ThreadSafetyCommon.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Implementation of the interfaces declared in ThreadSafetyCommon.h
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
  14. #include "clang/AST/Attr.h"
  15. #include "clang/AST/Decl.h"
  16. #include "clang/AST/DeclCXX.h"
  17. #include "clang/AST/DeclGroup.h"
  18. #include "clang/AST/DeclObjC.h"
  19. #include "clang/AST/Expr.h"
  20. #include "clang/AST/ExprCXX.h"
  21. #include "clang/AST/OperationKinds.h"
  22. #include "clang/AST/Stmt.h"
  23. #include "clang/AST/Type.h"
  24. #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
  25. #include "clang/Analysis/CFG.h"
  26. #include "clang/Basic/LLVM.h"
  27. #include "clang/Basic/OperatorKinds.h"
  28. #include "clang/Basic/Specifiers.h"
  29. #include "llvm/ADT/StringRef.h"
  30. #include "llvm/Support/Casting.h"
  31. #include <algorithm>
  32. #include <cassert>
  33. #include <string>
  34. #include <utility>
  35. using namespace clang;
  36. using namespace threadSafety;
  37. // From ThreadSafetyUtil.h
  38. std::string threadSafety::getSourceLiteralString(const Expr *CE) {
  39. switch (CE->getStmtClass()) {
  40. case Stmt::IntegerLiteralClass:
  41. return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
  42. case Stmt::StringLiteralClass: {
  43. std::string ret("\"");
  44. ret += cast<StringLiteral>(CE)->getString();
  45. ret += "\"";
  46. return ret;
  47. }
  48. case Stmt::CharacterLiteralClass:
  49. case Stmt::CXXNullPtrLiteralExprClass:
  50. case Stmt::GNUNullExprClass:
  51. case Stmt::CXXBoolLiteralExprClass:
  52. case Stmt::FloatingLiteralClass:
  53. case Stmt::ImaginaryLiteralClass:
  54. case Stmt::ObjCStringLiteralClass:
  55. default:
  56. return "#lit";
  57. }
  58. }
  59. // Return true if E is a variable that points to an incomplete Phi node.
  60. static bool isIncompletePhi(const til::SExpr *E) {
  61. if (const auto *Ph = dyn_cast<til::Phi>(E))
  62. return Ph->status() == til::Phi::PH_Incomplete;
  63. return false;
  64. }
  65. using CallingContext = SExprBuilder::CallingContext;
  66. til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
  67. auto It = SMap.find(S);
  68. if (It != SMap.end())
  69. return It->second;
  70. return nullptr;
  71. }
  72. til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
  73. Walker.walk(*this);
  74. return Scfg;
  75. }
  76. static bool isCalleeArrow(const Expr *E) {
  77. const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
  78. return ME ? ME->isArrow() : false;
  79. }
  80. /// Translate a clang expression in an attribute to a til::SExpr.
  81. /// Constructs the context from D, DeclExp, and SelfDecl.
  82. ///
  83. /// \param AttrExp The expression to translate.
  84. /// \param D The declaration to which the attribute is attached.
  85. /// \param DeclExp An expression involving the Decl to which the attribute
  86. /// is attached. E.g. the call to a function.
  87. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
  88. const NamedDecl *D,
  89. const Expr *DeclExp,
  90. VarDecl *SelfDecl) {
  91. // If we are processing a raw attribute expression, with no substitutions.
  92. if (!DeclExp)
  93. return translateAttrExpr(AttrExp, nullptr);
  94. CallingContext Ctx(nullptr, D);
  95. // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
  96. // for formal parameters when we call buildMutexID later.
  97. if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
  98. Ctx.SelfArg = ME->getBase();
  99. Ctx.SelfArrow = ME->isArrow();
  100. } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
  101. Ctx.SelfArg = CE->getImplicitObjectArgument();
  102. Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
  103. Ctx.NumArgs = CE->getNumArgs();
  104. Ctx.FunArgs = CE->getArgs();
  105. } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
  106. Ctx.NumArgs = CE->getNumArgs();
  107. Ctx.FunArgs = CE->getArgs();
  108. } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
  109. Ctx.SelfArg = nullptr; // Will be set below
  110. Ctx.NumArgs = CE->getNumArgs();
  111. Ctx.FunArgs = CE->getArgs();
  112. } else if (D && isa<CXXDestructorDecl>(D)) {
  113. // There's no such thing as a "destructor call" in the AST.
  114. Ctx.SelfArg = DeclExp;
  115. }
  116. // Hack to handle constructors, where self cannot be recovered from
  117. // the expression.
  118. if (SelfDecl && !Ctx.SelfArg) {
  119. DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
  120. SelfDecl->getLocation());
  121. Ctx.SelfArg = &SelfDRE;
  122. // If the attribute has no arguments, then assume the argument is "this".
  123. if (!AttrExp)
  124. return translateAttrExpr(Ctx.SelfArg, nullptr);
  125. else // For most attributes.
  126. return translateAttrExpr(AttrExp, &Ctx);
  127. }
  128. // If the attribute has no arguments, then assume the argument is "this".
  129. if (!AttrExp)
  130. return translateAttrExpr(Ctx.SelfArg, nullptr);
  131. else // For most attributes.
  132. return translateAttrExpr(AttrExp, &Ctx);
  133. }
  134. /// Translate a clang expression in an attribute to a til::SExpr.
  135. // This assumes a CallingContext has already been created.
  136. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
  137. CallingContext *Ctx) {
  138. if (!AttrExp)
  139. return CapabilityExpr(nullptr, false);
  140. if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
  141. if (SLit->getString() == StringRef("*"))
  142. // The "*" expr is a universal lock, which essentially turns off
  143. // checks until it is removed from the lockset.
  144. return CapabilityExpr(new (Arena) til::Wildcard(), false);
  145. else
  146. // Ignore other string literals for now.
  147. return CapabilityExpr(nullptr, false);
  148. }
  149. bool Neg = false;
  150. if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
  151. if (OE->getOperator() == OO_Exclaim) {
  152. Neg = true;
  153. AttrExp = OE->getArg(0);
  154. }
  155. }
  156. else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
  157. if (UO->getOpcode() == UO_LNot) {
  158. Neg = true;
  159. AttrExp = UO->getSubExpr();
  160. }
  161. }
  162. til::SExpr *E = translate(AttrExp, Ctx);
  163. // Trap mutex expressions like nullptr, or 0.
  164. // Any literal value is nonsense.
  165. if (!E || isa<til::Literal>(E))
  166. return CapabilityExpr(nullptr, false);
  167. // Hack to deal with smart pointers -- strip off top-level pointer casts.
  168. if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) {
  169. if (CE->castOpcode() == til::CAST_objToPtr)
  170. return CapabilityExpr(CE->expr(), Neg);
  171. }
  172. return CapabilityExpr(E, Neg);
  173. }
  174. // Translate a clang statement or expression to a TIL expression.
  175. // Also performs substitution of variables; Ctx provides the context.
  176. // Dispatches on the type of S.
  177. til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
  178. if (!S)
  179. return nullptr;
  180. // Check if S has already been translated and cached.
  181. // This handles the lookup of SSA names for DeclRefExprs here.
  182. if (til::SExpr *E = lookupStmt(S))
  183. return E;
  184. switch (S->getStmtClass()) {
  185. case Stmt::DeclRefExprClass:
  186. return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
  187. case Stmt::CXXThisExprClass:
  188. return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
  189. case Stmt::MemberExprClass:
  190. return translateMemberExpr(cast<MemberExpr>(S), Ctx);
  191. case Stmt::ObjCIvarRefExprClass:
  192. return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
  193. case Stmt::CallExprClass:
  194. return translateCallExpr(cast<CallExpr>(S), Ctx);
  195. case Stmt::CXXMemberCallExprClass:
  196. return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
  197. case Stmt::CXXOperatorCallExprClass:
  198. return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
  199. case Stmt::UnaryOperatorClass:
  200. return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
  201. case Stmt::BinaryOperatorClass:
  202. case Stmt::CompoundAssignOperatorClass:
  203. return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
  204. case Stmt::ArraySubscriptExprClass:
  205. return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
  206. case Stmt::ConditionalOperatorClass:
  207. return translateAbstractConditionalOperator(
  208. cast<ConditionalOperator>(S), Ctx);
  209. case Stmt::BinaryConditionalOperatorClass:
  210. return translateAbstractConditionalOperator(
  211. cast<BinaryConditionalOperator>(S), Ctx);
  212. // We treat these as no-ops
  213. case Stmt::ConstantExprClass:
  214. return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
  215. case Stmt::ParenExprClass:
  216. return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
  217. case Stmt::ExprWithCleanupsClass:
  218. return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
  219. case Stmt::CXXBindTemporaryExprClass:
  220. return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
  221. case Stmt::MaterializeTemporaryExprClass:
  222. return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(),
  223. Ctx);
  224. // Collect all literals
  225. case Stmt::CharacterLiteralClass:
  226. case Stmt::CXXNullPtrLiteralExprClass:
  227. case Stmt::GNUNullExprClass:
  228. case Stmt::CXXBoolLiteralExprClass:
  229. case Stmt::FloatingLiteralClass:
  230. case Stmt::ImaginaryLiteralClass:
  231. case Stmt::IntegerLiteralClass:
  232. case Stmt::StringLiteralClass:
  233. case Stmt::ObjCStringLiteralClass:
  234. return new (Arena) til::Literal(cast<Expr>(S));
  235. case Stmt::DeclStmtClass:
  236. return translateDeclStmt(cast<DeclStmt>(S), Ctx);
  237. default:
  238. break;
  239. }
  240. if (const auto *CE = dyn_cast<CastExpr>(S))
  241. return translateCastExpr(CE, Ctx);
  242. return new (Arena) til::Undefined(S);
  243. }
  244. til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
  245. CallingContext *Ctx) {
  246. const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
  247. // Function parameters require substitution and/or renaming.
  248. if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
  249. const auto *FD =
  250. cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
  251. unsigned I = PV->getFunctionScopeIndex();
  252. if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
  253. // Substitute call arguments for references to function parameters
  254. assert(I < Ctx->NumArgs);
  255. return translate(Ctx->FunArgs[I], Ctx->Prev);
  256. }
  257. // Map the param back to the param of the original function declaration
  258. // for consistent comparisons.
  259. VD = FD->getParamDecl(I);
  260. }
  261. // For non-local variables, treat it as a reference to a named object.
  262. return new (Arena) til::LiteralPtr(VD);
  263. }
  264. til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
  265. CallingContext *Ctx) {
  266. // Substitute for 'this'
  267. if (Ctx && Ctx->SelfArg)
  268. return translate(Ctx->SelfArg, Ctx->Prev);
  269. assert(SelfVar && "We have no variable for 'this'!");
  270. return SelfVar;
  271. }
  272. static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
  273. if (const auto *V = dyn_cast<til::Variable>(E))
  274. return V->clangDecl();
  275. if (const auto *Ph = dyn_cast<til::Phi>(E))
  276. return Ph->clangDecl();
  277. if (const auto *P = dyn_cast<til::Project>(E))
  278. return P->clangDecl();
  279. if (const auto *L = dyn_cast<til::LiteralPtr>(E))
  280. return L->clangDecl();
  281. return nullptr;
  282. }
  283. static bool hasAnyPointerType(const til::SExpr *E) {
  284. auto *VD = getValueDeclFromSExpr(E);
  285. if (VD && VD->getType()->isAnyPointerType())
  286. return true;
  287. if (const auto *C = dyn_cast<til::Cast>(E))
  288. return C->castOpcode() == til::CAST_objToPtr;
  289. return false;
  290. }
  291. // Grab the very first declaration of virtual method D
  292. static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
  293. while (true) {
  294. D = D->getCanonicalDecl();
  295. auto OverriddenMethods = D->overridden_methods();
  296. if (OverriddenMethods.begin() == OverriddenMethods.end())
  297. return D; // Method does not override anything
  298. // FIXME: this does not work with multiple inheritance.
  299. D = *OverriddenMethods.begin();
  300. }
  301. return nullptr;
  302. }
  303. til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
  304. CallingContext *Ctx) {
  305. til::SExpr *BE = translate(ME->getBase(), Ctx);
  306. til::SExpr *E = new (Arena) til::SApply(BE);
  307. const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
  308. if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
  309. D = getFirstVirtualDecl(VD);
  310. til::Project *P = new (Arena) til::Project(E, D);
  311. if (hasAnyPointerType(BE))
  312. P->setArrow(true);
  313. return P;
  314. }
  315. til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
  316. CallingContext *Ctx) {
  317. til::SExpr *BE = translate(IVRE->getBase(), Ctx);
  318. til::SExpr *E = new (Arena) til::SApply(BE);
  319. const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
  320. til::Project *P = new (Arena) til::Project(E, D);
  321. if (hasAnyPointerType(BE))
  322. P->setArrow(true);
  323. return P;
  324. }
  325. til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
  326. CallingContext *Ctx,
  327. const Expr *SelfE) {
  328. if (CapabilityExprMode) {
  329. // Handle LOCK_RETURNED
  330. if (const FunctionDecl *FD = CE->getDirectCallee()) {
  331. FD = FD->getMostRecentDecl();
  332. if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
  333. CallingContext LRCallCtx(Ctx);
  334. LRCallCtx.AttrDecl = CE->getDirectCallee();
  335. LRCallCtx.SelfArg = SelfE;
  336. LRCallCtx.NumArgs = CE->getNumArgs();
  337. LRCallCtx.FunArgs = CE->getArgs();
  338. return const_cast<til::SExpr *>(
  339. translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
  340. }
  341. }
  342. }
  343. til::SExpr *E = translate(CE->getCallee(), Ctx);
  344. for (const auto *Arg : CE->arguments()) {
  345. til::SExpr *A = translate(Arg, Ctx);
  346. E = new (Arena) til::Apply(E, A);
  347. }
  348. return new (Arena) til::Call(E, CE);
  349. }
  350. til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
  351. const CXXMemberCallExpr *ME, CallingContext *Ctx) {
  352. if (CapabilityExprMode) {
  353. // Ignore calls to get() on smart pointers.
  354. if (ME->getMethodDecl()->getNameAsString() == "get" &&
  355. ME->getNumArgs() == 0) {
  356. auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
  357. return new (Arena) til::Cast(til::CAST_objToPtr, E);
  358. // return E;
  359. }
  360. }
  361. return translateCallExpr(cast<CallExpr>(ME), Ctx,
  362. ME->getImplicitObjectArgument());
  363. }
  364. til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
  365. const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
  366. if (CapabilityExprMode) {
  367. // Ignore operator * and operator -> on smart pointers.
  368. OverloadedOperatorKind k = OCE->getOperator();
  369. if (k == OO_Star || k == OO_Arrow) {
  370. auto *E = translate(OCE->getArg(0), Ctx);
  371. return new (Arena) til::Cast(til::CAST_objToPtr, E);
  372. // return E;
  373. }
  374. }
  375. return translateCallExpr(cast<CallExpr>(OCE), Ctx);
  376. }
  377. til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
  378. CallingContext *Ctx) {
  379. switch (UO->getOpcode()) {
  380. case UO_PostInc:
  381. case UO_PostDec:
  382. case UO_PreInc:
  383. case UO_PreDec:
  384. return new (Arena) til::Undefined(UO);
  385. case UO_AddrOf:
  386. if (CapabilityExprMode) {
  387. // interpret &Graph::mu_ as an existential.
  388. if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
  389. if (DRE->getDecl()->isCXXInstanceMember()) {
  390. // This is a pointer-to-member expression, e.g. &MyClass::mu_.
  391. // We interpret this syntax specially, as a wildcard.
  392. auto *W = new (Arena) til::Wildcard();
  393. return new (Arena) til::Project(W, DRE->getDecl());
  394. }
  395. }
  396. }
  397. // otherwise, & is a no-op
  398. return translate(UO->getSubExpr(), Ctx);
  399. // We treat these as no-ops
  400. case UO_Deref:
  401. case UO_Plus:
  402. return translate(UO->getSubExpr(), Ctx);
  403. case UO_Minus:
  404. return new (Arena)
  405. til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
  406. case UO_Not:
  407. return new (Arena)
  408. til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
  409. case UO_LNot:
  410. return new (Arena)
  411. til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
  412. // Currently unsupported
  413. case UO_Real:
  414. case UO_Imag:
  415. case UO_Extension:
  416. case UO_Coawait:
  417. return new (Arena) til::Undefined(UO);
  418. }
  419. return new (Arena) til::Undefined(UO);
  420. }
  421. til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
  422. const BinaryOperator *BO,
  423. CallingContext *Ctx, bool Reverse) {
  424. til::SExpr *E0 = translate(BO->getLHS(), Ctx);
  425. til::SExpr *E1 = translate(BO->getRHS(), Ctx);
  426. if (Reverse)
  427. return new (Arena) til::BinaryOp(Op, E1, E0);
  428. else
  429. return new (Arena) til::BinaryOp(Op, E0, E1);
  430. }
  431. til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
  432. const BinaryOperator *BO,
  433. CallingContext *Ctx,
  434. bool Assign) {
  435. const Expr *LHS = BO->getLHS();
  436. const Expr *RHS = BO->getRHS();
  437. til::SExpr *E0 = translate(LHS, Ctx);
  438. til::SExpr *E1 = translate(RHS, Ctx);
  439. const ValueDecl *VD = nullptr;
  440. til::SExpr *CV = nullptr;
  441. if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
  442. VD = DRE->getDecl();
  443. CV = lookupVarDecl(VD);
  444. }
  445. if (!Assign) {
  446. til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
  447. E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
  448. E1 = addStatement(E1, nullptr, VD);
  449. }
  450. if (VD && CV)
  451. return updateVarDecl(VD, E1);
  452. return new (Arena) til::Store(E0, E1);
  453. }
  454. til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
  455. CallingContext *Ctx) {
  456. switch (BO->getOpcode()) {
  457. case BO_PtrMemD:
  458. case BO_PtrMemI:
  459. return new (Arena) til::Undefined(BO);
  460. case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
  461. case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
  462. case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
  463. case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
  464. case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
  465. case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
  466. case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
  467. case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
  468. case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
  469. case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
  470. case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
  471. case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
  472. case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
  473. case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx);
  474. case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
  475. case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
  476. case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
  477. case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
  478. case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
  479. case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
  480. case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
  481. case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
  482. case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
  483. case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
  484. case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
  485. case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
  486. case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
  487. case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
  488. case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
  489. case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
  490. case BO_Comma:
  491. // The clang CFG should have already processed both sides.
  492. return translate(BO->getRHS(), Ctx);
  493. }
  494. return new (Arena) til::Undefined(BO);
  495. }
  496. til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
  497. CallingContext *Ctx) {
  498. CastKind K = CE->getCastKind();
  499. switch (K) {
  500. case CK_LValueToRValue: {
  501. if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
  502. til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
  503. if (E0)
  504. return E0;
  505. }
  506. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
  507. return E0;
  508. // FIXME!! -- get Load working properly
  509. // return new (Arena) til::Load(E0);
  510. }
  511. case CK_NoOp:
  512. case CK_DerivedToBase:
  513. case CK_UncheckedDerivedToBase:
  514. case CK_ArrayToPointerDecay:
  515. case CK_FunctionToPointerDecay: {
  516. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
  517. return E0;
  518. }
  519. default: {
  520. // FIXME: handle different kinds of casts.
  521. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
  522. if (CapabilityExprMode)
  523. return E0;
  524. return new (Arena) til::Cast(til::CAST_none, E0);
  525. }
  526. }
  527. }
  528. til::SExpr *
  529. SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
  530. CallingContext *Ctx) {
  531. til::SExpr *E0 = translate(E->getBase(), Ctx);
  532. til::SExpr *E1 = translate(E->getIdx(), Ctx);
  533. return new (Arena) til::ArrayIndex(E0, E1);
  534. }
  535. til::SExpr *
  536. SExprBuilder::translateAbstractConditionalOperator(
  537. const AbstractConditionalOperator *CO, CallingContext *Ctx) {
  538. auto *C = translate(CO->getCond(), Ctx);
  539. auto *T = translate(CO->getTrueExpr(), Ctx);
  540. auto *E = translate(CO->getFalseExpr(), Ctx);
  541. return new (Arena) til::IfThenElse(C, T, E);
  542. }
  543. til::SExpr *
  544. SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
  545. DeclGroupRef DGrp = S->getDeclGroup();
  546. for (auto I : DGrp) {
  547. if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
  548. Expr *E = VD->getInit();
  549. til::SExpr* SE = translate(E, Ctx);
  550. // Add local variables with trivial type to the variable map
  551. QualType T = VD->getType();
  552. if (T.isTrivialType(VD->getASTContext()))
  553. return addVarDecl(VD, SE);
  554. else {
  555. // TODO: add alloca
  556. }
  557. }
  558. }
  559. return nullptr;
  560. }
  561. // If (E) is non-trivial, then add it to the current basic block, and
  562. // update the statement map so that S refers to E. Returns a new variable
  563. // that refers to E.
  564. // If E is trivial returns E.
  565. til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
  566. const ValueDecl *VD) {
  567. if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
  568. return E;
  569. if (VD)
  570. E = new (Arena) til::Variable(E, VD);
  571. CurrentInstructions.push_back(E);
  572. if (S)
  573. insertStmt(S, E);
  574. return E;
  575. }
  576. // Returns the current value of VD, if known, and nullptr otherwise.
  577. til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
  578. auto It = LVarIdxMap.find(VD);
  579. if (It != LVarIdxMap.end()) {
  580. assert(CurrentLVarMap[It->second].first == VD);
  581. return CurrentLVarMap[It->second].second;
  582. }
  583. return nullptr;
  584. }
  585. // if E is a til::Variable, update its clangDecl.
  586. static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
  587. if (!E)
  588. return;
  589. if (auto *V = dyn_cast<til::Variable>(E)) {
  590. if (!V->clangDecl())
  591. V->setClangDecl(VD);
  592. }
  593. }
  594. // Adds a new variable declaration.
  595. til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
  596. maybeUpdateVD(E, VD);
  597. LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
  598. CurrentLVarMap.makeWritable();
  599. CurrentLVarMap.push_back(std::make_pair(VD, E));
  600. return E;
  601. }
  602. // Updates a current variable declaration. (E.g. by assignment)
  603. til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
  604. maybeUpdateVD(E, VD);
  605. auto It = LVarIdxMap.find(VD);
  606. if (It == LVarIdxMap.end()) {
  607. til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
  608. til::SExpr *St = new (Arena) til::Store(Ptr, E);
  609. return St;
  610. }
  611. CurrentLVarMap.makeWritable();
  612. CurrentLVarMap.elem(It->second).second = E;
  613. return E;
  614. }
  615. // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
  616. // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
  617. // If E == null, this is a backedge and will be set later.
  618. void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
  619. unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
  620. assert(ArgIndex > 0 && ArgIndex < NPreds);
  621. til::SExpr *CurrE = CurrentLVarMap[i].second;
  622. if (CurrE->block() == CurrentBB) {
  623. // We already have a Phi node in the current block,
  624. // so just add the new variable to the Phi node.
  625. auto *Ph = dyn_cast<til::Phi>(CurrE);
  626. assert(Ph && "Expecting Phi node.");
  627. if (E)
  628. Ph->values()[ArgIndex] = E;
  629. return;
  630. }
  631. // Make a new phi node: phi(..., E)
  632. // All phi args up to the current index are set to the current value.
  633. til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
  634. Ph->values().setValues(NPreds, nullptr);
  635. for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
  636. Ph->values()[PIdx] = CurrE;
  637. if (E)
  638. Ph->values()[ArgIndex] = E;
  639. Ph->setClangDecl(CurrentLVarMap[i].first);
  640. // If E is from a back-edge, or either E or CurrE are incomplete, then
  641. // mark this node as incomplete; we may need to remove it later.
  642. if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
  643. Ph->setStatus(til::Phi::PH_Incomplete);
  644. // Add Phi node to current block, and update CurrentLVarMap[i]
  645. CurrentArguments.push_back(Ph);
  646. if (Ph->status() == til::Phi::PH_Incomplete)
  647. IncompleteArgs.push_back(Ph);
  648. CurrentLVarMap.makeWritable();
  649. CurrentLVarMap.elem(i).second = Ph;
  650. }
  651. // Merge values from Map into the current variable map.
  652. // This will construct Phi nodes in the current basic block as necessary.
  653. void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
  654. assert(CurrentBlockInfo && "Not processing a block!");
  655. if (!CurrentLVarMap.valid()) {
  656. // Steal Map, using copy-on-write.
  657. CurrentLVarMap = std::move(Map);
  658. return;
  659. }
  660. if (CurrentLVarMap.sameAs(Map))
  661. return; // Easy merge: maps from different predecessors are unchanged.
  662. unsigned NPreds = CurrentBB->numPredecessors();
  663. unsigned ESz = CurrentLVarMap.size();
  664. unsigned MSz = Map.size();
  665. unsigned Sz = std::min(ESz, MSz);
  666. for (unsigned i = 0; i < Sz; ++i) {
  667. if (CurrentLVarMap[i].first != Map[i].first) {
  668. // We've reached the end of variables in common.
  669. CurrentLVarMap.makeWritable();
  670. CurrentLVarMap.downsize(i);
  671. break;
  672. }
  673. if (CurrentLVarMap[i].second != Map[i].second)
  674. makePhiNodeVar(i, NPreds, Map[i].second);
  675. }
  676. if (ESz > MSz) {
  677. CurrentLVarMap.makeWritable();
  678. CurrentLVarMap.downsize(Map.size());
  679. }
  680. }
  681. // Merge a back edge into the current variable map.
  682. // This will create phi nodes for all variables in the variable map.
  683. void SExprBuilder::mergeEntryMapBackEdge() {
  684. // We don't have definitions for variables on the backedge, because we
  685. // haven't gotten that far in the CFG. Thus, when encountering a back edge,
  686. // we conservatively create Phi nodes for all variables. Unnecessary Phi
  687. // nodes will be marked as incomplete, and stripped out at the end.
  688. //
  689. // An Phi node is unnecessary if it only refers to itself and one other
  690. // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
  691. assert(CurrentBlockInfo && "Not processing a block!");
  692. if (CurrentBlockInfo->HasBackEdges)
  693. return;
  694. CurrentBlockInfo->HasBackEdges = true;
  695. CurrentLVarMap.makeWritable();
  696. unsigned Sz = CurrentLVarMap.size();
  697. unsigned NPreds = CurrentBB->numPredecessors();
  698. for (unsigned i = 0; i < Sz; ++i)
  699. makePhiNodeVar(i, NPreds, nullptr);
  700. }
  701. // Update the phi nodes that were initially created for a back edge
  702. // once the variable definitions have been computed.
  703. // I.e., merge the current variable map into the phi nodes for Blk.
  704. void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
  705. til::BasicBlock *BB = lookupBlock(Blk);
  706. unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
  707. assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
  708. for (til::SExpr *PE : BB->arguments()) {
  709. auto *Ph = dyn_cast_or_null<til::Phi>(PE);
  710. assert(Ph && "Expecting Phi Node.");
  711. assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
  712. til::SExpr *E = lookupVarDecl(Ph->clangDecl());
  713. assert(E && "Couldn't find local variable for Phi node.");
  714. Ph->values()[ArgIndex] = E;
  715. }
  716. }
  717. void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
  718. const CFGBlock *First) {
  719. // Perform initial setup operations.
  720. unsigned NBlocks = Cfg->getNumBlockIDs();
  721. Scfg = new (Arena) til::SCFG(Arena, NBlocks);
  722. // allocate all basic blocks immediately, to handle forward references.
  723. BBInfo.resize(NBlocks);
  724. BlockMap.resize(NBlocks, nullptr);
  725. // create map from clang blockID to til::BasicBlocks
  726. for (auto *B : *Cfg) {
  727. auto *BB = new (Arena) til::BasicBlock(Arena);
  728. BB->reserveInstructions(B->size());
  729. BlockMap[B->getBlockID()] = BB;
  730. }
  731. CurrentBB = lookupBlock(&Cfg->getEntry());
  732. auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
  733. : cast<FunctionDecl>(D)->parameters();
  734. for (auto *Pm : Parms) {
  735. QualType T = Pm->getType();
  736. if (!T.isTrivialType(Pm->getASTContext()))
  737. continue;
  738. // Add parameters to local variable map.
  739. // FIXME: right now we emulate params with loads; that should be fixed.
  740. til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
  741. til::SExpr *Ld = new (Arena) til::Load(Lp);
  742. til::SExpr *V = addStatement(Ld, nullptr, Pm);
  743. addVarDecl(Pm, V);
  744. }
  745. }
  746. void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
  747. // Initialize TIL basic block and add it to the CFG.
  748. CurrentBB = lookupBlock(B);
  749. CurrentBB->reservePredecessors(B->pred_size());
  750. Scfg->add(CurrentBB);
  751. CurrentBlockInfo = &BBInfo[B->getBlockID()];
  752. // CurrentLVarMap is moved to ExitMap on block exit.
  753. // FIXME: the entry block will hold function parameters.
  754. // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
  755. }
  756. void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
  757. // Compute CurrentLVarMap on entry from ExitMaps of predecessors
  758. CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
  759. BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
  760. assert(PredInfo->UnprocessedSuccessors > 0);
  761. if (--PredInfo->UnprocessedSuccessors == 0)
  762. mergeEntryMap(std::move(PredInfo->ExitMap));
  763. else
  764. mergeEntryMap(PredInfo->ExitMap.clone());
  765. ++CurrentBlockInfo->ProcessedPredecessors;
  766. }
  767. void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
  768. mergeEntryMapBackEdge();
  769. }
  770. void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
  771. // The merge*() methods have created arguments.
  772. // Push those arguments onto the basic block.
  773. CurrentBB->arguments().reserve(
  774. static_cast<unsigned>(CurrentArguments.size()), Arena);
  775. for (auto *A : CurrentArguments)
  776. CurrentBB->addArgument(A);
  777. }
  778. void SExprBuilder::handleStatement(const Stmt *S) {
  779. til::SExpr *E = translate(S, nullptr);
  780. addStatement(E, S);
  781. }
  782. void SExprBuilder::handleDestructorCall(const VarDecl *VD,
  783. const CXXDestructorDecl *DD) {
  784. til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
  785. til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
  786. til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
  787. til::SExpr *E = new (Arena) til::Call(Ap);
  788. addStatement(E, nullptr);
  789. }
  790. void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
  791. CurrentBB->instructions().reserve(
  792. static_cast<unsigned>(CurrentInstructions.size()), Arena);
  793. for (auto *V : CurrentInstructions)
  794. CurrentBB->addInstruction(V);
  795. // Create an appropriate terminator
  796. unsigned N = B->succ_size();
  797. auto It = B->succ_begin();
  798. if (N == 1) {
  799. til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
  800. // TODO: set index
  801. unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
  802. auto *Tm = new (Arena) til::Goto(BB, Idx);
  803. CurrentBB->setTerminator(Tm);
  804. }
  805. else if (N == 2) {
  806. til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
  807. til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
  808. ++It;
  809. til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
  810. // FIXME: make sure these aren't critical edges.
  811. auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
  812. CurrentBB->setTerminator(Tm);
  813. }
  814. }
  815. void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
  816. ++CurrentBlockInfo->UnprocessedSuccessors;
  817. }
  818. void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
  819. mergePhiNodesBackEdge(Succ);
  820. ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
  821. }
  822. void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
  823. CurrentArguments.clear();
  824. CurrentInstructions.clear();
  825. CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
  826. CurrentBB = nullptr;
  827. CurrentBlockInfo = nullptr;
  828. }
  829. void SExprBuilder::exitCFG(const CFGBlock *Last) {
  830. for (auto *Ph : IncompleteArgs) {
  831. if (Ph->status() == til::Phi::PH_Incomplete)
  832. simplifyIncompleteArg(Ph);
  833. }
  834. CurrentArguments.clear();
  835. CurrentInstructions.clear();
  836. IncompleteArgs.clear();
  837. }
  838. /*
  839. namespace {
  840. class TILPrinter :
  841. public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
  842. } // namespace
  843. namespace clang {
  844. namespace threadSafety {
  845. void printSCFG(CFGWalker &Walker) {
  846. llvm::BumpPtrAllocator Bpa;
  847. til::MemRegionRef Arena(&Bpa);
  848. SExprBuilder SxBuilder(Arena);
  849. til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
  850. TILPrinter::print(Scfg, llvm::errs());
  851. }
  852. } // namespace threadSafety
  853. } // namespace clang
  854. */