|
@@ -19,6 +19,7 @@
|
|
|
#include "CodeGenFunction.h"
|
|
|
#include "CodeGenModule.h"
|
|
|
#include "ConstantEmitter.h"
|
|
|
+#include "PatternInit.h"
|
|
|
#include "TargetInfo.h"
|
|
|
#include "clang/AST/ASTContext.h"
|
|
|
#include "clang/AST/CharUnits.h"
|
|
@@ -984,92 +985,13 @@ static bool shouldSplitConstantStore(CodeGenModule &CGM,
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
-static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) {
|
|
|
- // The following value is a guaranteed unmappable pointer value and has a
|
|
|
- // repeated byte-pattern which makes it easier to synthesize. We use it for
|
|
|
- // pointers as well as integers so that aggregates are likely to be
|
|
|
- // initialized with this repeated value.
|
|
|
- constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull;
|
|
|
- // For 32-bit platforms it's a bit trickier because, across systems, only the
|
|
|
- // zero page can reasonably be expected to be unmapped, and even then we need
|
|
|
- // a very low address. We use a smaller value, and that value sadly doesn't
|
|
|
- // have a repeated byte-pattern. We don't use it for integers.
|
|
|
- constexpr uint32_t SmallValue = 0x000000AA;
|
|
|
- // Floating-point values are initialized as NaNs because they propagate. Using
|
|
|
- // a repeated byte pattern means that it will be easier to initialize
|
|
|
- // all-floating-point aggregates and arrays with memset. Further, aggregates
|
|
|
- // which mix integral and a few floats might also initialize with memset
|
|
|
- // followed by a handful of stores for the floats. Using fairly unique NaNs
|
|
|
- // also means they'll be easier to distinguish in a crash.
|
|
|
- constexpr bool NegativeNaN = true;
|
|
|
- constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
|
|
|
- if (Ty->isIntOrIntVectorTy()) {
|
|
|
- unsigned BitWidth = cast<llvm::IntegerType>(
|
|
|
- Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
|
|
|
- ->getBitWidth();
|
|
|
- if (BitWidth <= 64)
|
|
|
- return llvm::ConstantInt::get(Ty, LargeValue);
|
|
|
- return llvm::ConstantInt::get(
|
|
|
- Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue)));
|
|
|
- }
|
|
|
- if (Ty->isPtrOrPtrVectorTy()) {
|
|
|
- auto *PtrTy = cast<llvm::PointerType>(
|
|
|
- Ty->isVectorTy() ? Ty->getVectorElementType() : Ty);
|
|
|
- unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
|
|
|
- PtrTy->getAddressSpace());
|
|
|
- llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
|
|
|
- uint64_t IntValue;
|
|
|
- switch (PtrWidth) {
|
|
|
- default:
|
|
|
- llvm_unreachable("pattern initialization of unsupported pointer width");
|
|
|
- case 64:
|
|
|
- IntValue = LargeValue;
|
|
|
- break;
|
|
|
- case 32:
|
|
|
- IntValue = SmallValue;
|
|
|
- break;
|
|
|
- }
|
|
|
- auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
|
|
|
- return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
|
|
|
- }
|
|
|
- if (Ty->isFPOrFPVectorTy()) {
|
|
|
- unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
|
|
|
- (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
|
|
|
- ->getFltSemantics());
|
|
|
- llvm::APInt Payload(64, NaNPayload);
|
|
|
- if (BitWidth >= 64)
|
|
|
- Payload = llvm::APInt::getSplat(BitWidth, Payload);
|
|
|
- return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
|
|
|
- }
|
|
|
- if (Ty->isArrayTy()) {
|
|
|
- // Note: this doesn't touch tail padding (at the end of an object, before
|
|
|
- // the next array object). It is instead handled by replaceUndef.
|
|
|
- auto *ArrTy = cast<llvm::ArrayType>(Ty);
|
|
|
- llvm::SmallVector<llvm::Constant *, 8> Element(
|
|
|
- ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType()));
|
|
|
- return llvm::ConstantArray::get(ArrTy, Element);
|
|
|
- }
|
|
|
-
|
|
|
- // Note: this doesn't touch struct padding. It will initialize as much union
|
|
|
- // padding as is required for the largest type in the union. Padding is
|
|
|
- // instead handled by replaceUndef. Stores to structs with volatile members
|
|
|
- // don't have a volatile qualifier when initialized according to C++. This is
|
|
|
- // fine because stack-based volatiles don't really have volatile semantics
|
|
|
- // anyways, and the initialization shouldn't be observable.
|
|
|
- auto *StructTy = cast<llvm::StructType>(Ty);
|
|
|
- llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
|
|
|
- for (unsigned El = 0; El != Struct.size(); ++El)
|
|
|
- Struct[El] = patternFor(CGM, StructTy->getElementType(El));
|
|
|
- return llvm::ConstantStruct::get(StructTy, Struct);
|
|
|
-}
|
|
|
-
|
|
|
enum class IsPattern { No, Yes };
|
|
|
|
|
|
/// Generate a constant filled with either a pattern or zeroes.
|
|
|
static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
|
|
|
llvm::Type *Ty) {
|
|
|
if (isPattern == IsPattern::Yes)
|
|
|
- return patternFor(CGM, Ty);
|
|
|
+ return initializationPatternFor(CGM, Ty);
|
|
|
else
|
|
|
return llvm::Constant::getNullValue(Ty);
|
|
|
}
|
|
@@ -1294,8 +1216,8 @@ static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
|
|
|
Address Loc, bool isVolatile,
|
|
|
CGBuilderTy &Builder) {
|
|
|
llvm::Type *ElTy = Loc.getElementType();
|
|
|
- llvm::Constant *constant =
|
|
|
- constWithPadding(CGM, IsPattern::Yes, patternFor(CGM, ElTy));
|
|
|
+ llvm::Constant *constant = constWithPadding(
|
|
|
+ CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
|
|
|
assert(!isa<llvm::UndefValue>(constant));
|
|
|
emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
|
|
|
}
|
|
@@ -1818,8 +1740,8 @@ void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
|
|
|
|
|
|
case LangOptions::TrivialAutoVarInitKind::Pattern: {
|
|
|
llvm::Type *ElTy = Loc.getElementType();
|
|
|
- llvm::Constant *Constant =
|
|
|
- constWithPadding(CGM, IsPattern::Yes, patternFor(CGM, ElTy));
|
|
|
+ llvm::Constant *Constant = constWithPadding(
|
|
|
+ CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
|
|
|
CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
|
|
|
llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
|
|
|
llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
|