if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
- Selector S = ME->getSelector();
- StringRef SelArg0 = S.getNameForSlot(0);
- if (SelArg0.startswith("performSelector"))
- Diag = diag::warn_objc_pointer_masking_performSelector;
- }
- S.Diag(OpLoc, Diag)
- << ObjCPointerExpr->getSourceRange();
- }
- }
- static NamedDecl *getDeclFromExpr(Expr *E) {
- if (!E)
- return nullptr;
- if (auto *DRE = dyn_cast<DeclRefExpr>(E))
- return DRE->getDecl();
- if (auto *ME = dyn_cast<MemberExpr>(E))
- return ME->getMemberDecl();
- if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
- return IRE->getDecl();
- return nullptr;
- }
- // This helper function promotes a binary operator's operands (which are of a
- // half vector type) to a vector of floats and then truncates the result to
- // a vector of either half or short.
- static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
- BinaryOperatorKind Opc, QualType ResultTy,
- ExprValueKind VK, ExprObjectKind OK,
- bool IsCompAssign, SourceLocation OpLoc,
- FPOptions FPFeatures) {
- auto &Context = S.getASTContext();
- assert((isVector(ResultTy, Context.HalfTy) ||
- isVector(ResultTy, Context.ShortTy)) &&
- "Result must be a vector of half or short");
- assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
- isVector(RHS.get()->getType(), Context.HalfTy) &&
- "both operands expected to be a half vector");
- RHS = convertVector(RHS.get(), Context.FloatTy, S);
- QualType BinOpResTy = RHS.get()->getType();
- // If Opc is a comparison, ResultType is a vector of shorts. In that case,
- // change BinOpResTy to a vector of ints.
- if (isVector(ResultTy, Context.ShortTy))
- BinOpResTy = S.GetSignedVectorType(BinOpResTy);
- if (IsCompAssign)
- return new (Context) CompoundAssignOperator(
- LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, BinOpResTy, BinOpResTy,
- OpLoc, FPFeatures);
- LHS = convertVector(LHS.get(), Context.FloatTy, S);
- auto *BO = new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, BinOpResTy,
- VK, OK, OpLoc, FPFeatures);
- return convertVector(BO, ResultTy->getAs<VectorType>()->getElementType(), S);
- }
- static std::pair<ExprResult, ExprResult>
- CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
- Expr *RHSExpr) {
- ExprResult LHS = LHSExpr, RHS = RHSExpr;
- if (!S.getLangOpts().CPlusPlus) {
- // C cannot handle TypoExpr nodes on either side of a binop because it
- // doesn't handle dependent types properly, so make sure any TypoExprs have
- // been dealt with before checking the operands.
- LHS = S.CorrectDelayedTyposInExpr(LHS);
- RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) {
- if (Opc != BO_Assign)
- return ExprResult(E);
- // Avoid correcting the RHS to the same Expr as the LHS.
- Decl *D = getDeclFromExpr(E);
- return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
- });
- }
- return std::make_pair(LHS, RHS);
- }
- /// Returns true if conversion between vectors of halfs and vectors of floats
- /// is needed.
- static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
- QualType SrcType) {
- return OpRequiresConversion && !Ctx.getLangOpts().NativeHalfType &&
- !Ctx.getTargetInfo().useFP16ConversionIntrinsics() &&
- isVector(SrcType, Ctx.HalfTy);
- }
- /// CreateBuiltinBinOp - Creates a new built-in binary operation with
- /// operator @p Opc at location @c TokLoc. This routine only supports
- /// built-in operations; ActOnBinOp handles overloaded operators.
- ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- Expr *LHSExpr, Expr *RHSExpr) {
- if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
- // The syntax only allows initializer lists on the RHS of assignment,
- // so we don't need to worry about accepting invalid code for
- // non-assignment operators.
- // C++11 5.17p9:
- // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
- // of x = {} is x = T().
- InitializationKind Kind = InitializationKind::CreateDirectList(
- RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
- InitializedEntity Entity =
- InitializedEntity::InitializeTemporary(LHSExpr->getType());
- InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
- ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
- if (Init.isInvalid())
- return Init;
- RHSExpr = Init.get();
- }
- ExprResult LHS = LHSExpr, RHS = RHSExpr;
- QualType ResultTy; // Result type of the binary operator.
- // The following two variables are used for compound assignment operators
- QualType CompLHSTy; // Type of LHS after promotions for computation
- QualType CompResultTy; // Type of computation result
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- bool ConvertHalfVec = false;
- std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
- if (!LHS.isUsable() || !RHS.isUsable())
- return ExprError();
- if (getLangOpts().OpenCL) {
- QualType LHSTy = LHSExpr->getType();
- QualType RHSTy = RHSExpr->getType();
- // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
- // the ATOMIC_VAR_INIT macro.
- if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
- SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
- if (BO_Assign == Opc)
- Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
- else
- ResultTy = InvalidOperands(OpLoc, LHS, RHS);
- return ExprError();
- }
- // OpenCL special types - image, sampler, pipe, and blocks are to be used
- // only with a builtin functions and therefore should be disallowed here.
- if (LHSTy->isImageType() || RHSTy->isImageType() ||
- LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
- LHSTy->isPipeType() || RHSTy->isPipeType() ||
- LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
- ResultTy = InvalidOperands(OpLoc, LHS, RHS);
- return ExprError();
- }
- }
- // Diagnose operations on the unsupported types for OpenMP device compilation.
- if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
- if (Opc != BO_Assign && Opc != BO_Comma) {
- checkOpenMPDeviceExpr(LHSExpr);
- checkOpenMPDeviceExpr(RHSExpr);
- }
- }
- switch (Opc) {
- case BO_Assign:
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
- if (getLangOpts().CPlusPlus &&
- LHS.get()->getObjectKind() != OK_ObjCProperty) {
- VK = LHS.get()->getValueKind();
- OK = LHS.get()->getObjectKind();
- }
- if (!ResultTy.isNull()) {
- DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
- DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
- // Avoid copying a block to the heap if the block is assigned to a local
- // auto variable that is declared in the same scope as the block. This
- // optimization is unsafe if the local variable is declared in an outer
- // scope. For example:
- //
- // BlockTy b;
- // {
- // b = ^{...};
- // }
- // // It is unsafe to invoke the block here if it wasn't copied to the
- // // heap.
- // b();
- if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
- if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
- if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
- if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
- BE->getBlockDecl()->setCanAvoidCopyToHeap();
- }
- RecordModifiableNonNullParam(*this, LHS.get());
- break;
- case BO_PtrMemD:
- case BO_PtrMemI:
- ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
- Opc == BO_PtrMemI);
- break;
- case BO_Mul:
- case BO_Div:
- ConvertHalfVec = true;
- ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
- Opc == BO_Div);
- break;
- case BO_Rem:
- ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
- break;
- case BO_Add:
- ConvertHalfVec = true;
- ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_Sub:
- ConvertHalfVec = true;
- ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
- break;
- case BO_Shl:
- case BO_Shr:
- ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_LE:
- case BO_LT:
- case BO_GE:
- case BO_GT:
- ConvertHalfVec = true;
- ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_EQ:
- case BO_NE:
- ConvertHalfVec = true;
- ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_Cmp:
- ConvertHalfVec = true;
- ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
- assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
- break;
- case BO_And:
- checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
- LLVM_FALLTHROUGH;
- case BO_Xor:
- case BO_Or:
- ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_LAnd:
- case BO_LOr:
- ConvertHalfVec = true;
- ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_MulAssign:
- case BO_DivAssign:
- ConvertHalfVec = true;
- CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
- Opc == BO_DivAssign);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_RemAssign:
- CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_AddAssign:
- ConvertHalfVec = true;
- CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_SubAssign:
- ConvertHalfVec = true;
- CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_ShlAssign:
- case BO_ShrAssign:
- CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_AndAssign:
- case BO_OrAssign: // fallthrough
- DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
- LLVM_FALLTHROUGH;
- case BO_XorAssign:
- CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_Comma:
- ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
- if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
- VK = RHS.get()->getValueKind();
- OK = RHS.get()->getObjectKind();
- }
- break;
- }
- if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
- return ExprError();
- // Some of the binary operations require promoting operands of half vector to
- // float vectors and truncating the result back to half vector. For now, we do
- // this only when HalfArgsAndReturn is set (that is, when the target is arm or
- // arm64).
- assert(isVector(RHS.get()->getType(), Context.HalfTy) ==
- isVector(LHS.get()->getType(), Context.HalfTy) &&
- "both sides are half vectors or neither sides are");
- ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context,
- LHS.get()->getType());
- // Check for array bounds violations for both sides of the BinaryOperator
- CheckArrayAccess(LHS.get());
- CheckArrayAccess(RHS.get());
- if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
- NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
- &Context.Idents.get("object_setClass"),
- SourceLocation(), LookupOrdinaryName);
- if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
- SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
- Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
- << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
- "object_setClass(")
- << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
- ",")
- << FixItHint::CreateInsertion(RHSLocEnd, ")");
- }
- else
- Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
- }
- else if (const ObjCIvarRefExpr *OIRE =
- dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
- DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
- // Opc is not a compound assignment if CompResultTy is null.
- if (CompResultTy.isNull()) {
- if (ConvertHalfVec)
- return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
- OpLoc, FPFeatures);
- return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
- OK, OpLoc, FPFeatures);
- }
- // Handle compound assignments.
- if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
- OK_ObjCProperty) {
- VK = VK_LValue;
- OK = LHS.get()->getObjectKind();
- }
- if (ConvertHalfVec)
- return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
- OpLoc, FPFeatures);
- return new (Context) CompoundAssignOperator(
- LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
- OpLoc, FPFeatures);
- }
- /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
- /// operators are mixed in a way that suggests that the programmer forgot that
- /// comparison operators have higher precedence. The most typical example of
- /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
- static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
- SourceLocation OpLoc, Expr *LHSExpr,
- Expr *RHSExpr) {
- BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
- BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
- // Check that one of the sides is a comparison operator and the other isn't.
- bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
- bool isRightComp = RHSBO && RHSBO->isComparisonOp();
- if (isLeftComp == isRightComp)
- return;
- // Bitwise operations are sometimes used as eager logical ops.
- // Don't diagnose this.
- bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
- bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
- if (isLeftBitwise || isRightBitwise)
- return;
- SourceRange DiagRange = isLeftComp
- ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
- : SourceRange(OpLoc, RHSExpr->getEndLoc());
- StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
- SourceRange ParensRange =
- isLeftComp
- ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
- : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
- Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
- << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_silence) << OpStr,
- (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_first)
- << BinaryOperator::getOpcodeStr(Opc),
- ParensRange);
- }
- /// It accepts a '&&' expr that is inside a '||' one.
- /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
- /// in parentheses.
- static void
- EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
- BinaryOperator *Bop) {
- assert(Bop->getOpcode() == BO_LAnd);
- Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
- << Bop->getSourceRange() << OpLoc;
- SuggestParentheses(Self, Bop->getOperatorLoc(),
- Self.PDiag(diag::note_precedence_silence)
- << Bop->getOpcodeStr(),
- Bop->getSourceRange());
- }
- /// Returns true if the given expression can be evaluated as a constant
- /// 'true'.
- static bool EvaluatesAsTrue(Sema &S, Expr *E) {
- bool Res;
- return !E->isValueDependent() &&
- E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
- }
- /// Returns true if the given expression can be evaluated as a constant
- /// 'false'.
- static bool EvaluatesAsFalse(Sema &S, Expr *E) {
- bool Res;
- return !E->isValueDependent() &&
- E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
- }
- /// Look for '&&' in the left hand of a '||' expr.
- static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
- if (Bop->getOpcode() == BO_LAnd) {
- // If it's "a && b || 0" don't warn since the precedence doesn't matter.
- if (EvaluatesAsFalse(S, RHSExpr))
- return;
- // If it's "1 && a || b" don't warn since the precedence doesn't matter.
- if (!EvaluatesAsTrue(S, Bop->getLHS()))
- return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
- } else if (Bop->getOpcode() == BO_LOr) {
- if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
- // If it's "a || b && 1 || c" we didn't warn earlier for
- // "a || b && 1", but warn now.
- if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
- return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
- }
- }
- }
- }
- /// Look for '&&' in the right hand of a '||' expr.
- static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
- if (Bop->getOpcode() == BO_LAnd) {
- // If it's "0 || a && b" don't warn since the precedence doesn't matter.
- if (EvaluatesAsFalse(S, LHSExpr))
- return;
- // If it's "a || b && 1" don't warn since the precedence doesn't matter.
- if (!EvaluatesAsTrue(S, Bop->getRHS()))
- return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
- }
- }
- }
- /// Look for bitwise op in the left or right hand of a bitwise op with
- /// lower precedence and emit a diagnostic together with a fixit hint that wraps
- /// the '&' expression in parentheses.
- static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
- SourceLocation OpLoc, Expr *SubExpr) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
- if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
- S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
- << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
- << Bop->getSourceRange() << OpLoc;
- SuggestParentheses(S, Bop->getOperatorLoc(),
- S.PDiag(diag::note_precedence_silence)
- << Bop->getOpcodeStr(),
- Bop->getSourceRange());
- }
- }
- }
- static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
- Expr *SubExpr, StringRef Shift) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
- if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
- StringRef Op = Bop->getOpcodeStr();
- S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
- << Bop->getSourceRange() << OpLoc << Shift << Op;
- SuggestParentheses(S, Bop->getOperatorLoc(),
- S.PDiag(diag::note_precedence_silence) << Op,
- Bop->getSourceRange());
- }
- }
- }
- static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
- if (!OCE)
- return;
- FunctionDecl *FD = OCE->getDirectCallee();
- if (!FD || !FD->isOverloadedOperator())
- return;
- OverloadedOperatorKind Kind = FD->getOverloadedOperator();
- if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
- return;
- S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
- << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
- << (Kind == OO_LessLess);
- SuggestParentheses(S, OCE->getOperatorLoc(),
- S.PDiag(diag::note_precedence_silence)
- << (Kind == OO_LessLess ? "<<" : ">>"),
- OCE->getSourceRange());
- SuggestParentheses(
- S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
- SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
- }
- /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
- /// precedence.
- static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
- SourceLocation OpLoc, Expr *LHSExpr,
- Expr *RHSExpr){
- // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
- if (BinaryOperator::isBitwiseOp(Opc))
- DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
- // Diagnose "arg1 & arg2 | arg3"
- if ((Opc == BO_Or || Opc == BO_Xor) &&
- !OpLoc.isMacroID()/* Don't warn in macros. */) {
- DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
- DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
- }
- // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
- // We don't warn for 'assert(a || b && "bad")' since this is safe.
- if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
- DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
- DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
- }
- if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
- || Opc == BO_Shr) {
- StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
- DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
- DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
- }
- // Warn on overloaded shift operators and comparisons, such as:
- // cout << 5 == 4;
- if (BinaryOperator::isComparisonOp(Opc))
- DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
- }
- // Binary Operators. 'Tok' is the token for the operator.
- ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
- tok::TokenKind Kind,
- Expr *LHSExpr, Expr *RHSExpr) {
- BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
- assert(LHSExpr && "ActOnBinOp(): missing left expression");
- assert(RHSExpr && "ActOnBinOp(): missing right expression");
- // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
- DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
- return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
- }
- /// Build an overloaded binary operator expression in the given scope.
- static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- Expr *LHS, Expr *RHS) {
- switch (Opc) {
- case BO_Assign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_SubAssign:
- case BO_AndAssign:
- case BO_OrAssign:
- case BO_XorAssign:
- DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
- CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
- break;
- default:
- break;
- }
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp
- = BinaryOperator::getOverloadedOperator(Opc);
- if (Sc && OverOp != OO_None && OverOp != OO_Equal)
- S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
- RHS->getType(), Functions);
- // Build the (potentially-overloaded, potentially-dependent)
- // binary operation.
- return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
- }
- ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- Expr *LHSExpr, Expr *RHSExpr) {
- ExprResult LHS, RHS;
- std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
- if (!LHS.isUsable() || !RHS.isUsable())
- return ExprError();
- LHSExpr = LHS.get();
- RHSExpr = RHS.get();
- // We want to end up calling one of checkPseudoObjectAssignment
- // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
- // both expressions are overloadable or either is type-dependent),
- // or CreateBuiltinBinOp (in any other case). We also want to get
- // any placeholder types out of the way.
- // Handle pseudo-objects in the LHS.
- if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
- // Assignments with a pseudo-object l-value need special analysis.
- if (pty->getKind() == BuiltinType::PseudoObject &&
- BinaryOperator::isAssignmentOp(Opc))
- return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
- // Don't resolve overloads if the other type is overloadable.
- if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
- // We can't actually test that if we still have a placeholder,
- // though. Fortunately, none of the exceptions we see in that
- // code below are valid when the LHS is an overload set. Note
- // that an overload set can be dependently-typed, but it never
- // instantiates to having an overloadable type.
- ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
- if (resolvedRHS.isInvalid()) return ExprError();
- RHSExpr = resolvedRHS.get();
- if (RHSExpr->isTypeDependent() ||
- RHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- }
- // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
- // template, diagnose the missing 'template' keyword instead of diagnosing
- // an invalid use of a bound member function.
- //
- // Note that "A::x < b" might be valid if 'b' has an overloadable type due
- // to C++1z [over.over]/1.4, but we already checked for that case above.
- if (Opc == BO_LT && inTemplateInstantiation() &&
- (pty->getKind() == BuiltinType::BoundMember ||
- pty->getKind() == BuiltinType::Overload)) {
- auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
- if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
- std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
- return isa<FunctionTemplateDecl>(ND);
- })) {
- Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
- : OE->getNameLoc(),
- diag::err_template_kw_missing)
- << OE->getName().getAsString() << "";
- return ExprError();
- }
- }
- ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
- if (LHS.isInvalid()) return ExprError();
- LHSExpr = LHS.get();
- }
- // Handle pseudo-objects in the RHS.
- if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
- // An overload in the RHS can potentially be resolved by the type
- // being assigned to.
- if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
- if (getLangOpts().CPlusPlus &&
- (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
- LHSExpr->getType()->isOverloadableType()))
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
- }
- // Don't resolve overloads if the other type is overloadable.
- if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
- LHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
- if (!resolvedRHS.isUsable()) return ExprError();
- RHSExpr = resolvedRHS.get();
- }
- if (getLangOpts().CPlusPlus) {
- // If either expression is type-dependent, always build an
- // overloaded op.
- if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- // Otherwise, build an overloaded op if either expression has an
- // overloadable type.
- if (LHSExpr->getType()->isOverloadableType() ||
- RHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- }
- // Build a built-in binary operation.
- return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
- }
- static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
- if (T.isNull() || T->isDependentType())
- return false;
- if (!T->isPromotableIntegerType())
- return true;
- return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
- }
- ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
- UnaryOperatorKind Opc,
- Expr *InputExpr) {
- ExprResult Input = InputExpr;
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType resultType;
- bool CanOverflow = false;
- bool ConvertHalfVec = false;
- if (getLangOpts().OpenCL) {
- QualType Ty = InputExpr->getType();
- // The only legal unary operation for atomics is '&'.
- if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
- // OpenCL special types - image, sampler, pipe, and blocks are to be used
- // only with a builtin functions and therefore should be disallowed here.
- (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
- || Ty->isBlockPointerType())) {
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << InputExpr->getType()
- << Input.get()->getSourceRange());
- }
- }
- // Diagnose operations on the unsupported types for OpenMP device compilation.
- if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
- if (UnaryOperator::isIncrementDecrementOp(Opc) ||
- UnaryOperator::isArithmeticOp(Opc))
- checkOpenMPDeviceExpr(InputExpr);
- }
- switch (Opc) {
- case UO_PreInc:
- case UO_PreDec:
- case UO_PostInc:
- case UO_PostDec:
- resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
- OpLoc,
- Opc == UO_PreInc ||
- Opc == UO_PostInc,
- Opc == UO_PreInc ||
- Opc == UO_PreDec);
- CanOverflow = isOverflowingIntegerType(Context, resultType);
- break;
- case UO_AddrOf:
- resultType = CheckAddressOfOperand(Input, OpLoc);
- CheckAddressOfNoDeref(InputExpr);
- RecordModifiableNonNullParam(*this, InputExpr);
- break;
- case UO_Deref: {
- Input = DefaultFunctionArrayLvalueConversion(Input.get());
- if (Input.isInvalid()) return ExprError();
- resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
- break;
- }
- case UO_Plus:
- case UO_Minus:
- CanOverflow = Opc == UO_Minus &&
- isOverflowingIntegerType(Context, Input.get()->getType());
- Input = UsualUnaryConversions(Input.get());
- if (Input.isInvalid()) return ExprError();
- // Unary plus and minus require promoting an operand of half vector to a
- // float vector and truncating the result back to a half vector. For now, we
- // do this only when HalfArgsAndReturns is set (that is, when the target is
- // arm or arm64).
- ConvertHalfVec =
- needsConversionOfHalfVec(true, Context, Input.get()->getType());
- // If the operand is a half vector, promote it to a float vector.
- if (ConvertHalfVec)
- Input = convertVector(Input.get(), Context.FloatTy, *this);
- resultType = Input.get()->getType();
- if (resultType->isDependentType())
- break;
- if (resultType->isArithmeticType()) // C99 6.5.3.3p1
- break;
- else if (resultType->isVectorType() &&
- // The z vector extensions don't allow + or - with bool vectors.
- (!Context.getLangOpts().ZVector ||
- resultType->getAs<VectorType>()->getVectorKind() !=
- VectorType::AltiVecBool))
- break;
- else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
- Opc == UO_Plus &&
- resultType->isPointerType())
- break;
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- case UO_Not: // bitwise complement
- Input = UsualUnaryConversions(Input.get());
- if (Input.isInvalid())
- return ExprError();
- resultType = Input.get()->getType();
- if (resultType->isDependentType())
- break;
- // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
- if (resultType->isComplexType() || resultType->isComplexIntegerType())
- // C99 does not support '~' for complex conjugation.
- Diag(OpLoc, diag::ext_integer_complement_complex)
- << resultType << Input.get()->getSourceRange();
- else if (resultType->hasIntegerRepresentation())
- break;
- else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
- // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
- // on vector float types.
- QualType T = resultType->getAs<ExtVectorType>()->getElementType();
- if (!T->isIntegerType())
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- } else {
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- }
- break;
- case UO_LNot: // logical negation
- // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
- Input = DefaultFunctionArrayLvalueConversion(Input.get());
- if (Input.isInvalid()) return ExprError();
- resultType = Input.get()->getType();
- // Though we still have to promote half FP to float...
- if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
- Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
- resultType = Context.FloatTy;
- }
- if (resultType->isDependentType())
- break;
- if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
- // C99 6.5.3.3p1: ok, fallthrough;
- if (Context.getLangOpts().CPlusPlus) {
- // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
- // operand contextually converted to bool.
- Input = ImpCastExprToType(Input.get(), Context.BoolTy,
- ScalarTypeToBooleanCastKind(resultType));
- } else if (Context.getLangOpts().OpenCL &&
- Context.getLangOpts().OpenCLVersion < 120) {
- // OpenCL v1.1 6.3.h: The logical operator not (!) does not
- // operate on scalar float types.
- if (!resultType->isIntegerType() && !resultType->isPointerType())
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- }
- } else if (resultType->isExtVectorType()) {
- if (Context.getLangOpts().OpenCL &&
- Context.getLangOpts().OpenCLVersion < 120 &&
- !Context.getLangOpts().OpenCLCPlusPlus) {
- // OpenCL v1.1 6.3.h: The logical operator not (!) does not
- // operate on vector float types.
- QualType T = resultType->getAs<ExtVectorType>()->getElementType();
- if (!T->isIntegerType())
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- }
- // Vector logical not returns the signed variant of the operand type.
- resultType = GetSignedVectorType(resultType);
- break;
- } else {
- // FIXME: GCC's vector extension permits the usage of '!' with a vector
- // type in C++. We should allow that here too.
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- }
- // LNot always has type int. C99 6.5.3.3p5.
- // In C++, it's bool. C++ 5.3.1p8
- resultType = Context.getLogicalOperationType();
- break;
- case UO_Real:
- case UO_Imag:
- resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
- // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
- // complex l-values to ordinary l-values and all other values to r-values.
- if (Input.isInvalid()) return ExprError();
- if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
- if (Input.get()->getValueKind() != VK_RValue &&
- Input.get()->getObjectKind() == OK_Ordinary)
- VK = Input.get()->getValueKind();
- } else if (!getLangOpts().CPlusPlus) {
- // In C, a volatile scalar is read by __imag. In C++, it is not.
- Input = DefaultLvalueConversion(Input.get());
- }
- break;
- case UO_Extension:
- resultType = Input.get()->getType();
- VK = Input.get()->getValueKind();
- OK = Input.get()->getObjectKind();
- break;
- case UO_Coawait:
- // It's unnecessary to represent the pass-through operator co_await in the
- // AST; just return the input expression instead.
- assert(!Input.get()->getType()->isDependentType() &&
- "the co_await expression must be non-dependant before "
- "building operator co_await");
- return Input;
- }
- if (resultType.isNull() || Input.isInvalid())
- return ExprError();
- // Check for array bounds violations in the operand of the UnaryOperator,
- // except for the '*' and '&' operators that have to be handled specially
- // by CheckArrayAccess (as there are special cases like &array[arraysize]
- // that are explicitly defined as valid by the standard).
- if (Opc != UO_AddrOf && Opc != UO_Deref)
- CheckArrayAccess(Input.get());
- auto *UO = new (Context)
- UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow);
- if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
- !isa<ArrayType>(UO->getType().getDesugaredType(Context)))
- ExprEvalContexts.back().PossibleDerefs.insert(UO);
- // Convert the result back to a half vector.
- if (ConvertHalfVec)
- return convertVector(UO, Context.HalfTy, *this);
- return UO;
- }
- /// Determine whether the given expression is a qualified member
- /// access expression, of a form that could be turned into a pointer to member
- /// with the address-of operator.
- bool Sema::isQualifiedMemberAccess(Expr *E) {
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
- if (!DRE->getQualifier())
- return false;
- ValueDecl *VD = DRE->getDecl();
- if (!VD->isCXXClassMember())
- return false;
- if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
- return true;
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
- return Method->isInstance();
- return false;
- }
- if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
- if (!ULE->getQualifier())
- return false;
- for (NamedDecl *D : ULE->decls()) {
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
- if (Method->isInstance())
- return true;
- } else {
- // Overload set does not contain methods.
- break;
- }
- }
- return false;
- }
- return false;
- }
- ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
- UnaryOperatorKind Opc, Expr *Input) {
- // First things first: handle placeholders so that the
- // overloaded-operator check considers the right type.
- if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
- // Increment and decrement of pseudo-object references.
- if (pty->getKind() == BuiltinType::PseudoObject &&
- UnaryOperator::isIncrementDecrementOp(Opc))
- return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
- // extension is always a builtin operator.
- if (Opc == UO_Extension)
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- // & gets special logic for several kinds of placeholder.
- // The builtin code knows what to do.
- if (Opc == UO_AddrOf &&
- (pty->getKind() == BuiltinType::Overload ||
- pty->getKind() == BuiltinType::UnknownAny ||
- pty->getKind() == BuiltinType::BoundMember))
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- // Anything else needs to be handled now.
- ExprResult Result = CheckPlaceholderExpr(Input);
- if (Result.isInvalid()) return ExprError();
- Input = Result.get();
- }
- if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
- UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
- !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
- if (S && OverOp != OO_None)
- LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
- Functions);
- return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
- }
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- }
- // Unary Operators. 'Tok' is the token for the operator.
- ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Op, Expr *Input) {
- return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
- }
- /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
- ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
- LabelDecl *TheDecl) {
- TheDecl->markUsed(Context);
- // Create the AST node. The address of a label always has type 'void*'.
- return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
- Context.getPointerType(Context.VoidTy));
- }
- void Sema::ActOnStartStmtExpr() {
- PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
- }
- void Sema::ActOnStmtExprError() {
- // Note that function is also called by TreeTransform when leaving a
- // StmtExpr scope without rebuilding anything.
- DiscardCleanupsInEvaluationContext();
- PopExpressionEvaluationContext();
- }
- ExprResult
- Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
- SourceLocation RPLoc) { // "({..})"
- assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
- CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
- if (hasAnyUnrecoverableErrorsInThisFunction())
- DiscardCleanupsInEvaluationContext();
- assert(!Cleanup.exprNeedsCleanups() &&
- "cleanups within StmtExpr not correctly bound!");
- PopExpressionEvaluationContext();
- // FIXME: there are a variety of strange constraints to enforce here, for
- // example, it is not possible to goto into a stmt expression apparently.
- // More semantic analysis is needed.
- // If there are sub-stmts in the compound stmt, take the type of the last one
- // as the type of the stmtexpr.
- QualType Ty = Context.VoidTy;
- bool StmtExprMayBindToTemp = false;
- if (!Compound->body_empty()) {
- // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
- if (const auto *LastStmt =
- dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
- if (const Expr *Value = LastStmt->getExprStmt()) {
- StmtExprMayBindToTemp = true;
- Ty = Value->getType();
- }
- }
- }
- // FIXME: Check that expression type is complete/non-abstract; statement
- // expressions are not lvalues.
- Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
- if (StmtExprMayBindToTemp)
- return MaybeBindToTemporary(ResStmtExpr);
- return ResStmtExpr;
- }
- ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
- if (ER.isInvalid())
- return ExprError();
- // Do function/array conversion on the last expression, but not
- // lvalue-to-rvalue. However, initialize an unqualified type.
- ER = DefaultFunctionArrayConversion(ER.get());
- if (ER.isInvalid())
- return ExprError();
- Expr *E = ER.get();
- if (E->isTypeDependent())
- return E;
- // In ARC, if the final expression ends in a consume, splice
- // the consume out and bind it later. In the alternate case
- // (when dealing with a retainable type), the result
- // initialization will create a produce. In both cases the
- // result will be +1, and we'll need to balance that out with
- // a bind.
- auto *Cast = dyn_cast<ImplicitCastExpr>(E);
- if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
- return Cast->getSubExpr();
- // FIXME: Provide a better location for the initialization.
- return PerformCopyInitialization(
- InitializedEntity::InitializeStmtExprResult(
- E->getBeginLoc(), E->getType().getUnqualifiedType()),
- SourceLocation(), E);
- }
- ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
- TypeSourceInfo *TInfo,
- ArrayRef<OffsetOfComponent> Components,
- SourceLocation RParenLoc) {
- QualType ArgTy = TInfo->getType();
- bool Dependent = ArgTy->isDependentType();
- SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
- // We must have at least one component that refers to the type, and the first
- // one is known to be a field designator. Verify that the ArgTy represents
- // a struct/union/class.
- if (!Dependent && !ArgTy->isRecordType())
- return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
- << ArgTy << TypeRange);
- // Type must be complete per C99 7.17p3 because a declaring a variable
- // with an incomplete type would be ill-formed.
- if (!Dependent
- && RequireCompleteType(BuiltinLoc, ArgTy,
- diag::err_offsetof_incomplete_type, TypeRange))
- return ExprError();
- bool DidWarnAboutNonPOD = false;
- QualType CurrentType = ArgTy;
- SmallVector<OffsetOfNode, 4> Comps;
- SmallVector<Expr*, 4> Exprs;
- for (const OffsetOfComponent &OC : Components) {
- if (OC.isBrackets) {
- // Offset of an array sub-field. TODO: Should we allow vector elements?
- if (!CurrentType->isDependentType()) {
- const ArrayType *AT = Context.getAsArrayType(CurrentType);
- if(!AT)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
- << CurrentType);
- CurrentType = AT->getElementType();
- } else
- CurrentType = Context.DependentTy;
- ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
- if (IdxRval.isInvalid())
- return ExprError();
- Expr *Idx = IdxRval.get();
- // The expression must be an integral expression.
- // FIXME: An integral constant expression?
- if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
- !Idx->getType()->isIntegerType())
- return ExprError(
- Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
- << Idx->getSourceRange());
- // Record this array index.
- Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
- Exprs.push_back(Idx);
- continue;
- }
- // Offset of a field.
- if (CurrentType->isDependentType()) {
- // We have the offset of a field, but we can't look into the dependent
- // type. Just record the identifier of the field.
- Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
- CurrentType = Context.DependentTy;
- continue;
- }
- // We need to have a complete type to look into.
- if (RequireCompleteType(OC.LocStart, CurrentType,
- diag::err_offsetof_incomplete_type))
- return ExprError();
- // Look for the designated field.
- const RecordType *RC = CurrentType->getAs<RecordType>();
- if (!RC)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
- << CurrentType);
- RecordDecl *RD = RC->getDecl();
- // C++ [lib.support.types]p5:
- // The macro offsetof accepts a restricted set of type arguments in this
- // International Standard. type shall be a POD structure or a POD union
- // (clause 9).
- // C++11 [support.types]p4:
- // If type is not a standard-layout class (Clause 9), the results are
- // undefined.
- if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
- bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
- unsigned DiagID =
- LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
- : diag::ext_offsetof_non_pod_type;
- if (!IsSafe && !DidWarnAboutNonPOD &&
- DiagRuntimeBehavior(BuiltinLoc, nullptr,
- PDiag(DiagID)
- << SourceRange(Components[0].LocStart, OC.LocEnd)
- << CurrentType))
- DidWarnAboutNonPOD = true;
- }
- // Look for the field.
- LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
- LookupQualifiedName(R, RD);
- FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
- IndirectFieldDecl *IndirectMemberDecl = nullptr;
- if (!MemberDecl) {
- if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
- MemberDecl = IndirectMemberDecl->getAnonField();
- }
- if (!MemberDecl)
- return ExprError(Diag(BuiltinLoc, diag::err_no_member)
- << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
- OC.LocEnd));
- // C99 7.17p3:
- // (If the specified member is a bit-field, the behavior is undefined.)
- //
- // We diagnose this as an error.
- if (MemberDecl->isBitField()) {
- Diag(OC.LocEnd, diag::err_offsetof_bitfield)
- << MemberDecl->getDeclName()
- << SourceRange(BuiltinLoc, RParenLoc);
- Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
- return ExprError();
- }
- RecordDecl *Parent = MemberDecl->getParent();
- if (IndirectMemberDecl)
- Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
- // If the member was found in a base class, introduce OffsetOfNodes for
- // the base class indirections.
- CXXBasePaths Paths;
- if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
- Paths)) {
- if (Paths.getDetectedVirtual()) {
- Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
- << MemberDecl->getDeclName()
- << SourceRange(BuiltinLoc, RParenLoc);
- return ExprError();
- }
- CXXBasePath &Path = Paths.front();
- for (const CXXBasePathElement &B : Path)
- Comps.push_back(OffsetOfNode(B.Base));
- }
- if (IndirectMemberDecl) {
- for (auto *FI : IndirectMemberDecl->chain()) {
- assert(isa<FieldDecl>(FI));
- Comps.push_back(OffsetOfNode(OC.LocStart,
- cast<FieldDecl>(FI), OC.LocEnd));
- }
- } else
- Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
- CurrentType = MemberDecl->getType().getNonReferenceType();
- }
- return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
- Comps, Exprs, RParenLoc);
- }
- ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
- SourceLocation BuiltinLoc,
- SourceLocation TypeLoc,
- ParsedType ParsedArgTy,
- ArrayRef<OffsetOfComponent> Components,
- SourceLocation RParenLoc) {
- TypeSourceInfo *ArgTInfo;
- QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
- if (ArgTy.isNull())
- return ExprError();
- if (!ArgTInfo)
- ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
- return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
- }
- ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
- Expr *CondExpr,
- Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation RPLoc) {
- assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType resType;
- bool ValueDependent = false;
- bool CondIsTrue = false;
- if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
- resType = Context.DependentTy;
- ValueDependent = true;
- } else {
- // The conditional expression is required to be a constant expression.
- llvm::APSInt condEval(32);
- ExprResult CondICE
- = VerifyIntegerConstantExpression(CondExpr, &condEval,
- diag::err_typecheck_choose_expr_requires_constant, false);
- if (CondICE.isInvalid())
- return ExprError();
- CondExpr = CondICE.get();
- CondIsTrue = condEval.getZExtValue();
- // If the condition is > zero, then the AST type is the same as the LHSExpr.
- Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
- resType = ActiveExpr->getType();
- ValueDependent = ActiveExpr->isValueDependent();
- VK = ActiveExpr->getValueKind();
- OK = ActiveExpr->getObjectKind();
- }
- return new (Context)
- ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
- CondIsTrue, resType->isDependentType(), ValueDependent);
- }
- //===----------------------------------------------------------------------===//
- // Clang Extensions.
- //===----------------------------------------------------------------------===//
- /// ActOnBlockStart - This callback is invoked when a block literal is started.
- void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
- BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
- if (LangOpts.CPlusPlus) {
- Decl *ManglingContextDecl;
- if (MangleNumberingContext *MCtx =
- getCurrentMangleNumberContext(Block->getDeclContext(),
- ManglingContextDecl)) {
- unsigned ManglingNumber = MCtx->getManglingNumber(Block);
- Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
- }
- }
- PushBlockScope(CurScope, Block);
- CurContext->addDecl(Block);
- if (CurScope)
- PushDeclContext(CurScope, Block);
- else
- CurContext = Block;
- getCurBlock()->HasImplicitReturnType = true;
- // Enter a new evaluation context to insulate the block from any
- // cleanups from the enclosing full-expression.
- PushExpressionEvaluationContext(
- ExpressionEvaluationContext::PotentiallyEvaluated);
- }
- void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
- Scope *CurScope) {
- assert(ParamInfo.getIdentifier() == nullptr &&
- "block-id should have no identifier!");
- assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
- BlockScopeInfo *CurBlock = getCurBlock();
- TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
- QualType T = Sig->getType();
- // FIXME: We should allow unexpanded parameter packs here, but that would,
- // in turn, make the block expression contain unexpanded parameter packs.
- if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
- // Drop the parameters.
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.HasTrailingReturn = false;
- EPI.TypeQuals.addConst();
- T = Context.getFunctionType(Context.DependentTy, None, EPI);
- Sig = Context.getTrivialTypeSourceInfo(T);
- }
- // GetTypeForDeclarator always produces a function type for a block
- // literal signature. Furthermore, it is always a FunctionProtoType
- // unless the function was written with a typedef.
- assert(T->isFunctionType() &&
- "GetTypeForDeclarator made a non-function block signature");
- // Look for an explicit signature in that function type.
- FunctionProtoTypeLoc ExplicitSignature;
- if ((ExplicitSignature = Sig->getTypeLoc()
- .getAsAdjusted<FunctionProtoTypeLoc>())) {
- // Check whether that explicit signature was synthesized by
- // GetTypeForDeclarator. If so, don't save that as part of the
- // written signature.
- if (ExplicitSignature.getLocalRangeBegin() ==
- ExplicitSignature.getLocalRangeEnd()) {
- // This would be much cheaper if we stored TypeLocs instead of
- // TypeSourceInfos.
- TypeLoc Result = ExplicitSignature.getReturnLoc();
- unsigned Size = Result.getFullDataSize();
- Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
- Sig->getTypeLoc().initializeFullCopy(Result, Size);
- ExplicitSignature = FunctionProtoTypeLoc();
- }
- }
- CurBlock->TheDecl->setSignatureAsWritten(Sig);
- CurBlock->FunctionType = T;
- const FunctionType *Fn = T->getAs<FunctionType>();
- QualType RetTy = Fn->getReturnType();
- bool isVariadic =
- (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
- CurBlock->TheDecl->setIsVariadic(isVariadic);
- // Context.DependentTy is used as a placeholder for a missing block
- // return type. TODO: what should we do with declarators like:
- // ^ * { ... }
- // If the answer is "apply template argument deduction"....
- if (RetTy != Context.DependentTy) {
- CurBlock->ReturnType = RetTy;
- CurBlock->TheDecl->setBlockMissingReturnType(false);
- CurBlock->HasImplicitReturnType = false;
- }
- // Push block parameters from the declarator if we had them.
- SmallVector<ParmVarDecl*, 8> Params;
- if (ExplicitSignature) {
- for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
- ParmVarDecl *Param = ExplicitSignature.getParam(I);
- if (Param->getIdentifier() == nullptr &&
- !Param->isImplicit() &&
- !Param->isInvalidDecl() &&
- !getLangOpts().CPlusPlus)
- Diag(Param->getLocation(), diag::err_parameter_name_omitted);
- Params.push_back(Param);
- }
- // Fake up parameter variables if we have a typedef, like
- // ^ fntype { ... }
- } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
- for (const auto &I : Fn->param_types()) {
- ParmVarDecl *Param = BuildParmVarDeclForTypedef(
- CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
- Params.push_back(Param);
- }
- }
- // Set the parameters on the block decl.
- if (!Params.empty()) {
- CurBlock->TheDecl->setParams(Params);
- CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
- /*CheckParameterNames=*/false);
- }
- // Finally we can process decl attributes.
- ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
- // Put the parameter variables in scope.
- for (auto AI : CurBlock->TheDecl->parameters()) {
- AI->setOwningFunction(CurBlock->TheDecl);
- // If this has an identifier, add it to the scope stack.
- if (AI->getIdentifier()) {
- CheckShadow(CurBlock->TheScope, AI);
- PushOnScopeChains(AI, CurBlock->TheScope);
- }
- }
- }
- /// ActOnBlockError - If there is an error parsing a block, this callback
- /// is invoked to pop the information about the block from the action impl.
- void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
- // Leave the expression-evaluation context.
- DiscardCleanupsInEvaluationContext();
- PopExpressionEvaluationContext();
- // Pop off CurBlock, handle nested blocks.
- PopDeclContext();
- PopFunctionScopeInfo();
- }
- /// ActOnBlockStmtExpr - This is called when the body of a block statement
- /// literal was successfully completed. ^(int x){...}
- ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
- Stmt *Body, Scope *CurScope) {
- // If blocks are disabled, emit an error.
- if (!LangOpts.Blocks)
- Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
- // Leave the expression-evaluation context.
- if (hasAnyUnrecoverableErrorsInThisFunction())
- DiscardCleanupsInEvaluationContext();
- assert(!Cleanup.exprNeedsCleanups() &&
- "cleanups within block not correctly bound!");
- PopExpressionEvaluationContext();
- BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
- BlockDecl *BD = BSI->TheDecl;
- if (BSI->HasImplicitReturnType)
- deduceClosureReturnType(*BSI);
- QualType RetTy = Context.VoidTy;
- if (!BSI->ReturnType.isNull())
- RetTy = BSI->ReturnType;
- bool NoReturn = BD->hasAttr<NoReturnAttr>();
- QualType BlockTy;
- // If the user wrote a function type in some form, try to use that.
- if (!BSI->FunctionType.isNull()) {
- const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
- FunctionType::ExtInfo Ext = FTy->getExtInfo();
- if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
- // Turn protoless block types into nullary block types.
- if (isa<FunctionNoProtoType>(FTy)) {
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.ExtInfo = Ext;
- BlockTy = Context.getFunctionType(RetTy, None, EPI);
- // Otherwise, if we don't need to change anything about the function type,
- // preserve its sugar structure.
- } else if (FTy->getReturnType() == RetTy &&
- (!NoReturn || FTy->getNoReturnAttr())) {
- BlockTy = BSI->FunctionType;
- // Otherwise, make the minimal modifications to the function type.
- } else {
- const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
- FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
- EPI.TypeQuals = Qualifiers();
- EPI.ExtInfo = Ext;
- BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
- }
- // If we don't have a function type, just build one from nothing.
- } else {
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
- BlockTy = Context.getFunctionType(RetTy, None, EPI);
- }
- DiagnoseUnusedParameters(BD->parameters());
- BlockTy = Context.getBlockPointerType(BlockTy);
- // If needed, diagnose invalid gotos and switches in the block.
- if (getCurFunction()->NeedsScopeChecking() &&
- !PP.isCodeCompletionEnabled())
- DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
- BD->setBody(cast<CompoundStmt>(Body));
- if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
- DiagnoseUnguardedAvailabilityViolations(BD);
- // Try to apply the named return value optimization. We have to check again
- // if we can do this, though, because blocks keep return statements around
- // to deduce an implicit return type.
- if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
- !BD->isDependentContext())
- computeNRVO(Body, BSI);
- PopDeclContext();
- // Pop the block scope now but keep it alive to the end of this function.
- AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
- PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
- // Set the captured variables on the block.
- SmallVector<BlockDecl::Capture, 4> Captures;
- for (Capture &Cap : BSI->Captures) {
- if (Cap.isInvalid() || Cap.isThisCapture())
- continue;
- VarDecl *Var = Cap.getVariable();
- Expr *CopyExpr = nullptr;
- if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
- if (const RecordType *Record =
- Cap.getCaptureType()->getAs<RecordType>()) {
- // The capture logic needs the destructor, so make sure we mark it.
- // Usually this is unnecessary because most local variables have
- // their destructors marked at declaration time, but parameters are
- // an exception because it's technically only the call site that
- // actually requires the destructor.
- if (isa<ParmVarDecl>(Var))
- FinalizeVarWithDestructor(Var, Record);
- // Enter a separate potentially-evaluated context while building block
- // initializers to isolate their cleanups from those of the block
- // itself.
- // FIXME: Is this appropriate even when the block itself occurs in an
- // unevaluated operand?
- EnterExpressionEvaluationContext EvalContext(
- *this, ExpressionEvaluationContext::PotentiallyEvaluated);
- SourceLocation Loc = Cap.getLocation();
- ExprResult Result = BuildDeclarationNameExpr(
- CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
- // According to the blocks spec, the capture of a variable from
- // the stack requires a const copy constructor. This is not true
- // of the copy/move done to move a __block variable to the heap.
- if (!Result.isInvalid() &&
- !Result.get()->getType().isConstQualified()) {
- Result = ImpCastExprToType(Result.get(),
- Result.get()->getType().withConst(),
- CK_NoOp, VK_LValue);
- }
- if (!Result.isInvalid()) {
- Result = PerformCopyInitialization(
- InitializedEntity::InitializeBlock(Var->getLocation(),
- Cap.getCaptureType(), false),
- Loc, Result.get());
- }
- // Build a full-expression copy expression if initialization
- // succeeded and used a non-trivial constructor. Recover from
- // errors by pretending that the copy isn't necessary.
- if (!Result.isInvalid() &&
- !cast<CXXConstructExpr>(Result.get())->getConstructor()
- ->isTrivial()) {
- Result = MaybeCreateExprWithCleanups(Result);
- CopyExpr = Result.get();
- }
- }
- }
- BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
- CopyExpr);
- Captures.push_back(NewCap);
- }
- BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
- BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
- // If the block isn't obviously global, i.e. it captures anything at
- // all, then we need to do a few things in the surrounding context:
- if (Result->getBlockDecl()->hasCaptures()) {
- // First, this expression has a new cleanup object.
- ExprCleanupObjects.push_back(Result->getBlockDecl());
- Cleanup.setExprNeedsCleanups(true);
- // It also gets a branch-protected scope if any of the captured
- // variables needs destruction.
- for (const auto &CI : Result->getBlockDecl()->captures()) {
- const VarDecl *var = CI.getVariable();
- if (var->getType().isDestructedType() != QualType::DK_none) {
- setFunctionHasBranchProtectedScope();
- break;
- }
- }
- }
- if (getCurFunction())
- getCurFunction()->addBlock(BD);
- return Result;
- }
- ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
- SourceLocation RPLoc) {
- TypeSourceInfo *TInfo;
- GetTypeFromParser(Ty, &TInfo);
- return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
- }
- ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
- Expr *E, TypeSourceInfo *TInfo,
- SourceLocation RPLoc) {
- Expr *OrigExpr = E;
- bool IsMS = false;
- // CUDA device code does not support varargs.
- if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
- if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
- CUDAFunctionTarget T = IdentifyCUDATarget(F);
- if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
- return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
- }
- }
- // NVPTX does not support va_arg expression.
- if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
- Context.getTargetInfo().getTriple().isNVPTX())
- targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
- // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
- // as Microsoft ABI on an actual Microsoft platform, where
- // __builtin_ms_va_list and __builtin_va_list are the same.)
- if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
- Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
- QualType MSVaListType = Context.getBuiltinMSVaListType();
- if (Context.hasSameType(MSVaListType, E->getType())) {
- if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
- return ExprError();
- IsMS = true;
- }
- }
- // Get the va_list type
- QualType VaListType = Context.getBuiltinVaListType();
- if (!IsMS) {
- if (VaListType->isArrayType()) {
- // Deal with implicit array decay; for example, on x86-64,
- // va_list is an array, but it's supposed to decay to
- // a pointer for va_arg.
- VaListType = Context.getArrayDecayedType(VaListType);
- // Make sure the input expression also decays appropriately.
- ExprResult Result = UsualUnaryConversions(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.get();
- } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
- // If va_list is a record type and we are compiling in C++ mode,
- // check the argument using reference binding.
- InitializedEntity Entity = InitializedEntity::InitializeParameter(
- Context, Context.getLValueReferenceType(VaListType), false);
- ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
- if (Init.isInvalid())
- return ExprError();
- E = Init.getAs<Expr>();
- } else {
- // Otherwise, the va_list argument must be an l-value because
- // it is modified by va_arg.
- if (!E->isTypeDependent() &&
- CheckForModifiableLvalue(E, BuiltinLoc, *this))
- return ExprError();
- }
- }
- if (!IsMS && !E->isTypeDependent() &&
- !Context.hasSameType(VaListType, E->getType()))
- return ExprError(
- Diag(E->getBeginLoc(),
- diag::err_first_argument_to_va_arg_not_of_type_va_list)
- << OrigExpr->getType() << E->getSourceRange());
- if (!TInfo->getType()->isDependentType()) {
- if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
- diag::err_second_parameter_to_va_arg_incomplete,
- TInfo->getTypeLoc()))
- return ExprError();
- if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
- TInfo->getType(),
- diag::err_second_parameter_to_va_arg_abstract,
- TInfo->getTypeLoc()))
- return ExprError();
- if (!TInfo->getType().isPODType(Context)) {
- Diag(TInfo->getTypeLoc().getBeginLoc(),
- TInfo->getType()->isObjCLifetimeType()
- ? diag::warn_second_parameter_to_va_arg_ownership_qualified
- : diag::warn_second_parameter_to_va_arg_not_pod)
- << TInfo->getType()
- << TInfo->getTypeLoc().getSourceRange();
- }
- // Check for va_arg where arguments of the given type will be promoted
- // (i.e. this va_arg is guaranteed to have undefined behavior).
- QualType PromoteType;
- if (TInfo->getType()->isPromotableIntegerType()) {
- PromoteType = Context.getPromotedIntegerType(TInfo->getType());
- if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
- PromoteType = QualType();
- }
- if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
- PromoteType = Context.DoubleTy;
- if (!PromoteType.isNull())
- DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
- PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
- << TInfo->getType()
- << PromoteType
- << TInfo->getTypeLoc().getSourceRange());
- }
- QualType T = TInfo->getType().getNonLValueExprType(Context);
- return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
- }
- ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
- // The type of __null will be int or long, depending on the size of
- // pointers on the target.
- QualType Ty;
- unsigned pw = Context.getTargetInfo().getPointerWidth(0);
- if (pw == Context.getTargetInfo().getIntWidth())
- Ty = Context.IntTy;
- else if (pw == Context.getTargetInfo().getLongWidth())
- Ty = Context.LongTy;
- else if (pw == Context.getTargetInfo().getLongLongWidth())
- Ty = Context.LongLongTy;
- else {
- llvm_unreachable("I don't know size of pointer!");
- }
- return new (Context) GNUNullExpr(Ty, TokenLoc);
- }
- ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
- SourceLocation BuiltinLoc,
- SourceLocation RPLoc) {
- return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
- }
- ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
- SourceLocation BuiltinLoc,
- SourceLocation RPLoc,
- DeclContext *ParentContext) {
- return new (Context)
- SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
- }
- bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
- bool Diagnose) {
- if (!getLangOpts().ObjC)
- return false;
- const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
- if (!PT)
- return false;
- if (!PT->isObjCIdType()) {
- // Check if the destination is the 'NSString' interface.
- const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
- if (!ID || !ID->getIdentifier()->isStr("NSString"))
- return false;
- }
- // Ignore any parens, implicit casts (should only be
- // array-to-pointer decays), and not-so-opaque values. The last is
- // important for making this trigger for property assignments.
- Expr *SrcExpr = Exp->IgnoreParenImpCasts();
- if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
- if (OV->getSourceExpr())
- SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
- StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
- if (!SL || !SL->isAscii())
- return false;
- if (Diagnose) {
- Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
- << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
- Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
- }
- return true;
- }
- static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
- const Expr *SrcExpr) {
- if (!DstType->isFunctionPointerType() ||
- !SrcExpr->getType()->isFunctionType())
- return false;
- auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
- if (!DRE)
- return false;
- auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
- if (!FD)
- return false;
- return !S.checkAddressOfFunctionIsAvailable(FD,
- /*Complain=*/true,
- SrcExpr->getBeginLoc());
- }
- bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
- SourceLocation Loc,
- QualType DstType, QualType SrcType,
- Expr *SrcExpr, AssignmentAction Action,
- bool *Complained) {
- if (Complained)
- *Complained = false;
- // Decode the result (notice that AST's are still created for extensions).
- bool CheckInferredResultType = false;
- bool isInvalid = false;
- unsigned DiagKind = 0;
- FixItHint Hint;
- ConversionFixItGenerator ConvHints;
- bool MayHaveConvFixit = false;
- bool MayHaveFunctionDiff = false;
- const ObjCInterfaceDecl *IFace = nullptr;
- const ObjCProtocolDecl *PDecl = nullptr;
- switch (ConvTy) {
- case Compatible:
- DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
- return false;
- case PointerToInt:
- DiagKind = diag::ext_typecheck_convert_pointer_int;
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- MayHaveConvFixit = true;
- break;
- case IntToPointer:
- DiagKind = diag::ext_typecheck_convert_int_pointer;
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- MayHaveConvFixit = true;
- break;
- case IncompatiblePointer:
- if (Action == AA_Passing_CFAudited)
- DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
- else if (SrcType->isFunctionPointerType() &&
- DstType->isFunctionPointerType())
- DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
- else
- DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
- CheckInferredResultType = DstType->isObjCObjectPointerType() &&
- SrcType->isObjCObjectPointerType();
- if (Hint.isNull() && !CheckInferredResultType) {
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- }
- else if (CheckInferredResultType) {
- SrcType = SrcType.getUnqualifiedType();
- DstType = DstType.getUnqualifiedType();
- }
- MayHaveConvFixit = true;
- break;
- case IncompatiblePointerSign:
- DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
- break;
- case FunctionVoidPointer:
- DiagKind = diag::ext_typecheck_convert_pointer_void_func;
- break;
- case IncompatiblePointerDiscardsQualifiers: {
- // Perform array-to-pointer decay if necessary.
- if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
- Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
- Qualifiers rhq = DstType->getPointeeType().getQualifiers();
- if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
- DiagKind = diag::err_typecheck_incompatible_address_space;
- break;
- } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
- DiagKind = diag::err_typecheck_incompatible_ownership;
- break;
- }
- llvm_unreachable("unknown error case for discarding qualifiers!");
- // fallthrough
- }
- case CompatiblePointerDiscardsQualifiers:
- // If the qualifiers lost were because we were applying the
- // (deprecated) C++ conversion from a string literal to a char*
- // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
- // Ideally, this check would be performed in
- // checkPointerTypesForAssignment. However, that would require a
- // bit of refactoring (so that the second argument is an
- // expression, rather than a type), which should be done as part
- // of a larger effort to fix checkPointerTypesForAssignment for
- // C++ semantics.
- if (getLangOpts().CPlusPlus &&
- IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
- return false;
- DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
- break;
- case IncompatibleNestedPointerQualifiers:
- DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
- break;
- case IncompatibleNestedPointerAddressSpaceMismatch:
- DiagKind = diag::err_typecheck_incompatible_nested_address_space;
- break;
- case IntToBlockPointer:
- DiagKind = diag::err_int_to_block_pointer;
- break;
- case IncompatibleBlockPointer:
- DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
- break;
- case IncompatibleObjCQualifiedId: {
- if (SrcType->isObjCQualifiedIdType()) {
- const ObjCObjectPointerType *srcOPT =
- SrcType->getAs<ObjCObjectPointerType>();
- for (auto *srcProto : srcOPT->quals()) {
- PDecl = srcProto;
- break;
- }
- if (const ObjCInterfaceType *IFaceT =
- DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
- IFace = IFaceT->getDecl();
- }
- else if (DstType->isObjCQualifiedIdType()) {
- const ObjCObjectPointerType *dstOPT =
- DstType->getAs<ObjCObjectPointerType>();
- for (auto *dstProto : dstOPT->quals()) {
- PDecl = dstProto;
- break;
- }
- if (const ObjCInterfaceType *IFaceT =
- SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
- IFace = IFaceT->getDecl();
- }
- DiagKind = diag::warn_incompatible_qualified_id;
- break;
- }
- case IncompatibleVectors:
- DiagKind = diag::warn_incompatible_vectors;
- break;
- case IncompatibleObjCWeakRef:
- DiagKind = diag::err_arc_weak_unavailable_assign;
- break;
- case Incompatible:
- if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
- if (Complained)
- *Complained = true;
- return true;
- }
- DiagKind = diag::err_typecheck_convert_incompatible;
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- MayHaveConvFixit = true;
- isInvalid = true;
- MayHaveFunctionDiff = true;
- break;
- }
- QualType FirstType, SecondType;
- switch (Action) {
- case AA_Assigning:
- case AA_Initializing:
- // The destination type comes first.
- FirstType = DstType;
- SecondType = SrcType;
- break;
- case AA_Returning:
- case AA_Passing:
- case AA_Passing_CFAudited:
- case AA_Converting:
- case AA_Sending:
- case AA_Casting:
- // The source type comes first.
- FirstType = SrcType;
- SecondType = DstType;
- break;
- }
- PartialDiagnostic FDiag = PDiag(DiagKind);
- if (Action == AA_Passing_CFAudited)
- FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
- else
- FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
- // If we can fix the conversion, suggest the FixIts.
- assert(ConvHints.isNull() || Hint.isNull());
- if (!ConvHints.isNull()) {
- for (FixItHint &H : ConvHints.Hints)
- FDiag << H;
- } else {
- FDiag << Hint;
- }
- if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
- if (MayHaveFunctionDiff)
- HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
- Diag(Loc, FDiag);
- if (DiagKind == diag::warn_incompatible_qualified_id &&
- PDecl && IFace && !IFace->hasDefinition())
- Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
- << IFace << PDecl;
- if (SecondType == Context.OverloadTy)
- NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
- FirstType, /*TakingAddress=*/true);
- if (CheckInferredResultType)
- EmitRelatedResultTypeNote(SrcExpr);
- if (Action == AA_Returning && ConvTy == IncompatiblePointer)
- EmitRelatedResultTypeNoteForReturn(DstType);
- if (Complained)
- *Complained = true;
- return isInvalid;
- }
- ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
- llvm::APSInt *Result) {
- class SimpleICEDiagnoser : public VerifyICEDiagnoser {
- public:
- void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
- S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
- }
- } Diagnoser;
- return VerifyIntegerConstantExpression(E, Result, Diagnoser);
- }
- ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
- llvm::APSInt *Result,
- unsigned DiagID,
- bool AllowFold) {
- class IDDiagnoser : public VerifyICEDiagnoser {
- unsigned DiagID;
- public:
- IDDiagnoser(unsigned DiagID)
- : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
- void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
- S.Diag(Loc, DiagID) << SR;
- }
- } Diagnoser(DiagID);
- return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
- }
- void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
- SourceRange SR) {
- S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
- }
- ExprResult
- Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
- VerifyICEDiagnoser &Diagnoser,
- bool AllowFold) {
- SourceLocation DiagLoc = E->getBeginLoc();
- if (getLangOpts().CPlusPlus11) {
- // C++11 [expr.const]p5:
- // If an expression of literal class type is used in a context where an
- // integral constant expression is required, then that class type shall
- // have a single non-explicit conversion function to an integral or
- // unscoped enumeration type
- ExprResult Converted;
- class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
- public:
- CXX11ConvertDiagnoser(bool Silent)
- : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
- Silent, true) {}
- SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
- QualType T) override {
- return S.Diag(Loc, diag::err_ice_not_integral) << T;
- }
- SemaDiagnosticBuilder diagnoseIncomplete(
- Sema &S, SourceLocation Loc, QualType T) override {
- return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
- }
- SemaDiagnosticBuilder diagnoseExplicitConv(
- Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
- return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
- }
- SemaDiagnosticBuilder noteExplicitConv(
- Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
- return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
- << ConvTy->isEnumeralType() << ConvTy;
- }
- SemaDiagnosticBuilder diagnoseAmbiguous(
- Sema &S, SourceLocation Loc, QualType T) override {
- return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
- }
- SemaDiagnosticBuilder noteAmbiguous(
- Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
- return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
- << ConvTy->isEnumeralType() << ConvTy;
- }
- SemaDiagnosticBuilder diagnoseConversion(
- Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
- llvm_unreachable("conversion functions are permitted");
- }
- } ConvertDiagnoser(Diagnoser.Suppress);
- Converted = PerformContextualImplicitConversion(DiagLoc, E,
- ConvertDiagnoser);
- if (Converted.isInvalid())
- return Converted;
- E = Converted.get();
- if (!E->getType()->isIntegralOrUnscopedEnumerationType())
- return ExprError();
- } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
- // An ICE must be of integral or unscoped enumeration type.
- if (!Diagnoser.Suppress)
- Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
- return ExprError();
- }
- // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
- // in the non-ICE case.
- if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
- if (Result)
- *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
- if (!isa<ConstantExpr>(E))
- E = ConstantExpr::Create(Context, E);
- return E;
- }
- Expr::EvalResult EvalResult;
- SmallVector<PartialDiagnosticAt, 8> Notes;
- EvalResult.Diag = &Notes;
- // Try to evaluate the expression, and produce diagnostics explaining why it's
- // not a constant expression as a side-effect.
- bool Folded =
- E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
- EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
- if (!isa<ConstantExpr>(E))
- E = ConstantExpr::Create(Context, E, EvalResult.Val);
- // In C++11, we can rely on diagnostics being produced for any expression
- // which is not a constant expression. If no diagnostics were produced, then
- // this is a constant expression.
- if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
- if (Result)
- *Result = EvalResult.Val.getInt();
- return E;
- }
- // If our only note is the usual "invalid subexpression" note, just point
- // the caret at its location rather than producing an essentially
- // redundant note.
- if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
- diag::note_invalid_subexpr_in_const_expr) {
- DiagLoc = Notes[0].first;
- Notes.clear();
- }
- if (!Folded || !AllowFold) {
- if (!Diagnoser.Suppress) {
- Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
- for (const PartialDiagnosticAt &Note : Notes)
- Diag(Note.first, Note.second);
- }
- return ExprError();
- }
- Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
- for (const PartialDiagnosticAt &Note : Notes)
- Diag(Note.first, Note.second);
- if (Result)
- *Result = EvalResult.Val.getInt();
- return E;
- }
- namespace {
- // Handle the case where we conclude a expression which we speculatively
- // considered to be unevaluated is actually evaluated.
- class TransformToPE : public TreeTransform<TransformToPE> {
- typedef TreeTransform<TransformToPE> BaseTransform;
- public:
- TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
- // Make sure we redo semantic analysis
- bool AlwaysRebuild() { return true; }
- bool ReplacingOriginal() { return true; }
- // We need to special-case DeclRefExprs referring to FieldDecls which
- // are not part of a member pointer formation; normal TreeTransforming
- // doesn't catch this case because of the way we represent them in the AST.
- // FIXME: This is a bit ugly; is it really the best way to handle this
- // case?
- //
- // Error on DeclRefExprs referring to FieldDecls.
- ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
- if (isa<FieldDecl>(E->getDecl()) &&
- !SemaRef.isUnevaluatedContext())
- return SemaRef.Diag(E->getLocation(),
- diag::err_invalid_non_static_member_use)
- << E->getDecl() << E->getSourceRange();
- return BaseTransform::TransformDeclRefExpr(E);
- }
- // Exception: filter out member pointer formation
- ExprResult TransformUnaryOperator(UnaryOperator *E) {
- if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
- return E;
- return BaseTransform::TransformUnaryOperator(E);
- }
- // The body of a lambda-expression is in a separate expression evaluation
- // context so never needs to be transformed.
- // FIXME: Ideally we wouldn't transform the closure type either, and would
- // just recreate the capture expressions and lambda expression.
- StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
- return SkipLambdaBody(E, Body);
- }
- };
- }
- ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
- assert(isUnevaluatedContext() &&
- "Should only transform unevaluated expressions");
- ExprEvalContexts.back().Context =
- ExprEvalContexts[ExprEvalContexts.size()-2].Context;
- if (isUnevaluatedContext())
- return E;
- return TransformToPE(*this).TransformExpr(E);
- }
- void
- Sema::PushExpressionEvaluationContext(
- ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
- ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
- ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
- LambdaContextDecl, ExprContext);
- Cleanup.reset();
- if (!MaybeODRUseExprs.empty())
- std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
- }
- void
- Sema::PushExpressionEvaluationContext(
- ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
- ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
- Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
- PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
- }
- namespace {
- const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
- PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
- if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
- if (E->getOpcode() == UO_Deref)
- return CheckPossibleDeref(S, E->getSubExpr());
- } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
- return CheckPossibleDeref(S, E->getBase());
- } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
- return CheckPossibleDeref(S, E->getBase());
- } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
- QualType Inner;
- QualType Ty = E->getType();
- if (const auto *Ptr = Ty->getAs<PointerType>())
- Inner = Ptr->getPointeeType();
- else if (const auto *Arr = S.Context.getAsArrayType(Ty))
- Inner = Arr->getElementType();
- else
- return nullptr;
- if (Inner->hasAttr(attr::NoDeref))
- return E;
- }
- return nullptr;
- }
- } // namespace
- void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
- for (const Expr *E : Rec.PossibleDerefs) {
- const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
- if (DeclRef) {
- const ValueDecl *Decl = DeclRef->getDecl();
- Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
- << Decl->getName() << E->getSourceRange();
- Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
- } else {
- Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
- << E->getSourceRange();
- }
- }
- Rec.PossibleDerefs.clear();
- }
- void Sema::PopExpressionEvaluationContext() {
- ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
- unsigned NumTypos = Rec.NumTypos;
- if (!Rec.Lambdas.empty()) {
- using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
- if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
- (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
- unsigned D;
- if (Rec.isUnevaluated()) {
- // C++11 [expr.prim.lambda]p2:
- // A lambda-expression shall not appear in an unevaluated operand
- // (Clause 5).
- D = diag::err_lambda_unevaluated_operand;
- } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
- // C++1y [expr.const]p2:
- // A conditional-expression e is a core constant expression unless the
- // evaluation of e, following the rules of the abstract machine, would
- // evaluate [...] a lambda-expression.
- D = diag::err_lambda_in_constant_expression;
- } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
- // C++17 [expr.prim.lamda]p2:
- // A lambda-expression shall not appear [...] in a template-argument.
- D = diag::err_lambda_in_invalid_context;
- } else
- llvm_unreachable("Couldn't infer lambda error message.");
- for (const auto *L : Rec.Lambdas)
- Diag(L->getBeginLoc(), D);
- }
- }
- WarnOnPendingNoDerefs(Rec);
- // When are coming out of an unevaluated context, clear out any
- // temporaries that we may have created as part of the evaluation of
- // the expression in that context: they aren't relevant because they
- // will never be constructed.
- if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
- ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
- ExprCleanupObjects.end());
- Cleanup = Rec.ParentCleanup;
- CleanupVarDeclMarking();
- std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
- // Otherwise, merge the contexts together.
- } else {
- Cleanup.mergeFrom(Rec.ParentCleanup);
- MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
- Rec.SavedMaybeODRUseExprs.end());
- }
- // Pop the current expression evaluation context off the stack.
- ExprEvalContexts.pop_back();
- // The global expression evaluation context record is never popped.
- ExprEvalContexts.back().NumTypos += NumTypos;
- }
- void Sema::DiscardCleanupsInEvaluationContext() {
- ExprCleanupObjects.erase(
- ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
- ExprCleanupObjects.end());
- Cleanup.reset();
- MaybeODRUseExprs.clear();
- }
- ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
- ExprResult Result = CheckPlaceholderExpr(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.get();
- if (!E->getType()->isVariablyModifiedType())
- return E;
- return TransformToPotentiallyEvaluated(E);
- }
- /// Are we in a context that is potentially constant evaluated per C++20
- /// [expr.const]p12?
- static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
- /// C++2a [expr.const]p12:
- // An expression or conversion is potentially constant evaluated if it is
- switch (SemaRef.ExprEvalContexts.back().Context) {
- case Sema::ExpressionEvaluationContext::ConstantEvaluated:
- // -- a manifestly constant-evaluated expression,
- case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
- case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
- case Sema::ExpressionEvaluationContext::DiscardedStatement:
- // -- a potentially-evaluated expression,
- case Sema::ExpressionEvaluationContext::UnevaluatedList:
- // -- an immediate subexpression of a braced-init-list,
- // -- [FIXME] an expression of the form & cast-expression that occurs
- // within a templated entity
- // -- a subexpression of one of the above that is not a subexpression of
- // a nested unevaluated operand.
- return true;
- case Sema::ExpressionEvaluationContext::Unevaluated:
- case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
- // Expressions in this context are never evaluated.
- return false;
- }
- llvm_unreachable("Invalid context");
- }
- /// Return true if this function has a calling convention that requires mangling
- /// in the size of the parameter pack.
- static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
- // These manglings don't do anything on non-Windows or non-x86 platforms, so
- // we don't need parameter type sizes.
- const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
- if (!TT.isOSWindows() || (TT.getArch() != llvm::Triple::x86 &&
- TT.getArch() != llvm::Triple::x86_64))
- return false;
- // If this is C++ and this isn't an extern "C" function, parameters do not
- // need to be complete. In this case, C++ mangling will apply, which doesn't
- // use the size of the parameters.
- if (S.getLangOpts().CPlusPlus && !FD->isExternC())
- return false;
- // Stdcall, fastcall, and vectorcall need this special treatment.
- CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
- switch (CC) {
- case CC_X86StdCall:
- case CC_X86FastCall:
- case CC_X86VectorCall:
- return true;
- default:
- break;
- }
- return false;
- }
- /// Require that all of the parameter types of function be complete. Normally,
- /// parameter types are only required to be complete when a function is called
- /// or defined, but to mangle functions with certain calling conventions, the
- /// mangler needs to know the size of the parameter list. In this situation,
- /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
- /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
- /// result in a linker error. Clang doesn't implement this behavior, and instead
- /// attempts to error at compile time.
- static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
- SourceLocation Loc) {
- class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
- FunctionDecl *FD;
- ParmVarDecl *Param;
- public:
- ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
- : FD(FD), Param(Param) {}
- void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
- CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
- StringRef CCName;
- switch (CC) {
- case CC_X86StdCall:
- CCName = "stdcall";
- break;
- case CC_X86FastCall:
- CCName = "fastcall";
- break;
- case CC_X86VectorCall:
- CCName = "vectorcall";
- break;
- default:
- llvm_unreachable("CC does not need mangling");
- }
- S.Diag(Loc, diag::err_cconv_incomplete_param_type)
- << Param->getDeclName() << FD->getDeclName() << CCName;
- }
- };
- for (ParmVarDecl *Param : FD->parameters()) {
- ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
- S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
- }
- }
- namespace {
- enum class OdrUseContext {
- /// Declarations in this context are not odr-used.
- None,
- /// Declarations in this context are formally odr-used, but this is a
- /// dependent context.
- Dependent,
- /// Declarations in this context are odr-used but not actually used (yet).
- FormallyOdrUsed,
- /// Declarations in this context are used.
- Used
- };
- }
- /// Are we within a context in which references to resolved functions or to
- /// variables result in odr-use?
- static OdrUseContext isOdrUseContext(Sema &SemaRef) {
- OdrUseContext Result;
- switch (SemaRef.ExprEvalContexts.back().Context) {
- case Sema::ExpressionEvaluationContext::Unevaluated:
- case Sema::ExpressionEvaluationContext::UnevaluatedList:
- case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
- return OdrUseContext::None;
- case Sema::ExpressionEvaluationContext::ConstantEvaluated:
- case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
- Result = OdrUseContext::Used;
- break;
- case Sema::ExpressionEvaluationContext::DiscardedStatement:
- Result = OdrUseContext::FormallyOdrUsed;
- break;
- case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
- // A default argument formally results in odr-use, but doesn't actually
- // result in a use in any real sense until it itself is used.
- Result = OdrUseContext::FormallyOdrUsed;
- break;
- }
- if (SemaRef.CurContext->isDependentContext())
- return OdrUseContext::Dependent;
- return Result;
- }
- static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
- CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
- return Func->isConstexpr() &&
- (Func->isImplicitlyInstantiable() || (MD && !MD->isUserProvided()));
- }
- /// Mark a function referenced, and check whether it is odr-used
- /// (C++ [basic.def.odr]p2, C99 6.9p3)
- void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
- bool MightBeOdrUse) {
- assert(Func && "No function?");
- Func->setReferenced();
- // Recursive functions aren't really used until they're used from some other
- // context.
- bool IsRecursiveCall = CurContext == Func;
- // C++11 [basic.def.odr]p3:
- // A function whose name appears as a potentially-evaluated expression is
- // odr-used if it is the unique lookup result or the selected member of a
- // set of overloaded functions [...].
- //
- // We (incorrectly) mark overload resolution as an unevaluated context, so we
- // can just check that here.
- OdrUseContext OdrUse =
- MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
- if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
- OdrUse = OdrUseContext::FormallyOdrUsed;
- // Trivial default constructors and destructors are never actually used.
- // FIXME: What about other special members?
- if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
- OdrUse == OdrUseContext::Used) {
- if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
- if (Constructor->isDefaultConstructor())
- OdrUse = OdrUseContext::FormallyOdrUsed;
- if (isa<CXXDestructorDecl>(Func))
- OdrUse = OdrUseContext::FormallyOdrUsed;
- }
- // C++20 [expr.const]p12:
- // A function [...] is needed for constant evaluation if it is [...] a
- // constexpr function that is named by an expression that is potentially
- // constant evaluated
- bool NeededForConstantEvaluation =
- isPotentiallyConstantEvaluatedContext(*this) &&
- isImplicitlyDefinableConstexprFunction(Func);
- // Determine whether we require a function definition to exist, per
- // C++11 [temp.inst]p3:
- // Unless a function template specialization has been explicitly
- // instantiated or explicitly specialized, the function template
- // specialization is implicitly instantiated when the specialization is
- // referenced in a context that requires a function definition to exist.
- // C++20 [temp.inst]p7:
- // The existence of a definition of a [...] function is considered to
- // affect the semantics of the program if the [...] function is needed for
- // constant evaluation by an expression
- // C++20 [basic.def.odr]p10:
- // Every program shall contain exactly one definition of every non-inline
- // function or variable that is odr-used in that program outside of a
- // discarded statement
- // C++20 [special]p1:
- // The implementation will implicitly define [defaulted special members]
- // if they are odr-used or needed for constant evaluation.
- //
- // Note that we skip the implicit instantiation of templates that are only
- // used in unused default arguments or by recursive calls to themselves.
- // This is formally non-conforming, but seems reasonable in practice.
- bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
- NeededForConstantEvaluation);
- // C++14 [temp.expl.spec]p6:
- // If a template [...] is explicitly specialized then that specialization
- // shall be declared before the first use of that specialization that would
- // cause an implicit instantiation to take place, in every translation unit
- // in which such a use occurs
- if (NeedDefinition &&
- (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
- Func->getMemberSpecializationInfo()))
- checkSpecializationVisibility(Loc, Func);
- // C++14 [except.spec]p17:
- // An exception-specification is considered to be needed when:
- // - the function is odr-used or, if it appears in an unevaluated operand,
- // would be odr-used if the expression were potentially-evaluated;
- //
- // Note, we do this even if MightBeOdrUse is false. That indicates that the
- // function is a pure virtual function we're calling, and in that case the
- // function was selected by overload resolution and we need to resolve its
- // exception specification for a different reason.
- const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
- if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
- ResolveExceptionSpec(Loc, FPT);
- if (getLangOpts().CUDA)
- CheckCUDACall(Loc, Func);
- // If we need a definition, try to create one.
- if (NeedDefinition && !Func->getBody()) {
- runWithSufficientStackSpace(Loc, [&] {
- if (CXXConstructorDecl *Constructor =
- dyn_cast<CXXConstructorDecl>(Func)) {
- Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
- if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
- if (Constructor->isDefaultConstructor()) {
- if (Constructor->isTrivial() &&
- !Constructor->hasAttr<DLLExportAttr>())
- return;
- DefineImplicitDefaultConstructor(Loc, Constructor);
- } else if (Constructor->isCopyConstructor()) {
- DefineImplicitCopyConstructor(Loc, Constructor);
- } else if (Constructor->isMoveConstructor()) {
- DefineImplicitMoveConstructor(Loc, Constructor);
- }
- } else if (Constructor->getInheritedConstructor()) {
- DefineInheritingConstructor(Loc, Constructor);
- }
- } else if (CXXDestructorDecl *Destructor =
- dyn_cast<CXXDestructorDecl>(Func)) {
- Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
- if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
- if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
- return;
- DefineImplicitDestructor(Loc, Destructor);
- }
- if (Destructor->isVirtual() && getLangOpts().AppleKext)
- MarkVTableUsed(Loc, Destructor->getParent());
- } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
- if (MethodDecl->isOverloadedOperator() &&
- MethodDecl->getOverloadedOperator() == OO_Equal) {
- MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
- if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
- if (MethodDecl->isCopyAssignmentOperator())
- DefineImplicitCopyAssignment(Loc, MethodDecl);
- else if (MethodDecl->isMoveAssignmentOperator())
- DefineImplicitMoveAssignment(Loc, MethodDecl);
- }
- } else if (isa<CXXConversionDecl>(MethodDecl) &&
- MethodDecl->getParent()->isLambda()) {
- CXXConversionDecl *Conversion =
- cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
- if (Conversion->isLambdaToBlockPointerConversion())
- DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
- else
- DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
- } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
- MarkVTableUsed(Loc, MethodDecl->getParent());
- }
- // Implicit instantiation of function templates and member functions of
- // class templates.
- if (Func->isImplicitlyInstantiable()) {
- TemplateSpecializationKind TSK =
- Func->getTemplateSpecializationKindForInstantiation();
- SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
- bool FirstInstantiation = PointOfInstantiation.isInvalid();
- if (FirstInstantiation) {
- PointOfInstantiation = Loc;
- Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
- } else if (TSK != TSK_ImplicitInstantiation) {
- // Use the point of use as the point of instantiation, instead of the
- // point of explicit instantiation (which we track as the actual point
- // of instantiation). This gives better backtraces in diagnostics.
- PointOfInstantiation = Loc;
- }
- if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
- Func->isConstexpr()) {
- if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
- cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
- CodeSynthesisContexts.size())
- PendingLocalImplicitInstantiations.push_back(
- std::make_pair(Func, PointOfInstantiation));
- else if (Func->isConstexpr())
- // Do not defer instantiations of constexpr functions, to avoid the
- // expression evaluator needing to call back into Sema if it sees a
- // call to such a function.
- InstantiateFunctionDefinition(PointOfInstantiation, Func);
- else {
- Func->setInstantiationIsPending(true);
- PendingInstantiations.push_back(
- std::make_pair(Func, PointOfInstantiation));
- // Notify the consumer that a function was implicitly instantiated.
- Consumer.HandleCXXImplicitFunctionInstantiation(Func);
- }
- }
- } else {
- // Walk redefinitions, as some of them may be instantiable.
- for (auto i : Func->redecls()) {
- if (!i->isUsed(false) && i->isImplicitlyInstantiable())
- MarkFunctionReferenced(Loc, i, MightBeOdrUse);
- }
- }
- });
- }
- // If this is the first "real" use, act on that.
- if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
- // Keep track of used but undefined functions.
- if (!Func->isDefined()) {
- if (mightHaveNonExternalLinkage(Func))
- UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
- else if (Func->getMostRecentDecl()->isInlined() &&
- !LangOpts.GNUInline &&
- !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
- UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
- else if (isExternalWithNoLinkageType(Func))
- UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
- }
- // Some x86 Windows calling conventions mangle the size of the parameter
- // pack into the name. Computing the size of the parameters requires the
- // parameter types to be complete. Check that now.
- if (funcHasParameterSizeMangling(*this, Func))
- CheckCompleteParameterTypesForMangler(*this, Func, Loc);
- Func->markUsed(Context);
- }
- if (LangOpts.OpenMP) {
- if (LangOpts.OpenMPIsDevice)
- checkOpenMPDeviceFunction(Loc, Func);
- else
- checkOpenMPHostFunction(Loc, Func);
- }
- }
- /// Directly mark a variable odr-used. Given a choice, prefer to use
- /// MarkVariableReferenced since it does additional checks and then
- /// calls MarkVarDeclODRUsed.
- /// If the variable must be captured:
- /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
- /// - else capture it in the DeclContext that maps to the
- /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
- static void
- MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
- const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
- // Keep track of used but undefined variables.
- // FIXME: We shouldn't suppress this warning for static data members.
- if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
- (!Var->isExternallyVisible() || Var->isInline() ||
- SemaRef.isExternalWithNoLinkageType(Var)) &&
- !(Var->isStaticDataMember() && Var->hasInit())) {
- SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
- if (old.isInvalid())
- old = Loc;
- }
- QualType CaptureType, DeclRefType;
- if (SemaRef.LangOpts.OpenMP)
- SemaRef.tryCaptureOpenMPLambdas(Var);
- SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
- /*EllipsisLoc*/ SourceLocation(),
- /*BuildAndDiagnose*/ true,
- CaptureType, DeclRefType,
- FunctionScopeIndexToStopAt);
- Var->markUsed(SemaRef.Context);
- }
- void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
- SourceLocation Loc,
- unsigned CapturingScopeIndex) {
- MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
- }
- static void
- diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
- ValueDecl *var, DeclContext *DC) {
- DeclContext *VarDC = var->getDeclContext();
- // If the parameter still belongs to the translation unit, then
- // we're actually just using one parameter in the declaration of
- // the next.
- if (isa<ParmVarDecl>(var) &&
- isa<TranslationUnitDecl>(VarDC))
- return;
- // For C code, don't diagnose about capture if we're not actually in code
- // right now; it's impossible to write a non-constant expression outside of
- // function context, so we'll get other (more useful) diagnostics later.
- //
- // For C++, things get a bit more nasty... it would be nice to suppress this
- // diagnostic for certain cases like using a local variable in an array bound
- // for a member of a local class, but the correct predicate is not obvious.
- if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
- return;
- unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
- unsigned ContextKind = 3; // unknown
- if (isa<CXXMethodDecl>(VarDC) &&
- cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
- ContextKind = 2;
- } else if (isa<FunctionDecl>(VarDC)) {
- ContextKind = 0;
- } else if (isa<BlockDecl>(VarDC)) {
- ContextKind = 1;
- }
- S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
- << var << ValueKind << ContextKind << VarDC;
- S.Diag(var->getLocation(), diag::note_entity_declared_at)
- << var;
- // FIXME: Add additional diagnostic info about class etc. which prevents
- // capture.
- }
- static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
- bool &SubCapturesAreNested,
- QualType &CaptureType,
- QualType &DeclRefType) {
- // Check whether we've already captured it.
- if (CSI->CaptureMap.count(Var)) {
- // If we found a capture, any subcaptures are nested.
- SubCapturesAreNested = true;
- // Retrieve the capture type for this variable.
- CaptureType = CSI->getCapture(Var).getCaptureType();
- // Compute the type of an expression that refers to this variable.
- DeclRefType = CaptureType.getNonReferenceType();
- // Similarly to mutable captures in lambda, all the OpenMP captures by copy
- // are mutable in the sense that user can change their value - they are
- // private instances of the captured declarations.
- const Capture &Cap = CSI->getCapture(Var);
- if (Cap.isCopyCapture() &&
- !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
- !(isa<CapturedRegionScopeInfo>(CSI) &&
- cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
- DeclRefType.addConst();
- return true;
- }
- return false;
- }
- // Only block literals, captured statements, and lambda expressions can
- // capture; other scopes don't work.
- static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
- SourceLocation Loc,
- const bool Diagnose, Sema &S) {
- if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
- return getLambdaAwareParentOfDeclContext(DC);
- else if (Var->hasLocalStorage()) {
- if (Diagnose)
- diagnoseUncapturableValueReference(S, Loc, Var, DC);
- }
- return nullptr;
- }
- // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
- // certain types of variables (unnamed, variably modified types etc.)
- // so check for eligibility.
- static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
- SourceLocation Loc,
- const bool Diagnose, Sema &S) {
- bool IsBlock = isa<BlockScopeInfo>(CSI);
- bool IsLambda = isa<LambdaScopeInfo>(CSI);
- // Lambdas are not allowed to capture unnamed variables
- // (e.g. anonymous unions).
- // FIXME: The C++11 rule don't actually state this explicitly, but I'm
- // assuming that's the intent.
- if (IsLambda && !Var->getDeclName()) {
- if (Diagnose) {
- S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
- S.Diag(Var->getLocation(), diag::note_declared_at);
- }
- return false;
- }
- // Prohibit variably-modified types in blocks; they're difficult to deal with.
- if (Var->getType()->isVariablyModifiedType() && IsBlock) {
- if (Diagnose) {
- S.Diag(Loc, diag::err_ref_vm_type);
- S.Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return false;
- }
- // Prohibit structs with flexible array members too.
- // We cannot capture what is in the tail end of the struct.
- if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
- if (VTTy->getDecl()->hasFlexibleArrayMember()) {
- if (Diagnose) {
- if (IsBlock)
- S.Diag(Loc, diag::err_ref_flexarray_type);
- else
- S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
- << Var->getDeclName();
- S.Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return false;
- }
- }
- const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
- // Lambdas and captured statements are not allowed to capture __block
- // variables; they don't support the expected semantics.
- if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
- if (Diagnose) {
- S.Diag(Loc, diag::err_capture_block_variable)
- << Var->getDeclName() << !IsLambda;
- S.Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return false;
- }
- // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
- if (S.getLangOpts().OpenCL && IsBlock &&
- Var->getType()->isBlockPointerType()) {
- if (Diagnose)
- S.Diag(Loc, diag::err_opencl_block_ref_block);
- return false;
- }
- return true;
- }
- // Returns true if the capture by block was successful.
- static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
- SourceLocation Loc,
- const bool BuildAndDiagnose,
- QualType &CaptureType,
- QualType &DeclRefType,
- const bool Nested,
- Sema &S, bool Invalid) {
- bool ByRef = false;
- // Blocks are not allowed to capture arrays, excepting OpenCL.
- // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
- // (decayed to pointers).
- if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
- if (BuildAndDiagnose) {
- S.Diag(Loc, diag::err_ref_array_type);
- S.Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- Invalid = true;
- } else {
- return false;
- }
- }
- // Forbid the block-capture of autoreleasing variables.
- if (!Invalid &&
- CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
- if (BuildAndDiagnose) {
- S.Diag(Loc, diag::err_arc_autoreleasing_capture)
- << /*block*/ 0;
- S.Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- Invalid = true;
- } else {
- return false;
- }
- }
- // Warn about implicitly autoreleasing indirect parameters captured by blocks.
- if (const auto *PT = CaptureType->getAs<PointerType>()) {
- // This function finds out whether there is an AttributedType of kind
- // attr::ObjCOwnership in Ty. The existence of AttributedType of kind
- // attr::ObjCOwnership implies __autoreleasing was explicitly specified
- // rather than being added implicitly by the compiler.
- auto IsObjCOwnershipAttributedType = [](QualType Ty) {
- while (const auto *AttrTy = Ty->getAs<AttributedType>()) {
- if (AttrTy->getAttrKind() == attr::ObjCOwnership)
- return true;
- // Peel off AttributedTypes that are not of kind ObjCOwnership.
- Ty = AttrTy->getModifiedType();
- }
- return false;
- };
- QualType PointeeTy = PT->getPointeeType();
- if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
- PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
- !IsObjCOwnershipAttributedType(PointeeTy)) {
- if (BuildAndDiagnose) {
- SourceLocation VarLoc = Var->getLocation();
- S.Diag(Loc, diag::warn_block_capture_autoreleasing);
- S.Diag(VarLoc, diag::note_declare_parameter_strong);
- }
- }
- }
- const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
- if (HasBlocksAttr || CaptureType->isReferenceType() ||
- (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
- // Block capture by reference does not change the capture or
- // declaration reference types.
- ByRef = true;
- } else {
- // Block capture by copy introduces 'const'.
- CaptureType = CaptureType.getNonReferenceType().withConst();
- DeclRefType = CaptureType;
- }
- // Actually capture the variable.
- if (BuildAndDiagnose)
- BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
- CaptureType, Invalid);
- return !Invalid;
- }
- /// Capture the given variable in the captured region.
- static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
- VarDecl *Var,
- SourceLocation Loc,
- const bool BuildAndDiagnose,
- QualType &CaptureType,
- QualType &DeclRefType,
- const bool RefersToCapturedVariable,
- Sema &S, bool Invalid) {
- // By default, capture variables by reference.
- bool ByRef = true;
- // Using an LValue reference type is consistent with Lambdas (see below).
- if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
- if (S.isOpenMPCapturedDecl(Var)) {
- bool HasConst = DeclRefType.isConstQualified();
- DeclRefType = DeclRefType.getUnqualifiedType();
- // Don't lose diagnostics about assignments to const.
- if (HasConst)
- DeclRefType.addConst();
- }
- ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
- RSI->OpenMPCaptureLevel);
- }
- if (ByRef)
- CaptureType = S.Context.getLValueReferenceType(DeclRefType);
- else
- CaptureType = DeclRefType;
- // Actually capture the variable.
- if (BuildAndDiagnose)
- RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
- Loc, SourceLocation(), CaptureType, Invalid);
- return !Invalid;
- }
- /// Capture the given variable in the lambda.
- static bool captureInLambda(LambdaScopeInfo *LSI,
- VarDecl *Var,
- SourceLocation Loc,
- const bool BuildAndDiagnose,
- QualType &CaptureType,
- QualType &DeclRefType,
- const bool RefersToCapturedVariable,
- const Sema::TryCaptureKind Kind,
- SourceLocation EllipsisLoc,
- const bool IsTopScope,
- Sema &S, bool Invalid) {
- // Determine whether we are capturing by reference or by value.
- bool ByRef = false;
- if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
- ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
- } else {
- ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
- }
- // Compute the type of the field that will capture this variable.
- if (ByRef) {
- // C++11 [expr.prim.lambda]p15:
- // An entity is captured by reference if it is implicitly or
- // explicitly captured but not captured by copy. It is
- // unspecified whether additional unnamed non-static data
- // members are declared in the closure type for entities
- // captured by reference.
- //
- // FIXME: It is not clear whether we want to build an lvalue reference
- // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
- // to do the former, while EDG does the latter. Core issue 1249 will
- // clarify, but for now we follow GCC because it's a more permissive and
- // easily defensible position.
- CaptureType = S.Context.getLValueReferenceType(DeclRefType);
- } else {
- // C++11 [expr.prim.lambda]p14:
- // For each entity captured by copy, an unnamed non-static
- // data member is declared in the closure type. The
- // declaration order of these members is unspecified. The type
- // of such a data member is the type of the corresponding
- // captured entity if the entity is not a reference to an
- // object, or the referenced type otherwise. [Note: If the
- // captured entity is a reference to a function, the
- // corresponding data member is also a reference to a
- // function. - end note ]
- if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
- if (!RefType->getPointeeType()->isFunctionType())
- CaptureType = RefType->getPointeeType();
- }
- // Forbid the lambda copy-capture of autoreleasing variables.
- if (!Invalid &&
- CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
- if (BuildAndDiagnose) {
- S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
- S.Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- Invalid = true;
- } else {
- return false;
- }
- }
- // Make sure that by-copy captures are of a complete and non-abstract type.
- if (!Invalid && BuildAndDiagnose) {
- if (!CaptureType->isDependentType() &&
- S.RequireCompleteType(Loc, CaptureType,
- diag::err_capture_of_incomplete_type,
- Var->getDeclName()))
- Invalid = true;
- else if (S.RequireNonAbstractType(Loc, CaptureType,
- diag::err_capture_of_abstract_type))
- Invalid = true;
- }
- }
- // Compute the type of a reference to this captured variable.
- if (ByRef)
- DeclRefType = CaptureType.getNonReferenceType();
- else {
- // C++ [expr.prim.lambda]p5:
- // The closure type for a lambda-expression has a public inline
- // function call operator [...]. This function call operator is
- // declared const (9.3.1) if and only if the lambda-expression's
- // parameter-declaration-clause is not followed by mutable.
- DeclRefType = CaptureType.getNonReferenceType();
- if (!LSI->Mutable && !CaptureType->isReferenceType())
- DeclRefType.addConst();
- }
- // Add the capture.
- if (BuildAndDiagnose)
- LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
- Loc, EllipsisLoc, CaptureType, Invalid);
- return !Invalid;
- }
- bool Sema::tryCaptureVariable(
- VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
- SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
- QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
- // An init-capture is notionally from the context surrounding its
- // declaration, but its parent DC is the lambda class.
- DeclContext *VarDC = Var->getDeclContext();
- if (Var->isInitCapture())
- VarDC = VarDC->getParent();
- DeclContext *DC = CurContext;
- const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
- ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
- // We need to sync up the Declaration Context with the
- // FunctionScopeIndexToStopAt
- if (FunctionScopeIndexToStopAt) {
- unsigned FSIndex = FunctionScopes.size() - 1;
- while (FSIndex != MaxFunctionScopesIndex) {
- DC = getLambdaAwareParentOfDeclContext(DC);
- --FSIndex;
- }
- }
- // If the variable is declared in the current context, there is no need to
- // capture it.
- if (VarDC == DC) return true;
- // Capture global variables if it is required to use private copy of this
- // variable.
- bool IsGlobal = !Var->hasLocalStorage();
- if (IsGlobal &&
- !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
- MaxFunctionScopesIndex)))
- return true;
- Var = Var->getCanonicalDecl();
- // Walk up the stack to determine whether we can capture the variable,
- // performing the "simple" checks that don't depend on type. We stop when
- // we've either hit the declared scope of the variable or find an existing
- // capture of that variable. We start from the innermost capturing-entity
- // (the DC) and ensure that all intervening capturing-entities
- // (blocks/lambdas etc.) between the innermost capturer and the variable`s
- // declcontext can either capture the variable or have already captured
- // the variable.
- CaptureType = Var->getType();
- DeclRefType = CaptureType.getNonReferenceType();
- bool Nested = false;
- bool Explicit = (Kind != TryCapture_Implicit);
- unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
- do {
- // Only block literals, captured statements, and lambda expressions can
- // capture; other scopes don't work.
- DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
- ExprLoc,
- BuildAndDiagnose,
- *this);
- // We need to check for the parent *first* because, if we *have*
- // private-captured a global variable, we need to recursively capture it in
- // intermediate blocks, lambdas, etc.
- if (!ParentDC) {
- if (IsGlobal) {
- FunctionScopesIndex = MaxFunctionScopesIndex - 1;
- break;
- }
- return true;
- }
- FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
- CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
- // Check whether we've already captured it.
- if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
- DeclRefType)) {
- CSI->getCapture(Var).markUsed(BuildAndDiagnose);
- break;
- }
- // If we are instantiating a generic lambda call operator body,
- // we do not want to capture new variables. What was captured
- // during either a lambdas transformation or initial parsing
- // should be used.
- if (isGenericLambdaCallOperatorSpecialization(DC)) {
- if (BuildAndDiagnose) {
- LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
- if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
- Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
- } else
- diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
- }
- return true;
- }
- // Try to capture variable-length arrays types.
- if (Var->getType()->isVariablyModifiedType()) {
- // We're going to walk down into the type and look for VLA
- // expressions.
- QualType QTy = Var->getType();
- if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
- QTy = PVD->getOriginalType();
- captureVariablyModifiedType(Context, QTy, CSI);
- }
- if (getLangOpts().OpenMP) {
- if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
- // OpenMP private variables should not be captured in outer scope, so
- // just break here. Similarly, global variables that are captured in a
- // target region should not be captured outside the scope of the region.
- if (RSI->CapRegionKind == CR_OpenMP) {
- bool IsOpenMPPrivateDecl = isOpenMPPrivateDecl(Var, RSI->OpenMPLevel);
- auto IsTargetCap = !IsOpenMPPrivateDecl &&
- isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
- // When we detect target captures we are looking from inside the
- // target region, therefore we need to propagate the capture from the
- // enclosing region. Therefore, the capture is not initially nested.
- if (IsTargetCap)
- adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
- if (IsTargetCap || IsOpenMPPrivateDecl) {
- Nested = !IsTargetCap;
- DeclRefType = DeclRefType.getUnqualifiedType();
- CaptureType = Context.getLValueReferenceType(DeclRefType);
- break;
- }
- }
- }
- }
- if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
- // No capture-default, and this is not an explicit capture
- // so cannot capture this variable.
- if (BuildAndDiagnose) {
- Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- if (cast<LambdaScopeInfo>(CSI)->Lambda)
- Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
- diag::note_lambda_decl);
- // FIXME: If we error out because an outer lambda can not implicitly
- // capture a variable that an inner lambda explicitly captures, we
- // should have the inner lambda do the explicit capture - because
- // it makes for cleaner diagnostics later. This would purely be done
- // so that the diagnostic does not misleadingly claim that a variable
- // can not be captured by a lambda implicitly even though it is captured
- // explicitly. Suggestion:
- // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
- // at the function head
- // - cache the StartingDeclContext - this must be a lambda
- // - captureInLambda in the innermost lambda the variable.
- }
- return true;
- }
- FunctionScopesIndex--;
- DC = ParentDC;
- Explicit = false;
- } while (!VarDC->Equals(DC));
- // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
- // computing the type of the capture at each step, checking type-specific
- // requirements, and adding captures if requested.
- // If the variable had already been captured previously, we start capturing
- // at the lambda nested within that one.
- bool Invalid = false;
- for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
- ++I) {
- CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
- // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
- // certain types of variables (unnamed, variably modified types etc.)
- // so check for eligibility.
- if (!Invalid)
- Invalid =
- !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
- // After encountering an error, if we're actually supposed to capture, keep
- // capturing in nested contexts to suppress any follow-on diagnostics.
- if (Invalid && !BuildAndDiagnose)
- return true;
- if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
- Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
- DeclRefType, Nested, *this, Invalid);
- Nested = true;
- } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
- Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
- CaptureType, DeclRefType, Nested,
- *this, Invalid);
- Nested = true;
- } else {
- LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
- Invalid =
- !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
- DeclRefType, Nested, Kind, EllipsisLoc,
- /*IsTopScope*/ I == N - 1, *this, Invalid);
- Nested = true;
- }
- if (Invalid && !BuildAndDiagnose)
- return true;
- }
- return Invalid;
- }
- bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
- TryCaptureKind Kind, SourceLocation EllipsisLoc) {
- QualType CaptureType;
- QualType DeclRefType;
- return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
- /*BuildAndDiagnose=*/true, CaptureType,
- DeclRefType, nullptr);
- }
- bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
- QualType CaptureType;
- QualType DeclRefType;
- return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
- /*BuildAndDiagnose=*/false, CaptureType,
- DeclRefType, nullptr);
- }
- QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
- QualType CaptureType;
- QualType DeclRefType;
- // Determine whether we can capture this variable.
- if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
- /*BuildAndDiagnose=*/false, CaptureType,
- DeclRefType, nullptr))
- return QualType();
- return DeclRefType;
- }
- namespace {
- // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
- // The produced TemplateArgumentListInfo* points to data stored within this
- // object, so should only be used in contexts where the pointer will not be
- // used after the CopiedTemplateArgs object is destroyed.
- class CopiedTemplateArgs {
- bool HasArgs;
- TemplateArgumentListInfo TemplateArgStorage;
- public:
- template<typename RefExpr>
- CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
- if (HasArgs)
- E->copyTemplateArgumentsInto(TemplateArgStorage);
- }
- operator TemplateArgumentListInfo*()
- #ifdef __has_cpp_attribute
- #if __has_cpp_attribute(clang::lifetimebound)
- [[clang::lifetimebound]]
- #endif
- #endif
- {
- return HasArgs ? &TemplateArgStorage : nullptr;
- }
- };
- }
- /// Walk the set of potential results of an expression and mark them all as
- /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
- ///
- /// \return A new expression if we found any potential results, ExprEmpty() if
- /// not, and ExprError() if we diagnosed an error.
- static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
- NonOdrUseReason NOUR) {
- // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
- // an object that satisfies the requirements for appearing in a
- // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
- // is immediately applied." This function handles the lvalue-to-rvalue
- // conversion part.
- //
- // If we encounter a node that claims to be an odr-use but shouldn't be, we
- // transform it into the relevant kind of non-odr-use node and rebuild the
- // tree of nodes leading to it.
- //
- // This is a mini-TreeTransform that only transforms a restricted subset of
- // nodes (and only certain operands of them).
- // Rebuild a subexpression.
- auto Rebuild = [&](Expr *Sub) {
- return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
- };
- // Check whether a potential result satisfies the requirements of NOUR.
- auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
- // Any entity other than a VarDecl is always odr-used whenever it's named
- // in a potentially-evaluated expression.
- auto *VD = dyn_cast<VarDecl>(D);
- if (!VD)
- return true;
- // C++2a [basic.def.odr]p4:
- // A variable x whose name appears as a potentially-evalauted expression
- // e is odr-used by e unless
- // -- x is a reference that is usable in constant expressions, or
- // -- x is a variable of non-reference type that is usable in constant
- // expressions and has no mutable subobjects, and e is an element of
- // the set of potential results of an expression of
- // non-volatile-qualified non-class type to which the lvalue-to-rvalue
- // conversion is applied, or
- // -- x is a variable of non-reference type, and e is an element of the
- // set of potential results of a discarded-value expression to which
- // the lvalue-to-rvalue conversion is not applied
- //
- // We check the first bullet and the "potentially-evaluated" condition in
- // BuildDeclRefExpr. We check the type requirements in the second bullet
- // in CheckLValueToRValueConversionOperand below.
- switch (NOUR) {
- case NOUR_None:
- case NOUR_Unevaluated:
- llvm_unreachable("unexpected non-odr-use-reason");
- case NOUR_Constant:
- // Constant references were handled when they were built.
- if (VD->getType()->isReferenceType())
- return true;
- if (auto *RD = VD->getType()->getAsCXXRecordDecl())
- if (RD->hasMutableFields())
- return true;
- if (!VD->isUsableInConstantExpressions(S.Context))
- return true;
- break;
- case NOUR_Discarded:
- if (VD->getType()->isReferenceType())
- return true;
- break;
- }
- return false;
- };
- // Mark that this expression does not constitute an odr-use.
- auto MarkNotOdrUsed = [&] {
- S.MaybeODRUseExprs.erase(E);
- if (LambdaScopeInfo *LSI = S.getCurLambda())
- LSI->markVariableExprAsNonODRUsed(E);
- };
- // C++2a [basic.def.odr]p2:
- // The set of potential results of an expression e is defined as follows:
- switch (E->getStmtClass()) {
- // -- If e is an id-expression, ...
- case Expr::DeclRefExprClass: {
- auto *DRE = cast<DeclRefExpr>(E);
- if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
- break;
- // Rebuild as a non-odr-use DeclRefExpr.
- MarkNotOdrUsed();
- return DeclRefExpr::Create(
- S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
- DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
- DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
- DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
- }
- case Expr::FunctionParmPackExprClass: {
- auto *FPPE = cast<FunctionParmPackExpr>(E);
- // If any of the declarations in the pack is odr-used, then the expression
- // as a whole constitutes an odr-use.
- for (VarDecl *D : *FPPE)
- if (IsPotentialResultOdrUsed(D))
- return ExprEmpty();
- // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
- // nothing cares about whether we marked this as an odr-use, but it might
- // be useful for non-compiler tools.
- MarkNotOdrUsed();
- break;
- }
- // -- If e is a subscripting operation with an array operand...
- case Expr::ArraySubscriptExprClass: {
- auto *ASE = cast<ArraySubscriptExpr>(E);
- Expr *OldBase = ASE->getBase()->IgnoreImplicit();
- if (!OldBase->getType()->isArrayType())
- break;
- ExprResult Base = Rebuild(OldBase);
- if (!Base.isUsable())
- return Base;
- Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
- Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
- SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
- return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
- ASE->getRBracketLoc());
- }
- case Expr::MemberExprClass: {
- auto *ME = cast<MemberExpr>(E);
- // -- If e is a class member access expression [...] naming a non-static
- // data member...
- if (isa<FieldDecl>(ME->getMemberDecl())) {
- ExprResult Base = Rebuild(ME->getBase());
- if (!Base.isUsable())
- return Base;
- return MemberExpr::Create(
- S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
- ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
- ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
- CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
- ME->getObjectKind(), ME->isNonOdrUse());
- }
- if (ME->getMemberDecl()->isCXXInstanceMember())
- break;
- // -- If e is a class member access expression naming a static data member,
- // ...
- if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
- break;
- // Rebuild as a non-odr-use MemberExpr.
- MarkNotOdrUsed();
- return MemberExpr::Create(
- S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
- ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
- ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
- ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
- return ExprEmpty();
- }
- case Expr::BinaryOperatorClass: {
- auto *BO = cast<BinaryOperator>(E);
- Expr *LHS = BO->getLHS();
- Expr *RHS = BO->getRHS();
- // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
- if (BO->getOpcode() == BO_PtrMemD) {
- ExprResult Sub = Rebuild(LHS);
- if (!Sub.isUsable())
- return Sub;
- LHS = Sub.get();
- // -- If e is a comma expression, ...
- } else if (BO->getOpcode() == BO_Comma) {
- ExprResult Sub = Rebuild(RHS);
- if (!Sub.isUsable())
- return Sub;
- RHS = Sub.get();
- } else {
- break;
- }
- return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
- LHS, RHS);
- }
- // -- If e has the form (e1)...
- case Expr::ParenExprClass: {
- auto *PE = cast<ParenExpr>(E);
- ExprResult Sub = Rebuild(PE->getSubExpr());
- if (!Sub.isUsable())
- return Sub;
- return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
- }
- // -- If e is a glvalue conditional expression, ...
- // We don't apply this to a binary conditional operator. FIXME: Should we?
- case Expr::ConditionalOperatorClass: {
- auto *CO = cast<ConditionalOperator>(E);
- ExprResult LHS = Rebuild(CO->getLHS());
- if (LHS.isInvalid())
- return ExprError();
- ExprResult RHS = Rebuild(CO->getRHS());
- if (RHS.isInvalid())
- return ExprError();
- if (!LHS.isUsable() && !RHS.isUsable())
- return ExprEmpty();
- if (!LHS.isUsable())
- LHS = CO->getLHS();
- if (!RHS.isUsable())
- RHS = CO->getRHS();
- return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
- CO->getCond(), LHS.get(), RHS.get());
- }
- // [Clang extension]
- // -- If e has the form __extension__ e1...
- case Expr::UnaryOperatorClass: {
- auto *UO = cast<UnaryOperator>(E);
- if (UO->getOpcode() != UO_Extension)
- break;
- ExprResult Sub = Rebuild(UO->getSubExpr());
- if (!Sub.isUsable())
- return Sub;
- return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
- Sub.get());
- }
- // [Clang extension]
- // -- If e has the form _Generic(...), the set of potential results is the
- // union of the sets of potential results of the associated expressions.
- case Expr::GenericSelectionExprClass: {
- auto *GSE = cast<GenericSelectionExpr>(E);
- SmallVector<Expr *, 4> AssocExprs;
- bool AnyChanged = false;
- for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
- ExprResult AssocExpr = Rebuild(OrigAssocExpr);
- if (AssocExpr.isInvalid())
- return ExprError();
- if (AssocExpr.isUsable()) {
- AssocExprs.push_back(AssocExpr.get());
- AnyChanged = true;
- } else {
- AssocExprs.push_back(OrigAssocExpr);
- }
- }
- return AnyChanged ? S.CreateGenericSelectionExpr(
- GSE->getGenericLoc(), GSE->getDefaultLoc(),
- GSE->getRParenLoc(), GSE->getControllingExpr(),
- GSE->getAssocTypeSourceInfos(), AssocExprs)
- : ExprEmpty();
- }
- // [Clang extension]
- // -- If e has the form __builtin_choose_expr(...), the set of potential
- // results is the union of the sets of potential results of the
- // second and third subexpressions.
- case Expr::ChooseExprClass: {
- auto *CE = cast<ChooseExpr>(E);
- ExprResult LHS = Rebuild(CE->getLHS());
- if (LHS.isInvalid())
- return ExprError();
- ExprResult RHS = Rebuild(CE->getLHS());
- if (RHS.isInvalid())
- return ExprError();
- if (!LHS.get() && !RHS.get())
- return ExprEmpty();
- if (!LHS.isUsable())
- LHS = CE->getLHS();
- if (!RHS.isUsable())
- RHS = CE->getRHS();
- return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
- RHS.get(), CE->getRParenLoc());
- }
- // Step through non-syntactic nodes.
- case Expr::ConstantExprClass: {
- auto *CE = cast<ConstantExpr>(E);
- ExprResult Sub = Rebuild(CE->getSubExpr());
- if (!Sub.isUsable())
- return Sub;
- return ConstantExpr::Create(S.Context, Sub.get());
- }
- // We could mostly rely on the recursive rebuilding to rebuild implicit
- // casts, but not at the top level, so rebuild them here.
- case Expr::ImplicitCastExprClass: {
- auto *ICE = cast<ImplicitCastExpr>(E);
- // Only step through the narrow set of cast kinds we expect to encounter.
- // Anything else suggests we've left the region in which potential results
- // can be found.
- switch (ICE->getCastKind()) {
- case CK_NoOp:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase: {
- ExprResult Sub = Rebuild(ICE->getSubExpr());
- if (!Sub.isUsable())
- return Sub;
- CXXCastPath Path(ICE->path());
- return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
- ICE->getValueKind(), &Path);
- }
- default:
- break;
- }
- break;
- }
- default:
- break;
- }
- // Can't traverse through this node. Nothing to do.
- return ExprEmpty();
- }
- ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
- // C++2a [basic.def.odr]p4:
- // [...] an expression of non-volatile-qualified non-class type to which
- // the lvalue-to-rvalue conversion is applied [...]
- if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
- return E;
- ExprResult Result =
- rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
- if (Result.isInvalid())
- return ExprError();
- return Result.get() ? Result : E;
- }
- ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
- Res = CorrectDelayedTyposInExpr(Res);
- if (!Res.isUsable())
- return Res;
- // If a constant-expression is a reference to a variable where we delay
- // deciding whether it is an odr-use, just assume we will apply the
- // lvalue-to-rvalue conversion. In the one case where this doesn't happen
- // (a non-type template argument), we have special handling anyway.
- return CheckLValueToRValueConversionOperand(Res.get());
- }
- void Sema::CleanupVarDeclMarking() {
- // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
- // call.
- MaybeODRUseExprSet LocalMaybeODRUseExprs;
- std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
- for (Expr *E : LocalMaybeODRUseExprs) {
- if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
- MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
- DRE->getLocation(), *this);
- } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
- MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
- *this);
- } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
- for (VarDecl *VD : *FP)
- MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
- } else {
- llvm_unreachable("Unexpected expression");
- }
- }
- assert(MaybeODRUseExprs.empty() &&
- "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
- }
- static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
- VarDecl *Var, Expr *E) {
- assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
- isa<FunctionParmPackExpr>(E)) &&
- "Invalid Expr argument to DoMarkVarDeclReferenced");
- Var->setReferenced();
- if (Var->isInvalidDecl())
- return;
- auto *MSI = Var->getMemberSpecializationInfo();
- TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
- : Var->getTemplateSpecializationKind();
- OdrUseContext OdrUse = isOdrUseContext(SemaRef);
- bool UsableInConstantExpr =
- Var->mightBeUsableInConstantExpressions(SemaRef.Context);
- // C++20 [expr.const]p12:
- // A variable [...] is needed for constant evaluation if it is [...] a
- // variable whose name appears as a potentially constant evaluated
- // expression that is either a contexpr variable or is of non-volatile
- // const-qualified integral type or of reference type
- bool NeededForConstantEvaluation =
- isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
- bool NeedDefinition =
- OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
- VarTemplateSpecializationDecl *VarSpec =
- dyn_cast<VarTemplateSpecializationDecl>(Var);
- assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
- "Can't instantiate a partial template specialization.");
- // If this might be a member specialization of a static data member, check
- // the specialization is visible. We already did the checks for variable
- // template specializations when we created them.
- if (NeedDefinition && TSK != TSK_Undeclared &&
- !isa<VarTemplateSpecializationDecl>(Var))
- SemaRef.checkSpecializationVisibility(Loc, Var);
- // Perform implicit instantiation of static data members, static data member
- // templates of class templates, and variable template specializations. Delay
- // instantiations of variable templates, except for those that could be used
- // in a constant expression.
- if (NeedDefinition && isTemplateInstantiation(TSK)) {
- // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
- // instantiation declaration if a variable is usable in a constant
- // expression (among other cases).
- bool TryInstantiating =
- TSK == TSK_ImplicitInstantiation ||
- (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
- if (TryInstantiating) {
- SourceLocation PointOfInstantiation =
- MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
- bool FirstInstantiation = PointOfInstantiation.isInvalid();
- if (FirstInstantiation) {
- PointOfInstantiation = Loc;
- if (MSI)
- MSI->setPointOfInstantiation(PointOfInstantiation);
- else
- Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
- }
- bool InstantiationDependent = false;
- bool IsNonDependent =
- VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
- VarSpec->getTemplateArgsInfo(), InstantiationDependent)
- : true;
- // Do not instantiate specializations that are still type-dependent.
- if (IsNonDependent) {
- if (UsableInConstantExpr) {
- // Do not defer instantiations of variables that could be used in a
- // constant expression.
- SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
- SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
- });
- } else if (FirstInstantiation ||
- isa<VarTemplateSpecializationDecl>(Var)) {
- // FIXME: For a specialization of a variable template, we don't
- // distinguish between "declaration and type implicitly instantiated"
- // and "implicit instantiation of definition requested", so we have
- // no direct way to avoid enqueueing the pending instantiation
- // multiple times.
- SemaRef.PendingInstantiations
- .push_back(std::make_pair(Var, PointOfInstantiation));
- }
- }
- }
- }
- // C++2a [basic.def.odr]p4:
- // A variable x whose name appears as a potentially-evaluated expression e
- // is odr-used by e unless
- // -- x is a reference that is usable in constant expressions
- // -- x is a variable of non-reference type that is usable in constant
- // expressions and has no mutable subobjects [FIXME], and e is an
- // element of the set of potential results of an expression of
- // non-volatile-qualified non-class type to which the lvalue-to-rvalue
- // conversion is applied
- // -- x is a variable of non-reference type, and e is an element of the set
- // of potential results of a discarded-value expression to which the
- // lvalue-to-rvalue conversion is not applied [FIXME]
- //
- // We check the first part of the second bullet here, and
- // Sema::CheckLValueToRValueConversionOperand deals with the second part.
- // FIXME: To get the third bullet right, we need to delay this even for
- // variables that are not usable in constant expressions.
- // If we already know this isn't an odr-use, there's nothing more to do.
- if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
- if (DRE->isNonOdrUse())
- return;
- if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
- if (ME->isNonOdrUse())
- return;
- switch (OdrUse) {
- case OdrUseContext::None:
- assert((!E || isa<FunctionParmPackExpr>(E)) &&
- "missing non-odr-use marking for unevaluated decl ref");
- break;
- case OdrUseContext::FormallyOdrUsed:
- // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
- // behavior.
- break;
- case OdrUseContext::Used:
- // If we might later find that this expression isn't actually an odr-use,
- // delay the marking.
- if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
- SemaRef.MaybeODRUseExprs.insert(E);
- else
- MarkVarDeclODRUsed(Var, Loc, SemaRef);
- break;
- case OdrUseContext::Dependent:
- // If this is a dependent context, we don't need to mark variables as
- // odr-used, but we may still need to track them for lambda capture.
- // FIXME: Do we also need to do this inside dependent typeid expressions
- // (which are modeled as unevaluated at this point)?
- const bool RefersToEnclosingScope =
- (SemaRef.CurContext != Var->getDeclContext() &&
- Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
- if (RefersToEnclosingScope) {
- LambdaScopeInfo *const LSI =
- SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
- if (LSI && (!LSI->CallOperator ||
- !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
- // If a variable could potentially be odr-used, defer marking it so
- // until we finish analyzing the full expression for any
- // lvalue-to-rvalue
- // or discarded value conversions that would obviate odr-use.
- // Add it to the list of potential captures that will be analyzed
- // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
- // unless the variable is a reference that was initialized by a constant
- // expression (this will never need to be captured or odr-used).
- //
- // FIXME: We can simplify this a lot after implementing P0588R1.
- assert(E && "Capture variable should be used in an expression.");
- if (!Var->getType()->isReferenceType() ||
- !Var->isUsableInConstantExpressions(SemaRef.Context))
- LSI->addPotentialCapture(E->IgnoreParens());
- }
- }
- break;
- }
- }
- /// Mark a variable referenced, and check whether it is odr-used
- /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
- /// used directly for normal expressions referring to VarDecl.
- void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
- DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
- }
- static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
- Decl *D, Expr *E, bool MightBeOdrUse) {
- if (SemaRef.isInOpenMPDeclareTargetContext())
- SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
- if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
- DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
- return;
- }
- SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
- // If this is a call to a method via a cast, also mark the method in the
- // derived class used in case codegen can devirtualize the call.
- const MemberExpr *ME = dyn_cast<MemberExpr>(E);
- if (!ME)
- return;
- CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
- if (!MD)
- return;
- // Only attempt to devirtualize if this is truly a virtual call.
- bool IsVirtualCall = MD->isVirtual() &&
- ME->performsVirtualDispatch(SemaRef.getLangOpts());
- if (!IsVirtualCall)
- return;
- // If it's possible to devirtualize the call, mark the called function
- // referenced.
- CXXMethodDecl *DM = MD->getDevirtualizedMethod(
- ME->getBase(), SemaRef.getLangOpts().AppleKext);
- if (DM)
- SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
- }
- /// Perform reference-marking and odr-use handling for a DeclRefExpr.
- void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
- // TODO: update this with DR# once a defect report is filed.
- // C++11 defect. The address of a pure member should not be an ODR use, even
- // if it's a qualified reference.
- bool OdrUse = true;
- if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
- if (Method->isVirtual() &&
- !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
- OdrUse = false;
- MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
- }
- /// Perform reference-marking and odr-use handling for a MemberExpr.
- void Sema::MarkMemberReferenced(MemberExpr *E) {
- // C++11 [basic.def.odr]p2:
- // A non-overloaded function whose name appears as a potentially-evaluated
- // expression or a member of a set of candidate functions, if selected by
- // overload resolution when referred to from a potentially-evaluated
- // expression, is odr-used, unless it is a pure virtual function and its
- // name is not explicitly qualified.
- bool MightBeOdrUse = true;
- if (E->performsVirtualDispatch(getLangOpts())) {
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
- if (Method->isPure())
- MightBeOdrUse = false;
- }
- SourceLocation Loc =
- E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
- MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
- }
- /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
- void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
- for (VarDecl *VD : *E)
- MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
- }
- /// Perform marking for a reference to an arbitrary declaration. It
- /// marks the declaration referenced, and performs odr-use checking for
- /// functions and variables. This method should not be used when building a
- /// normal expression which refers to a variable.
- void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
- bool MightBeOdrUse) {
- if (MightBeOdrUse) {
- if (auto *VD = dyn_cast<VarDecl>(D)) {
- MarkVariableReferenced(Loc, VD);
- return;
- }
- }
- if (auto *FD = dyn_cast<FunctionDecl>(D)) {
- MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
- return;
- }
- D->setReferenced();
- }
- namespace {
- // Mark all of the declarations used by a type as referenced.
- // FIXME: Not fully implemented yet! We need to have a better understanding
- // of when we're entering a context we should not recurse into.
- // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
- // TreeTransforms rebuilding the type in a new context. Rather than
- // duplicating the TreeTransform logic, we should consider reusing it here.
- // Currently that causes problems when rebuilding LambdaExprs.
- class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
- Sema &S;
- SourceLocation Loc;
- public:
- typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
- MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
- bool TraverseTemplateArgument(const TemplateArgument &Arg);
- };
- }
- bool MarkReferencedDecls::TraverseTemplateArgument(
- const TemplateArgument &Arg) {
- {
- // A non-type template argument is a constant-evaluated context.
- EnterExpressionEvaluationContext Evaluated(
- S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
- if (Arg.getKind() == TemplateArgument::Declaration) {
- if (Decl *D = Arg.getAsDecl())
- S.MarkAnyDeclReferenced(Loc, D, true);
- } else if (Arg.getKind() == TemplateArgument::Expression) {
- S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
- }
- }
- return Inherited::TraverseTemplateArgument(Arg);
- }
- void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
- MarkReferencedDecls Marker(*this, Loc);
- Marker.TraverseType(T);
- }
- namespace {
- /// Helper class that marks all of the declarations referenced by
- /// potentially-evaluated subexpressions as "referenced".
- class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
- Sema &S;
- bool SkipLocalVariables;
- public:
- typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
- EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
- : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
- void VisitDeclRefExpr(DeclRefExpr *E) {
- // If we were asked not to visit local variables, don't.
- if (SkipLocalVariables) {
- if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
- if (VD->hasLocalStorage())
- return;
- }
- S.MarkDeclRefReferenced(E);
- }
- void VisitMemberExpr(MemberExpr *E) {
- S.MarkMemberReferenced(E);
- Inherited::VisitMemberExpr(E);
- }
- void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
- S.MarkFunctionReferenced(
- E->getBeginLoc(),
- const_cast<CXXDestructorDecl *>(E->getTemporary()->getDestructor()));
- Visit(E->getSubExpr());
- }
- void VisitCXXNewExpr(CXXNewExpr *E) {
- if (E->getOperatorNew())
- S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorNew());
- if (E->getOperatorDelete())
- S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
- Inherited::VisitCXXNewExpr(E);
- }
- void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
- if (E->getOperatorDelete())
- S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
- QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
- if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
- CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
- S.MarkFunctionReferenced(E->getBeginLoc(), S.LookupDestructor(Record));
- }
- Inherited::VisitCXXDeleteExpr(E);
- }
- void VisitCXXConstructExpr(CXXConstructExpr *E) {
- S.MarkFunctionReferenced(E->getBeginLoc(), E->getConstructor());
- Inherited::VisitCXXConstructExpr(E);
- }
- void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
- Visit(E->getExpr());
- }
- };
- }
- /// Mark any declarations that appear within this expression or any
- /// potentially-evaluated subexpressions as "referenced".
- ///
- /// \param SkipLocalVariables If true, don't mark local variables as
- /// 'referenced'.
- void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
- bool SkipLocalVariables) {
- EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
- }
- /// Emit a diagnostic that describes an effect on the run-time behavior
- /// of the program being compiled.
- ///
- /// This routine emits the given diagnostic when the code currently being
- /// type-checked is "potentially evaluated", meaning that there is a
- /// possibility that the code will actually be executable. Code in sizeof()
- /// expressions, code used only during overload resolution, etc., are not
- /// potentially evaluated. This routine will suppress such diagnostics or,
- /// in the absolutely nutty case of potentially potentially evaluated
- /// expressions (C++ typeid), queue the diagnostic to potentially emit it
- /// later.
- ///
- /// This routine should be used for all diagnostics that describe the run-time
- /// behavior of a program, such as passing a non-POD value through an ellipsis.
- /// Failure to do so will likely result in spurious diagnostics or failures
- /// during overload resolution or within sizeof/alignof/typeof/typeid.
- bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
- const PartialDiagnostic &PD) {
- switch (ExprEvalContexts.back().Context) {
- case ExpressionEvaluationContext::Unevaluated:
- case ExpressionEvaluationContext::UnevaluatedList:
- case ExpressionEvaluationContext::UnevaluatedAbstract:
- case ExpressionEvaluationContext::DiscardedStatement:
- // The argument will never be evaluated, so don't complain.
- break;
- case ExpressionEvaluationContext::ConstantEvaluated:
- // Relevant diagnostics should be produced by constant evaluation.
- break;
- case ExpressionEvaluationContext::PotentiallyEvaluated:
- case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
- if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
- FunctionScopes.back()->PossiblyUnreachableDiags.
- push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
- return true;
- }
- // The initializer of a constexpr variable or of the first declaration of a
- // static data member is not syntactically a constant evaluated constant,
- // but nonetheless is always required to be a constant expression, so we
- // can skip diagnosing.
- // FIXME: Using the mangling context here is a hack.
- if (auto *VD = dyn_cast_or_null<VarDecl>(
- ExprEvalContexts.back().ManglingContextDecl)) {
- if (VD->isConstexpr() ||
- (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
- break;
- // FIXME: For any other kind of variable, we should build a CFG for its
- // initializer and check whether the context in question is reachable.
- }
- Diag(Loc, PD);
- return true;
- }
- return false;
- }
- bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
- const PartialDiagnostic &PD) {
- return DiagRuntimeBehavior(
- Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
- }
- bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
- CallExpr *CE, FunctionDecl *FD) {
- if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
- return false;
- // If we're inside a decltype's expression, don't check for a valid return
- // type or construct temporaries until we know whether this is the last call.
- if (ExprEvalContexts.back().ExprContext ==
- ExpressionEvaluationContextRecord::EK_Decltype) {
- ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
- return false;
- }
- class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
- FunctionDecl *FD;
- CallExpr *CE;
- public:
- CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
- : FD(FD), CE(CE) { }
- void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
- if (!FD) {
- S.Diag(Loc, diag::err_call_incomplete_return)
- << T << CE->getSourceRange();
- return;
- }
- S.Diag(Loc, diag::err_call_function_incomplete_return)
- << CE->getSourceRange() << FD->getDeclName() << T;
- S.Diag(FD->getLocation(), diag::note_entity_declared_at)
- << FD->getDeclName();
- }
- } Diagnoser(FD, CE);
- if (RequireCompleteType(Loc, ReturnType, Diagnoser))
- return true;
- return false;
- }
- // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
- // will prevent this condition from triggering, which is what we want.
- void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
- SourceLocation Loc;
- unsigned diagnostic = diag::warn_condition_is_assignment;
- bool IsOrAssign = false;
- if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
- if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
- return;
- IsOrAssign = Op->getOpcode() == BO_OrAssign;
- // Greylist some idioms by putting them into a warning subcategory.
- if (ObjCMessageExpr *ME
- = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
- Selector Sel = ME->getSelector();
- // self = [<foo> init...]
- if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
- diagnostic = diag::warn_condition_is_idiomatic_assignment;
- // <foo> = [<bar> nextObject]
- else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
- diagnostic = diag::warn_condition_is_idiomatic_assignment;
- }
- Loc = Op->getOperatorLoc();
- } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
- if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
- return;
- IsOrAssign = Op->getOperator() == OO_PipeEqual;
- Loc = Op->getOperatorLoc();
- } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
- return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
- else {
- // Not an assignment.
- return;
- }
- Diag(Loc, diagnostic) << E->getSourceRange();
- SourceLocation Open = E->getBeginLoc();
- SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
- Diag(Loc, diag::note_condition_assign_silence)
- << FixItHint::CreateInsertion(Open, "(")
- << FixItHint::CreateInsertion(Close, ")");
- if (IsOrAssign)
- Diag(Loc, diag::note_condition_or_assign_to_comparison)
- << FixItHint::CreateReplacement(Loc, "!=");
- else
- Diag(Loc, diag::note_condition_assign_to_comparison)
- << FixItHint::CreateReplacement(Loc, "==");
- }
- /// Redundant parentheses over an equality comparison can indicate
- /// that the user intended an assignment used as condition.
- void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
- // Don't warn if the parens came from a macro.
- SourceLocation parenLoc = ParenE->getBeginLoc();
- if (parenLoc.isInvalid() || parenLoc.isMacroID())
- return;
- // Don't warn for dependent expressions.
- if (ParenE->isTypeDependent())
- return;
- Expr *E = ParenE->IgnoreParens();
- if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
- if (opE->getOpcode() == BO_EQ &&
- opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
- == Expr::MLV_Valid) {
- SourceLocation Loc = opE->getOperatorLoc();
- Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
- SourceRange ParenERange = ParenE->getSourceRange();
- Diag(Loc, diag::note_equality_comparison_silence)
- << FixItHint::CreateRemoval(ParenERange.getBegin())
- << FixItHint::CreateRemoval(ParenERange.getEnd());
- Diag(Loc, diag::note_equality_comparison_to_assign)
- << FixItHint::CreateReplacement(Loc, "=");
- }
- }
- ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
- bool IsConstexpr) {
- DiagnoseAssignmentAsCondition(E);
- if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
- DiagnoseEqualityWithExtraParens(parenE);
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.get();
- if (!E->isTypeDependent()) {
- if (getLangOpts().CPlusPlus)
- return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
- ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
- if (ERes.isInvalid())
- return ExprError();
- E = ERes.get();
- QualType T = E->getType();
- if (!T->isScalarType()) { // C99 6.8.4.1p1
- Diag(Loc, diag::err_typecheck_statement_requires_scalar)
- << T << E->getSourceRange();
- return ExprError();
- }
- CheckBoolLikeConversion(E, Loc);
- }
- return E;
- }
- Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
- Expr *SubExpr, ConditionKind CK) {
- // Empty conditions are valid in for-statements.
- if (!SubExpr)
- return ConditionResult();
- ExprResult Cond;
- switch (CK) {
- case ConditionKind::Boolean:
- Cond = CheckBooleanCondition(Loc, SubExpr);
- break;
- case ConditionKind::ConstexprIf:
- Cond = CheckBooleanCondition(Loc, SubExpr, true);
- break;
- case ConditionKind::Switch:
- Cond = CheckSwitchCondition(Loc, SubExpr);
- break;
- }
- if (Cond.isInvalid())
- return ConditionError();
- // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
- FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
- if (!FullExpr.get())
- return ConditionError();
- return ConditionResult(*this, nullptr, FullExpr,
- CK == ConditionKind::ConstexprIf);
- }
- namespace {
- /// A visitor for rebuilding a call to an __unknown_any expression
- /// to have an appropriate type.
- struct RebuildUnknownAnyFunction
- : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
- Sema &S;
- RebuildUnknownAnyFunction(Sema &S) : S(S) {}
- ExprResult VisitStmt(Stmt *S) {
- llvm_unreachable("unexpected statement!");
- }
- ExprResult VisitExpr(Expr *E) {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
- << E->getSourceRange();
- return ExprError();
- }
- /// Rebuild an expression which simply semantically wraps another
- /// expression which it shares the type and value kind of.
- template <class T> ExprResult rebuildSugarExpr(T *E) {
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- Expr *SubExpr = SubResult.get();
- E->setSubExpr(SubExpr);
- E->setType(SubExpr->getType());
- E->setValueKind(SubExpr->getValueKind());
- assert(E->getObjectKind() == OK_Ordinary);
- return E;
- }
- ExprResult VisitParenExpr(ParenExpr *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryExtension(UnaryOperator *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- Expr *SubExpr = SubResult.get();
- E->setSubExpr(SubExpr);
- E->setType(S.Context.getPointerType(SubExpr->getType()));
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- return E;
- }
- ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
- if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
- E->setType(VD->getType());
- assert(E->getValueKind() == VK_RValue);
- if (S.getLangOpts().CPlusPlus &&
- !(isa<CXXMethodDecl>(VD) &&
- cast<CXXMethodDecl>(VD)->isInstance()))
- E->setValueKind(VK_LValue);
- return E;
- }
- ExprResult VisitMemberExpr(MemberExpr *E) {
- return resolveDecl(E, E->getMemberDecl());
- }
- ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
- return resolveDecl(E, E->getDecl());
- }
- };
- }
- /// Given a function expression of unknown-any type, try to rebuild it
- /// to have a function type.
- static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
- ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
- if (Result.isInvalid()) return ExprError();
- return S.DefaultFunctionArrayConversion(Result.get());
- }
- namespace {
- /// A visitor for rebuilding an expression of type __unknown_anytype
- /// into one which resolves the type directly on the referring
- /// expression. Strict preservation of the original source
- /// structure is not a goal.
- struct RebuildUnknownAnyExpr
- : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
- Sema &S;
- /// The current destination type.
- QualType DestType;
- RebuildUnknownAnyExpr(Sema &S, QualType CastType)
- : S(S), DestType(CastType) {}
- ExprResult VisitStmt(Stmt *S) {
- llvm_unreachable("unexpected statement!");
- }
- ExprResult VisitExpr(Expr *E) {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
- << E->getSourceRange();
- return ExprError();
- }
- ExprResult VisitCallExpr(CallExpr *E);
- ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
- /// Rebuild an expression which simply semantically wraps another
- /// expression which it shares the type and value kind of.
- template <class T> ExprResult rebuildSugarExpr(T *E) {
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- Expr *SubExpr = SubResult.get();
- E->setSubExpr(SubExpr);
- E->setType(SubExpr->getType());
- E->setValueKind(SubExpr->getValueKind());
- assert(E->getObjectKind() == OK_Ordinary);
- return E;
- }
- ExprResult VisitParenExpr(ParenExpr *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryExtension(UnaryOperator *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
- const PointerType *Ptr = DestType->getAs<PointerType>();
- if (!Ptr) {
- S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
- << E->getSourceRange();
- return ExprError();
- }
- if (isa<CallExpr>(E->getSubExpr())) {
- S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
- << E->getSourceRange();
- return ExprError();
- }
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- E->setType(DestType);
- // Build the sub-expression as if it were an object of the pointee type.
- DestType = Ptr->getPointeeType();
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- E->setSubExpr(SubResult.get());
- return E;
- }
- ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
- ExprResult resolveDecl(Expr *E, ValueDecl *VD);
- ExprResult VisitMemberExpr(MemberExpr *E) {
- return resolveDecl(E, E->getMemberDecl());
- }
- ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
- return resolveDecl(E, E->getDecl());
- }
- };
- }
- /// Rebuilds a call expression which yielded __unknown_anytype.
- ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
- Expr *CalleeExpr = E->getCallee();
- enum FnKind {
- FK_MemberFunction,
- FK_FunctionPointer,
- FK_BlockPointer
- };
- FnKind Kind;
- QualType CalleeType = CalleeExpr->getType();
- if (CalleeType == S.Context.BoundMemberTy) {
- assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
- Kind = FK_MemberFunction;
- CalleeType = Expr::findBoundMemberType(CalleeExpr);
- } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
- CalleeType = Ptr->getPointeeType();
- Kind = FK_FunctionPointer;
- } else {
- CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
- Kind = FK_BlockPointer;
- }
- const FunctionType *FnType = CalleeType->castAs<FunctionType>();
- // Verify that this is a legal result type of a function.
- if (DestType->isArrayType() || DestType->isFunctionType()) {
- unsigned diagID = diag::err_func_returning_array_function;
- if (Kind == FK_BlockPointer)
- diagID = diag::err_block_returning_array_function;
- S.Diag(E->getExprLoc(), diagID)
- << DestType->isFunctionType() << DestType;
- return ExprError();
- }
- // Otherwise, go ahead and set DestType as the call's result.
- E->setType(DestType.getNonLValueExprType(S.Context));
- E->setValueKind(Expr::getValueKindForType(DestType));
- assert(E->getObjectKind() == OK_Ordinary);
- // Rebuild the function type, replacing the result type with DestType.
- const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
- if (Proto) {
- // __unknown_anytype(...) is a special case used by the debugger when
- // it has no idea what a function's signature is.
- //
- // We want to build this call essentially under the K&R
- // unprototyped rules, but making a FunctionNoProtoType in C++
- // would foul up all sorts of assumptions. However, we cannot
- // simply pass all arguments as variadic arguments, nor can we
- // portably just call the function under a non-variadic type; see
- // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
- // However, it turns out that in practice it is generally safe to
- // call a function declared as "A foo(B,C,D);" under the prototype
- // "A foo(B,C,D,...);". The only known exception is with the
- // Windows ABI, where any variadic function is implicitly cdecl
- // regardless of its normal CC. Therefore we change the parameter
- // types to match the types of the arguments.
- //
- // This is a hack, but it is far superior to moving the
- // corresponding target-specific code from IR-gen to Sema/AST.
- ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
- SmallVector<QualType, 8> ArgTypes;
- if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
- ArgTypes.reserve(E->getNumArgs());
- for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
- Expr *Arg = E->getArg(i);
- QualType ArgType = Arg->getType();
- if (E->isLValue()) {
- ArgType = S.Context.getLValueReferenceType(ArgType);
- } else if (E->isXValue()) {
- ArgType = S.Context.getRValueReferenceType(ArgType);
- }
- ArgTypes.push_back(ArgType);
- }
- ParamTypes = ArgTypes;
- }
- DestType = S.Context.getFunctionType(DestType, ParamTypes,
- Proto->getExtProtoInfo());
- } else {
- DestType = S.Context.getFunctionNoProtoType(DestType,
- FnType->getExtInfo());
- }
- // Rebuild the appropriate pointer-to-function type.
- switch (Kind) {
- case FK_MemberFunction:
- // Nothing to do.
- break;
- case FK_FunctionPointer:
- DestType = S.Context.getPointerType(DestType);
- break;
- case FK_BlockPointer:
- DestType = S.Context.getBlockPointerType(DestType);
- break;
- }
- // Finally, we can recurse.
- ExprResult CalleeResult = Visit(CalleeExpr);
- if (!CalleeResult.isUsable()) return ExprError();
- E->setCallee(CalleeResult.get());
- // Bind a temporary if necessary.
- return S.MaybeBindToTemporary(E);
- }
- ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
- // Verify that this is a legal result type of a call.
- if (DestType->isArrayType() || DestType->isFunctionType()) {
- S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
- << DestType->isFunctionType() << DestType;
- return ExprError();
- }
- // Rewrite the method result type if available.
- if (ObjCMethodDecl *Method = E->getMethodDecl()) {
- assert(Method->getReturnType() == S.Context.UnknownAnyTy);
- Method->setReturnType(DestType);
- }
- // Change the type of the message.
- E->setType(DestType.getNonReferenceType());
- E->setValueKind(Expr::getValueKindForType(DestType));
- return S.MaybeBindToTemporary(E);
- }
- ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
- // The only case we should ever see here is a function-to-pointer decay.
- if (E->getCastKind() == CK_FunctionToPointerDecay) {
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- E->setType(DestType);
- // Rebuild the sub-expression as the pointee (function) type.
- DestType = DestType->castAs<PointerType>()->getPointeeType();
- ExprResult Result = Visit(E->getSubExpr());
- if (!Result.isUsable()) return ExprError();
- E->setSubExpr(Result.get());
- return E;
- } else if (E->getCastKind() == CK_LValueToRValue) {
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- assert(isa<BlockPointerType>(E->getType()));
- E->setType(DestType);
- // The sub-expression has to be a lvalue reference, so rebuild it as such.
- DestType = S.Context.getLValueReferenceType(DestType);
- ExprResult Result = Visit(E->getSubExpr());
- if (!Result.isUsable()) return ExprError();
- E->setSubExpr(Result.get());
- return E;
- } else {
- llvm_unreachable("Unhandled cast type!");
- }
- }
- ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
- ExprValueKind ValueKind = VK_LValue;
- QualType Type = DestType;
- // We know how to make this work for certain kinds of decls:
- // - functions
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
- if (const PointerType *Ptr = Type->getAs<PointerType>()) {
- DestType = Ptr->getPointeeType();
- ExprResult Result = resolveDecl(E, VD);
- if (Result.isInvalid()) return ExprError();
- return S.ImpCastExprToType(Result.get(), Type,
- CK_FunctionToPointerDecay, VK_RValue);
- }
- if (!Type->isFunctionType()) {
- S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
- << VD << E->getSourceRange();
- return ExprError();
- }
- if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
- // We must match the FunctionDecl's type to the hack introduced in
- // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
- // type. See the lengthy commentary in that routine.
- QualType FDT = FD->getType();
- const FunctionType *FnType = FDT->castAs<FunctionType>();
- const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
- DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
- if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
- SourceLocation Loc = FD->getLocation();
- FunctionDecl *NewFD = FunctionDecl::Create(
- S.Context, FD->getDeclContext(), Loc, Loc,
- FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
- SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
- /*ConstexprKind*/ CSK_unspecified);
- if (FD->getQualifier())
- NewFD->setQualifierInfo(FD->getQualifierLoc());
- SmallVector<ParmVarDecl*, 16> Params;
- for (const auto &AI : FT->param_types()) {
- ParmVarDecl *Param =
- S.BuildParmVarDeclForTypedef(FD, Loc, AI);
- Param->setScopeInfo(0, Params.size());
- Params.push_back(Param);
- }
- NewFD->setParams(Params);
- DRE->setDecl(NewFD);
- VD = DRE->getDecl();
- }
- }
- if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
- if (MD->isInstance()) {
- ValueKind = VK_RValue;
- Type = S.Context.BoundMemberTy;
- }
- // Function references aren't l-values in C.
- if (!S.getLangOpts().CPlusPlus)
- ValueKind = VK_RValue;
- // - variables
- } else if (isa<VarDecl>(VD)) {
- if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
- Type = RefTy->getPointeeType();
- } else if (Type->isFunctionType()) {
- S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
- << VD << E->getSourceRange();
- return ExprError();
- }
- // - nothing else
- } else {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
- << VD << E->getSourceRange();
- return ExprError();
- }
- // Modifying the declaration like this is friendly to IR-gen but
- // also really dangerous.
- VD->setType(DestType);
- E->setType(Type);
- E->setValueKind(ValueKind);
- return E;
- }
- /// Check a cast of an unknown-any type. We intentionally only
- /// trigger this for C-style casts.
- ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
- Expr *CastExpr, CastKind &CastKind,
- ExprValueKind &VK, CXXCastPath &Path) {
- // The type we're casting to must be either void or complete.
- if (!CastType->isVoidType() &&
- RequireCompleteType(TypeRange.getBegin(), CastType,
- diag::err_typecheck_cast_to_incomplete))
- return ExprError();
- // Rewrite the casted expression from scratch.
- ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
- if (!result.isUsable()) return ExprError();
- CastExpr = result.get();
- VK = CastExpr->getValueKind();
- CastKind = CK_NoOp;
- return CastExpr;
- }
- ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
- return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
- }
- ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
- Expr *arg, QualType ¶mType) {
- // If the syntactic form of the argument is not an explicit cast of
- // any sort, just do default argument promotion.
- ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
- if (!castArg) {
- ExprResult result = DefaultArgumentPromotion(arg);
- if (result.isInvalid()) return ExprError();
- paramType = result.get()->getType();
- return result;
- }
- // Otherwise, use the type that was written in the explicit cast.
- assert(!arg->hasPlaceholderType());
- paramType = castArg->getTypeAsWritten();
- // Copy-initialize a parameter of that type.
- InitializedEntity entity =
- InitializedEntity::InitializeParameter(Context, paramType,
- /*consumed*/ false);
- return PerformCopyInitialization(entity, callLoc, arg);
- }
- static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
- Expr *orig = E;
- unsigned diagID = diag::err_uncasted_use_of_unknown_any;
- while (true) {
- E = E->IgnoreParenImpCasts();
- if (CallExpr *call = dyn_cast<CallExpr>(E)) {
- E = call->getCallee();
- diagID = diag::err_uncasted_call_of_unknown_any;
- } else {
- break;
- }
- }
- SourceLocation loc;
- NamedDecl *d;
- if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
- loc = ref->getLocation();
- d = ref->getDecl();
- } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
- loc = mem->getMemberLoc();
- d = mem->getMemberDecl();
- } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
- diagID = diag::err_uncasted_call_of_unknown_any;
- loc = msg->getSelectorStartLoc();
- d = msg->getMethodDecl();
- if (!d) {
- S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
- << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
- << orig->getSourceRange();
- return ExprError();
- }
- } else {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
- << E->getSourceRange();
- return ExprError();
- }
- S.Diag(loc, diagID) << d << orig->getSourceRange();
- // Never recoverable.
- return ExprError();
- }
- /// Check for operands with placeholder types and complain if found.
- /// Returns ExprError() if there was an error and no recovery was possible.
- ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
- if (!getLangOpts().CPlusPlus) {
- // C cannot handle TypoExpr nodes on either side of a binop because it
- // doesn't handle dependent types properly, so make sure any TypoExprs have
- // been dealt with before checking the operands.
- ExprResult Result = CorrectDelayedTyposInExpr(E);
- if (!Result.isUsable()) return ExprError();
- E = Result.get();
- }
- const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
- if (!placeholderType) return E;
- switch (placeholderType->getKind()) {
- // Overloaded expressions.
- case BuiltinType::Overload: {
- // Try to resolve a single function template specialization.
- // This is obligatory.
- ExprResult Result = E;
- if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
- return Result;
- // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
- // leaves Result unchanged on failure.
- Result = E;
- if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result))
- return Result;
- // If that failed, try to recover with a call.
- tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
- /*complain*/ true);
- return Result;
- }
- // Bound member functions.
- case BuiltinType::BoundMember: {
- ExprResult result = E;
- const Expr *BME = E->IgnoreParens();
- PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
- // Try to give a nicer diagnostic if it is a bound member that we recognize.
- if (isa<CXXPseudoDestructorExpr>(BME)) {
- PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
- } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
- if (ME->getMemberNameInfo().getName().getNameKind() ==
- DeclarationName::CXXDestructorName)
- PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
- }
- tryToRecoverWithCall(result, PD,
- /*complain*/ true);
- return result;
- }
- // ARC unbridged casts.
- case BuiltinType::ARCUnbridgedCast: {
- Expr *realCast = stripARCUnbridgedCast(E);
- diagnoseARCUnbridgedCast(realCast);
- return realCast;
- }
- // Expressions of unknown type.
- case BuiltinType::UnknownAny:
- return diagnoseUnknownAnyExpr(*this, E);
- // Pseudo-objects.
- case BuiltinType::PseudoObject:
- return checkPseudoObjectRValue(E);
- case BuiltinType::BuiltinFn: {
- // Accept __noop without parens by implicitly converting it to a call expr.
- auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
- if (DRE) {
- auto *FD = cast<FunctionDecl>(DRE->getDecl());
- if (FD->getBuiltinID() == Builtin::BI__noop) {
- E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
- CK_BuiltinFnToFnPtr)
- .get();
- return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
- VK_RValue, SourceLocation());
- }
- }
- Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
- return ExprError();
- }
- // Expressions of unknown type.
- case BuiltinType::OMPArraySection:
- Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
- return ExprError();
- // Everything else should be impossible.
- #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLImageTypes.def"
- #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLExtensionTypes.def"
- #define SVE_TYPE(Name, Id, SingletonId) \
- case BuiltinType::Id:
- #include "clang/Basic/AArch64SVEACLETypes.def"
- #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
- #define PLACEHOLDER_TYPE(Id, SingletonId)
- #include "clang/AST/BuiltinTypes.def"
- break;
- }
- llvm_unreachable("invalid placeholder type!");
- }
- bool Sema::CheckCaseExpression(Expr *E) {
- if (E->isTypeDependent())
- return true;
- if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
- return E->getType()->isIntegralOrEnumerationType();
- return false;
- }
- /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
- ExprResult
- Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
- assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
- "Unknown Objective-C Boolean value!");
- QualType BoolT = Context.ObjCBuiltinBoolTy;
- if (!Context.getBOOLDecl()) {
- LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
- Sema::LookupOrdinaryName);
- if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
- NamedDecl *ND = Result.getFoundDecl();
- if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
- Context.setBOOLDecl(TD);
- }
- }
- if (Context.getBOOLDecl())
- BoolT = Context.getBOOLType();
- return new (Context)
- ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
- }
- ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
- llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
- SourceLocation RParen) {
- StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
- auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
- return Spec.getPlatform() == Platform;
- });
- VersionTuple Version;
- if (Spec != AvailSpecs.end())
- Version = Spec->getVersion();
- // The use of `@available` in the enclosing function should be analyzed to
- // warn when it's used inappropriately (i.e. not if(@available)).
- if (getCurFunctionOrMethodDecl())
- getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
- else if (getCurBlock() || getCurLambda())
- getCurFunction()->HasPotentialAvailabilityViolations = true;
- return new (Context)
- ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
- }
|